Chemistry–A European Journal

Supporting Information

Elucidating Atropisomerism in Nonplanar Porphyrins with Tunable Supramolecular Complexes

Karolis Norvaiša,^[a] John E. O'Brien,^[a] Dáire J. Gibbons,^[a] and Mathias O. Senge^{*[a, b]}

Table of Contents

Experimental Procedures	2
General Methods	2
Synthesis and Characterization of Compounds	3
Synthesis and Characterization of α , β , α , β - P1-BSA	3
Synthesis and Characterization of α_{2,β_2} - P1-BSA	11
Synthesis and Characterization of $\alpha_{3,\beta}$ - P1-BSA	21
Synthesis and Characterization of α₄- P1-BSA	33
Determination of Atropisomeric Mixtures by NMR	41
Structural Determination of Receptor-Substrate Complexes and Atropisomers	43
References	55

Experimental Procedures

General Methods

NMR spectra were recorded on a Bruker Advance III 400 MHz, a Bruker Advance HD 400 and an Agilent 400 spectrometer for ¹H (400.13 MHz) and ¹³C (100.61 MHz) NMR spectra. A Bruker Ultrashield 600 spectrometer was employed for ¹H (600.13 MHz), ¹³C (150.90 MHz) and ¹⁵N NMR (61 MHz) spectra. All NMR experiments were performed at 25 °C. Resonances δ are given in ppm units and referenced to the deuterium signal in the NMR solvents, acetonitrile-*d*₃ (δ_{H} = 1.94 ppm, δ_{C} = 1.32, 118.26 ppm). Signal multiplicities are abbreviated as follows: singlet = s, doublet = d, triplet = t, dq = doublet of quartets, multiplet = m.

Single crystal X-ray crystallography: Diffraction data for all compounds were collected on a Bruker APEX 2 DUO CCD diffractometer using graphite-monochromated Mo- K_{α} ($\lambda = 0.71073$ Å) and Incoatec IµS Cu- K_{α} ($\lambda = 1.54178$ Å) radiation. Crystals were mounted on a MiTeGen MicroMount and collected at 100(2) K using an Oxford Cryosystems Cobra low-temperature device. Data were collected using omega and phi scans and were corrected for Lorentz and polarization effects using the APEX software suite.^[S1] Data were corrected for absorption effects using the multi-scan method (SADABS).^[S2]

SheInutt's NSD (normal structural decomposition) method was used to delineate, quantify and illustrate the various distortions modes present in the tetrapyrrole macrocycles.^[S3] NSD calculations were performed with the NSD GUI version of the program.^[S4]

Crystals were grown following the protocol developed by Hope, e.g. oversaturated porphyrin/ DMSO solution, slow evaporation in acetonitrile or slow liquid-liquid diffusion of CHCl₃ and MeOH.^[S5] Using Olex2, the structure was solved with the XT structure solution program, using the intrinsic phasing solution method and refined against $|F^2|$ with XL using least-squares minimization.^[S6] If electron density was not sufficient, the C and N bound H atoms were placed in their expected calculated positions and refined using a riding model: N–H = 0.88 Å, C–H = 0.95–0.98 Å, with U_{iso} (H) = 1.5 U_{eq} (C) for methyl H atoms and 1.2 U_{eq} (C, N). Details of data refinements can be found in Table S1-S2. All images were prepared using Olex2.^[S6a]

Synthesis and Characterization of Compounds

Synthesis and Characterization of α,β,α,β-P1-BSA

α,β,**α**,β-5,10,15,20-Tetrakis(2-aminiumphenyl)-2,3,7,8,12,13,17,18-octaethylporphyrin hexa-benzenesulfonic acid salt (*α*,*β*,*α*,*β*-P1-BSA). In a sample tube benzene sulfonic acid (0.82 mg; 0.25 mmol; 50 eq.) was dissolved in 1 mL of acetonitrile*d*₃. Isomerically pure [α ,β, α ,β-5,10,15,20-tetrakis(2-aminophenyl)-2,3,7,8,12,13,17,18-octaethylporphyrinato]nickel(II) (5 mg; 0.005 mmol; 1 eq.) was added in one batch and stirred for 16 hours. The completion of demetalation followed by complex formation was identified by a distinct color change (maroon to green) of the solution. ¹H NMR (600 MHz, acetonitrile-*d*₃) δ = 8.92 (d, *J* = 7.5 Hz, 4H, Ar-*H*), 8.11 (t, *J* = 7.7 Hz, 4H, Ar-*H*), 8.02 (d, *J* = 8.1 Hz, 4H, Ar-*H*), 7.99 (t, *J* = 7.6 Hz, 4H, Ar-*H*), 2.63 (dq, *J* = 14.9, 7.6 Hz, 4H, C*H*₂ (a))2.38 (dq, *J* = 15.1, 7.5 Hz, 4H, C*H*₂ (b)), 2.06 (dq, *J* = 15.1, 7.7 Hz, 4H, C*H*₂ (b)), 1.86 (dq, *J* = 15.4, 7.7 Hz, 4H, C*H*₂ (a)), 0.62 (t, *J* = 7.6 Hz, 12H, C*H*₃ (b)), 0.05 (t, *J* = 7.5 Hz, 12H, C*H*₃ (a)), -1.42 (s, 4H) ppm.; ¹³C NMR (151 MHz, acetonitrile-*d*₃) δ = 145.01 (α-pyrrole (b)), 144 (β-pyrrole (b)), 143.82 (β-pyrrole (a)), 143.63 (α-pyrrole (a)), 140.12 (Ar), 134.41 (Ar), 132.86 (Ar), 132.11 (Ar), 130.91 (Ar), 126.02 (Ar), 113.12 (meso-), 20.62 (CH₂ (b)), 19.81 (CH₂ (a)), 15.56 (CH₃ (b)), 15.28 (CH₃ (a)) ppm.; ¹⁵N NMR (61 MHz, acetonitrile-*d*₃) δ 126.46 (N-H) ppm.

Figure S1. Structure of α , β , α , β -**P1-BSA** highlighting the positions used in the NMR characterizations.

Figure S2. ¹H NMR spectrum of α , β , α , β -**P1-BSA** with expansion of areas of interest (600 MHz, acetonitrile- d_3 , 25 °C).

Figure S3. ¹³C NMR spectrum of $\alpha,\beta,\alpha,\beta$ -P1-BSA with expansion of areas of interest (151 MHz, acetonitrile- d_3 , 25 °C).

Figure S4. ¹H–¹H TOCSY spectrum of $\alpha,\beta,\alpha,\beta$ -**P1-BSA** with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

Figure S5. ¹H-¹³C HSQC spectrum of α , β , α , β -**P1-BSA** with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

Figure S6. ¹H-¹³C HMBC spectrum of α , β , α , β -**P1-BSA** with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

Figure S7. ¹H-¹H ROESY spectrum of α , β , α , β -**P1-BSA** with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

Figure S8. ¹H-¹⁵N HSQC spectrum of α , β , α , β -**P1-BSA** with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

Synthesis and Characterization of α_{2,β_2} -P1-BSA

α,α,β,β-5,10,15,20-Tetrakis(2-aminiumphenyl)-2,3,7,8,12,13,17,18-octaethyl-porphyrin hexa-benzenesulfonic acid salt (α_2,β_2 -P1-BSA). In a sample tube benzene sulfonic acid (0.82 mg; 0.25 mmol; 50 eq.) was dissolved in 1 mL of acetonitrile-d₃. Isomerically pure α,α,β,β-5,10,15,20-tetrakis(2-aminophenyl)-2,3,7,8,12,13,17,18-octaethylporphyrinato]nickel(III) (5 mg; 0.005 mmol; 1 eq.) was added in one batch and stirred for 16 hours. The completion of demetalation followed by complex formation was identified by a distinct color change (maroon to green) of the solution. ¹H NMR (600 MHz, acetonitrile-d₃) δ = 8.74 (d, *J* = 7.4 Hz, 2H, Ar-*H* (a)), 8.66 (d, *J* = 7.4 Hz, 2H, Ar-*H* (b)), 8.12 (t, *J* = 8.0 Hz, 2H, Ar-*H* (b)), 8.08 (t, *J* = 7.8 Hz, 2H, Ar-*H* (a)), 8.06 (d, *J* = 8.0 Hz, 2H, Ar-*H* (b)), 8.03 (t, *J* = 7.5 Hz, 2H, Ar-*H* (b)), 7.94 (d, *J* = 8.1 Hz, 2H, Ar-*H* (a)), 7.90 (t, *J* = 8.1 Hz, 2H, Ar-*H* (a)), 2.63 (dq, *J* = 14.4, 7.1 Hz, 2H, CH₂ (c)), 2.50 (dq, *J* = 14.8, 7.5 Hz, 2H, CH₂ (a)), 2.09 (dq, *J* = 14.7, 7.3 Hz, 2H, CH₂ (d)), 2.37 (dq, *J* = 14.8, 7.4 Hz, 2H, CH₂ (b)), 2.19 (dq, *J* = 14.8, 7.5 Hz, 2H, CH₂ (a)), 2.09 (dq, *J* = 14.7, 7.3 Hz, 2H, CH₂ (d)), 1.85 (dq, *J* = 14.8, 7.4 Hz, 2H, CH₂ (d)), -0.19 (t, *J* = 7.5 Hz, 6H, CH₃ (b)), -1.11 (s, 2H, N-H (c)), -1.40 (s, 1H, N-H (b)), -2.18 (s, 1H, N-H (a)); ¹³C NMR (151 MHz, acetonitrile-d₃, 25 °C) δ = 145.59 (β-pyrrole (a)), 144.88 (α-pyrrole (a)), 144.65 (α-pyrrole (c)), 143.94 (β-pyrrole (c)), 142.92 (β-pyrrole (b)), 133.1 (Ar (b)), 132.12 (Ar (b)), 132.02 (Ar (a)), 130.05 (Ar (a)), 126.36 (Ar (b)), 125.93 (Ar (a)), 114.85 (meso- (b)), 111.95 (meso- (a)), 2.076 (CH₂ (a)), 2.0.48 (CH₂ (c)), 19.1 (CH₂ (d)), 15.92 (CH₃ (b)), 15.87 (CH₃ (d)), 15.37 (CH₃ (a)), 15.19 (CH₃ (c)) ppm.; ¹⁵N NMR (61 MHz, acetonitrile-d₃ (Ar (a)), 190.51 (CH₃ (a)), 2.76 (CH₃ (a)), 2.0.76 (CH₂ (a)), 2.0.48 (CH₂ (c)), 19.1 (CH₂ (b)), 15.92 (CH₃ (b)), 15.87 (CH₃ (d)), 15.37 (CH₃ (a)), 15.19 (CH₃ (c)) ppm

Figure S9. Structure of $\alpha_2\beta_2$ -P1-BSA highlighting the positions used in NMR characterizations.

Figure S10. ¹H NMR spectrum of α_{2,β_2} -**P1-BSA** with expansion of areas of interest (600 MHz, acetonitrile- d_3 , 25 °C).

WILEY-VCH

SUPPORTING INFORMATION ul IV A MA AA -2 MM MM **1** {8.75,7.90} {7.95,7.90} {8.75,7.95} - 7.9 {8.09,7.95} -1 60 {7.90,7.94} - 8.0 {8.06,8<mark>.06</mark>} {8.66,8.06} - 0 0 e, Mo {8.66,8.13} {8.05,8,1 - 8.1 ð {8.13,8.12} - 1 - 8.2 ٢ Ø (mdd) Ö - 2 - 8.3 3 £ 00 0 8.4 - 3 MMM. - 8.5 {2.37,-0.19} {1.67,-0.19} {2.63,-0.04} - 8.6 {1.85,-0.04} - 0.0 - 5 - 8.7 \leq (1 1 1 1 1 1 1 1 8 8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 f2 (ppm) 7 - 0.5 - 8 {2.09,0.68} {2.51,0.71} {2.20,0.71} \ge - 9 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 f2 (ppm) 9 8 7 6 5 4 3 1 Ó -1 -2 2 f2 (ppm)

WILEY-VCH

f1 (ppm)

Figure S12. ¹H–¹H TOCSY spectrum of α_{2,β_2} -P1-BSA with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

Figure S13. ¹H-¹³C HSQC spectrum of α_{2,β_2} -P1-BSA with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

Figure S14. ¹H-¹³C HMBC spectrum of α_{2,β_2} -P1-BSA with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

SUPPORTING INFORMATION 1 Mr. M. -139.5 -140.0 -140.5 -141.0 -141.5 {-1.11,142.05} {2.62,142.05} **(**2.08,142.05) {-0.04,142.04 -142.0 {1.85,142.00} {2.48,142.03 -142.5 (m dd) {2.38,142.76} {2.38,142.9<mark>2</mark> {1.66,142.78} {1.68,142.93} {-0.18,142.92} {-1.40,142.93} -143.0 **드** -143.5 {1.85,143.91} {2.48,143.94}{2.10,143.94} {0.66,143.96} {-1.11,143.96} -144.0 {2.64,143.93} {2.46,144.63] {2.09,144.63} -144.5 {2.50,144.86} -145.0 {2.19,145.56} {0.71,145.59} {-2.19,145.59} {2.48,145.59} -145.5 -146.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 -1.8 -2.0 -2.2 f2 (ppm)

Figure S15. ¹H-¹³C HMBC spectrum, expansion of area of interest of α_2,β_2 -**P1-BSA** (acetonitrile- $d_3, 25$ °C).

Figure S16. ¹H-¹H ROESY spectrum of α_{2,β_2} -**P1-BSA** with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

SUPPORTING INFORMATION .MMA -0.6 -0.4 --0.2 -0.0 -0.2 -0.4 100 -0.6 10 -78 -0.8 22 📚 f1 (ppm) -1.0 -1.2 -1.4 -1.6 000--1.8 8 I COL -2.0 3 -2.2 3 -2.4 45 -2.6 ۵ -2.8 2.8 2.6 0.4 0.0 -0.2 -0.4 2.4 2.2 1.4 1.2 f2 (ppm) 1.0 0.8 0.6 2.0 1.8 1.6 0.2

Figure S17. ¹H-¹H ROESY spectrum of α_{2,β_2} -**P1-BSA**, expansion of aliphatic area (acetonitrile- d_3 , 25 °C).

Figure S18. ¹H-¹⁵N HSQC spectrum of α_{2,β_2} -P1-BSA with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

SUPPORTING INFORMATION

Synthesis and Characterization of α₃,β-P1-BSA

α,α,α,β-5,10,15,20-Tetrakis(2-aminiumphenyl)-2,3,7,8,12,13,17,18-octaethyl-porphyrin hexa-benzenesulfonic acid salt ($\alpha_{3,\beta}$ -P1-BSA). In a sample tube benzene sulfonic acid (0.82 mg; 0.25 mmol; 50 eq.) was dissolved in 1 mL of acetonitrile-d3. Isomerically pure [α,β,β,β-5,10,15,20-tetrakis(2-aminophenyl)-2,3,7,8,12,13,17,18-octaethylporphyrinato]nickel(II) (5 mg; 0.005 mmol; 1 eq.) was added in one batch and stirred for 16 hours. The completion of demetalation followed by complex formation was identified by a clear color change (maroon to green) of the solution. During slow evaporation, green/blue shard habit crystals were formed. ¹H NMR (600 MHz, acetonitrile-*d*₃) δ = 8.85 (d, *J* = 7.3 Hz, 1H, Ar-*H* (d)), 8.83 (d, *J* = 7.5 Hz, 1H, Ar-*H* (a)), 8.72 (d, J = 7.4 Hz, 1H, Ar-H (c)), 8.62 (d, J = 7.5 Hz, 1H, Ar-H (b)), 8.14 – 8.07 (m, 2H, Ar-H (a,b,c,d), 8.08 – 7.97 (m, 6H, Ar-H (b,c)), 7.96 (d, J = 4.8 Hz, 1H, Ar-H (d)), 7.94 (d, J = 4.8 Hz, 1H, Ar-H (a)), 7.89 (t, J = 7.5 Hz, 1H, Ar-H (d)), 7.85 (t, J = 7.5 Hz, 1 1H, Ar-H (a)), 2.61 (dq, J = 14.8, 7.4 Hz, 2H, CH₂ (a,f)), 2.52 (dq, J = 15.3, 7.6 Hz, 1H, CH₂ (g)), 2.44 (ddq, J = 21.3, 14.2, 7.4 Hz, 4H, CH₂ (a,b,h,e)), 2.21 (ddq, J = 30.1, 15.1, 7.6 Hz, 2H, CH₂ (g,d)), 2.10 – 1.99 (m, 3H, CH₂ (d,e,h)), 1.85 (dq, J = 15.1, 7.5 Hz, 2H, CH₂ (f,c)), 1.70 (dq, J = 15.8, 8.0 Hz, 2H, CH₂ (a.b)), 0.74 (t, J = 7.5 Hz, 3H, CH₃ (d)), 0.71 (t, J = 7.5 Hz, 3H, CH₃ (g)), 0.45 (t, J = 7.5 Hz, 3H, CH₃ (h)), 0.42 (t, J = 7.5 Hz, 3H, CH₃ (e)), 0.10 (t, J = 7.4 Hz, 3H, CH₃ (f)), 0.02 (t, J = 7.4 Hz, 3H, CH₃ (c)), -0.11 (t, J = 7.5 Hz, 3H, CH₃ (a)), -0.16 (t, J = 7.5 Hz, 3H, CH₃ (b)), -0.89 (s, 1H, N-H (d)), -1.25 (s, 1H, N-H (c)), -1.37 (s, 1H, N-H (a)), -1.61 (s, 1H, N-H (b)) ppm.; ¹³C NMR (151 MHz, acetonitrile- a_3) δ = 145.59 (α -pyrrole (h)), 145.29 (β -pyrrole (d)), 145.04 (α-pyrrole (d)), 144.88 (α-pyrrole (g)), 144.71 (β-pyrrole (g)), 144.26 (α-pyrrole (e)), 143.95 (α-pyrrole (c)), 143.76 (β-pyrrole (h)), 143.69 (α-pyrrole (f)), 143.4 (β-pyrrole (e)), 143.4 (α-pyrrole (a)), 143.27 (β-pyrrole (a)), 143.26 (β-pyrrole (c)), 142.9 (β-pyrrole (f)), 142.65 (α-pyrrole (b)), 141.95 (β-pyrrole (b)), 140.84 (Ar (a)), 140.43 (Ar (b)), 140.21 (Ar (c)), 139.35 (Ar (d)), 134.21 (Ar (b)), 134.14 (Ar (c)), 134.14 (Ar (a)), 134.05 (Ar (d)), 133.47 (Ar (d)), 133.11 (Ar (c)), 133.07 (Ar (b)), 133.04 (Ar (a)), 132.22 (Ar (d)), 132.22 (Ar (b)), 131.89 (Ar (a)), 131.86 (Ar (c)), 130.7 (Ar (c)), 130.61 (Ar (a)), 130.51 (Ar (b)), 130.43 (Ar (d)), 126.13 (Ar (c)), 126.05 (Ar (d)), 126.05 (Ar (b)), 125.81 (Ar (a)), 114.9 (meso- (a)), 113.39 (meso- (d)), 113.36 (meso- (b)), 111.53 (meso- (c)), 20.69 (CH₂ (d)), 20.58 (CH₂ (g)), 20.23 (CH₂ (h)), 20.23 (CH₂ (e)), 19.53 (CH₂ (f)), 19.53 (CH₂ (c)), 19.34 (CH₂ (a)), 8.99 (CH₂ (b)), 15.96 (CH₃ (b)), 15.84 (CH₃ (f)), 15.72 (CH₃ (a)), 15.67 (CH₃ (h)), 15.57 (CH₃ (d)), 15.29 (CH₃ (g)), 15.28 (CH₃ (c)), 15.26 (CH₃ (e)) ppm.; ¹⁵N NMR (61 MHz, acetonitrile-*d*₃) δ = 127.27 (N-H (d)), 127.04 (N-H (c)), 125.90(N-H (a)), 126.88 (N-H (b)).

Figure S19. Structure of $\alpha_{3,\beta}$ -P1-BSA highlighting the positions used in NMR characterizations.

SUPPORTING INFORMATION

Figure S20. ¹H NMR spectrum of $\alpha_{3,\beta}$ -P1-BSA with expansion of areas of interest (600 MHz, acetonitrile- α_{3} , 25 °C).

WILEY-VCH

Figure S22. ¹³C NMR and DEPT-135 overlay spectra of $\alpha_{3,\beta}$ -P1-BSA with expansion of areas of interest (151 MHz, acetonitrile- d_3 , 25 °C).

Figure S23. ¹H–¹H TOCSY spectrum of $\alpha_{3,\beta}$ -P1-BSA with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

WILEY-VCH SUPPORTING INFORMATION -10 MMA MM {1.94,1.32}CD3C - 0 M - 10 . {8.00,126.05} - 125 {8.04,126.13} - 20 Mh Mh {7.96,126.05} - 30 ⊢ 15.2 {8.03,130.70} {8.00,130.52} 1 - 130 {0.41,15.26} - 40 {0.71,15.29} {0.02,15.28} - 15.4 {7.85,130.61} (mdd) (mqq) {0.74,15.57} {0.45,15.67} *****{8.10,134.14} - 50 {8.11,134.21} 15.6 {-0.11,15.72} Ę {8.04,134.14} - 135 {0.10,15.84} - 60 - 15.8 020 {-0.17,15.96} 70 16.0 {8.85,139.35} 0.5 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 {8.83,140.84} 0.8 0.7 0.6 140 - 80 mMm f2 (ppm)// M {8.62,140.43} - 90 {2.41,18.99} {1.69,18.99} - 19.0 - 100 8.8 8.6 8.4 8.2 8.0 7.8 {2.41,19.34} {2.61,19.53 {1.69,19.34} f2 (ppm) {1.85,19.53} - 19.5 (m - dd) - 110 - 120 - 20.0 Ę {2.05,20.23} {2.45,20.23} 8. {2.52,20.58} - 130 {2.24,20.69} {2.02,20.69} - 20.5 >{2.19.20.58 - 140 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 - 150 f2 (ppm) 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 f2 (ppm)

Figure S24. ¹H-¹³C HSQC spectrum of $\alpha_{3,\beta}$ -P1-BSA with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

f1 (ppm)

Figure S25. ¹H-¹³C HMBC spectrum of $\alpha_{3,\beta}$ -P1-BSA with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

SUPPORTING INFORMATION - 141.5 kn_88_f2_2_sph_600.544.1.2rr HMBCETGPL3ND {2.41,141.94} {-1.37,141.95} {1.69,141.95 {-0.17,141.95} - 142.0 - 142.5 {2.41,142.65 {-1.37,142.65} {2.45,142.90<mark>}</mark>{2.05,142.90} {0.10,142.90} {-0.89,142.90} {2.61,142.90} {1.85,142.90} - 143.0 {-0.11,143.26} {2.41,143.27} {2.24,143.27} {1.69,143.27} {0.02,143.27} {-1.37,143.27} {0.41,143.40} {2.61,143.40} {-0.89,143.40} 2.02 143.27 - 143.5 2.45,143.40 f1 (ppm) {2.0<mark>5,1</mark>43.40} {-1.37,143.40} {-0.89,143.69} {2.52,143.76} {0.45,143.76 {-1.61,143.76} **2.61**,143.69 {2.61,143.95} {-1.23,143.95} - 144.0 {-0.89,144.26} {2.45,144.26} {2.05,144.26} - 144.5 {2.52,144.71} {2.45,144.71} {2.05,144.69} {0.71,144.71} {-1.61,144.71} {2.52,144.88<mark>}2.19,</mark>144.88} {-1.61,144.88} 2,19,144.71 {2.02,**1**45.04} {2,24,145.05} {-1.22,145.05} - 145.0 {0.74,145.29 {-1.23,145.27} {2.61,145.29}{2.24,145.29} {2,02,145.29} **{**1.91,145.29} {2.45,145.59} {2.05,145.59} {-1.61,145.59} - 145.5 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 f2 (ppm)

Figure S26. ¹H-¹³C HMBC spectrum, expansion of area of interest of $\alpha_{3,\beta}$ -P1-BSA (acetonitrile- d_{3} , 25 °C).

Figure S27. ¹H-¹³C HMBC spectrum of $\alpha_{3,\beta}$ -**P1-BSA**, expansion of aliphatic area (acetonitrile- d_3 , 25 °C).

Figure S28. ¹H-¹H ROESY spectrum of $\alpha_{3,\beta}$ -P1-BSA with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

Figure S29. ¹H-¹H ROESY spectrum of $\alpha_{3,\beta}$ -**P1-BSA**, expansion of aliphatic area (acetonitrile- d_{3} , 25 °C).

Figure S30. ¹H-¹⁵N HSQC spectrum of $\alpha_{3,\beta}$ -P1-BSA with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

SUPPORTING INFORMATION

Synthesis and Characterization of a4-P1-BSA

 α ,α,α,α-5,10,15,20-Tetrakis(2-aminiumphenyl)-2,3,7,8,12,13,17,18-octaethyl-porphyrin hexa-benzenesulfonic acid salt (*α*₄-P1-BSA). In a sample tube benzene sulfonic acid (0.82 mg; 0.25 mmol; 50 eq.) was dissolved in 1 mL of acetonitrile-*d*₃. Isomerically pure [α,α,α,α-5,10,15,20-tetrakis(2-aminophenyl)-2,3,7,8,12,13,17,18-octaethylporphyrinato]nickel(II) (5 mg; 0.005 mmol; 1 eq.) was added in one batch and stirred for 16 hours. The completion of demetalation followed by complex formation was identified by a clear color change (maroon to green) of the solution. During slow evaporation, green/blue shard habit crystals were formed. ¹H NMR (600 MHz, acetonitrile-*d*₃) δ = 8.63 (d, *J* = 7.6 Hz, 4H, Ar-*H*), 8.13 (t, *J* = 7.8 Hz, 4H, Ar-*H*), 8.04 – 7.98 (m, 8H, Ar-*H*), 2.62 (dq, *J* = 15.1, 7.5 Hz, 4H, CH₂ (b)), 2.54 (dq, *J* = 15.0, 7.5 Hz, 4H, CH₂ (a)), 2.20 (dq, *J* = 15.1, 7.6 Hz, 4H, CH₂ (b)), 1.78 (dq, *J* = 15.0, 7.5 Hz, 4H, CH₂ (a)), 0.57 (t, *J* = 7.6 Hz, 12H, CH₃ (b)), 0.08 (t, *J* = 7.5 Hz, 12H, CH₃ (a)), -0.82 (s, 2H, N-*H* (a)), -2.58 (s, 2H, N-*H* (b)) ppm.; ¹³C NMR (151 MHz, acetonitrile-*d*₃) δ = 143.22 (α-pyrrole (a)), 142.19 (β-pyrrole (a)), 144.9 (α-pyrrole (b)), 144.77 (β-pyrrole (b)), 140.56 (Ar), 134.32 (Ar), 133.01 (Ar), 131.74 (Ar), 130.72 (Ar), 126.19 (Ar), 114.09 (meso-), 18.88 (CH₂ (a)), 20.44 (CH₂ (b)), 15.01 (CH₃ (b)), 16.15 (CH₃ (a)) ppm.; ¹⁵N NMR (61 MHz, acetonitrile-*d*₃) δ 125.09 (N-H (a)), 125.80 (N-H (b)) ppm.

Figure S31. Structure of α_4 -P1-BSA highlighting the positions used in NMR characterizations.

SUPPORTING INFORMATION

Figure S32. ¹H NMR spectrum of α₄-P1-BSA with expansion of areas of interest (600 MHz, acetonitrile-d₃, 25 °C).

SUPPORTING INFORMATION 44 -3 ٨٨ -2 {8.01,8.01} {8.63,8.01} {8.13,8.01} -8.0 {8.13,8.13 {8.01,8.13**}** {8.63,8.13} -1 f1 (ppm) - 0 - 8.5 - 1 ------90 0 {1.94,1.94}CD3CN - 2 f1 (ppm) S M 3 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 f2 (ppm) ò -0.5 - 4 {2.54,-0.08} {1.78,-0.08} - 5 (mqq) -0.0 -6 Ę {2.62,0.57} {2.20,0.57} -0.5 . 7 -8 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 f2 (ppm) -9 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 f2 (ppm)

Figure S34. ¹H–¹H TOCSY spectrum of α_4 -**P1-BSA** with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

Figure S35. ¹H-¹³C HSQC spectrum of α_4 -**P1-BSA** with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

Figure S36. ¹H-¹³C HMBC spectrum of α_4 -P1-BSA with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

WILEY-VCH SUPPORTING INFORMATION -1 - 0 {8.63,-0.08} -0 - 1----{8.63,0.56} -1 -.2 fi (ppm) -1 44 - 2 {8.63,1.78} {8.63,2.20} -2 - 3 f1 (ppm) 8.70 8.65 8.60 - 5 f2 (ppm) -6 .7 - 1 T. •. -8 4.0 3.5 f2 (ppm) 3.0 8.5 8.0 7.5 7.0 6.5 5.5 5.0 4.5 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 6.0

Figure S37. ¹H-¹H ROESY spectrum of α_4 -**P1-BSA** with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

Figure S38. ¹H-¹⁵N HSQC spectrum of α_4 -P1-BSA with expansion of areas of interest (acetonitrile- d_3 , 25 °C).

SUPPORTING INFORMATION

Determination of Atropisomeric Mixtures by NMR

Figure S39. An example of atropisomeric mixture determination by ¹H NMR analysis of the porphyrin **P1-MSA** (A: $\alpha,\beta,\alpha,\beta$ -; B: α_2,β_2 -; C: α_3,β -; D: α_4 -) inner core (N–H) signals (acetonitriled₃, 25 °C). The mixtures were randomly generated to create comprehensive studies of the unknown samples. The percentage values were obtained by integration of the proton signal

Table S1. ¹H, ¹³C and ¹⁵N NMR signals of **P1-BSA** atropisomers obtained from HSQC and HMBC in CD₃CN (δ in ppm). Blue – above and red – below the plane, purple – either above or below the plane depending on the orientation of -NH₃⁺ groups.

	a B-	P1-BSA	a2 B2-	P1-BSA	a.B.a.l	3-P1-BSA	<i>α</i> 4-F	P1-BSA	—
Pos.	<u></u> δ _H	δc or δ _N	δΗ	δς οι δη	<u></u> δ _H	δcorδN	δ _H	δ _c or δ	N
1		145.1		144.9		143.6		144.9	
2		145.3		145.6		143.8		144.8	
2 ¹ (inner)	1.91	19.5	2.48	20.8	1.86	19.8	2.62	20.4	
2'(outer) 2 ²	2.61	15.3	2.19	15.4	2.63	15.3	2.20	15.0	
3	0.02	143.3	0.71	145.6	0.00	144.0	0.57	144.8	1
31(inner)	2.02	20.7	2.48	20.9	2.38	20.6	2.62	20.4	
3 ¹ (outer)	2.24	20.7	2.19	20.8	2.06	20.6	2.20	20.4	
3 ²	0.74	15.6	0.71	15.4	0.62	15.6	0.57	15.0	
4		144.0		144.9		145.0		144.9	
ວ 5 ¹		113.4		112.0		113.1		114.1	
5 5 ²		132.2		132.0		132.1		133.0	12
5 ³	7.96	126.1	7.90	125.9	8.02	126.0	8.01	126.2	13
5 ⁴	8.03	134.1	8.08	134.2	8.11	134.4	8.13	134.3	
5 ⁵	7.89	130.4	7.94	130.5	7.99	130.9	8.01	130.7	
5 ⁶	8.85	139.4	8.74	140.4	8.92	140.1	8.63	140.6	
6		143.7		144.1		143.6		143.2	
7		142.9		142.0		143.8		142.2	
7'(inner)	1.85	19.5	2.63	19.1	1.86	19.8	2.54	18.2	1
7 ² (outer)	2.01	15.8	1.85	15.9	2.03	15.3	1.78	16.2	
8	0.10	143.4	-0.04	143.9	0.00	144 0	0.00	142.2	
8 ¹ (inner)	2.45	00.0	2.48	20.5	2.38	20.0	2.54	40.0	
8 ¹ (outer)	2.05	20.2	2.09	20.5	2.06	20.6	1.78	18.2	
8 ²	0.42	15.3	0.67	15.2	0.62	15.6	0.08	16.2	
9		144.3		143.9		145.0		143.2	
10		114.9		114.9		113.1		114.1	
10 ¹		131.9		132.1		132.1		131.7	
10 ⁻ 10 ³	7.04	133.0	9.06	133.1	9.02	132.9	9.01	133.0	
10 ⁴	7.94	120.0	8.12	120.4	0.02 8 11	120.0	0.01 8.13	120.2	
10 ⁵	7 85	139.1	8.03	130.6	7.99	130.9	8.01	134.3	
106	8.83	140.8	8.66	139.8	8.92	140.1	8.63	140.6	
11	 M	143.4		142.8		143.6		144.9	
12		143.3		142.9		143.8		144.8	
12 ¹ (inner)	2.41	10.3	2.37	10.1	1.86	19.8	2.62	20.4	
12 ¹ (outer)	1.69	10.0	1.66	45.5	2.63	10.0	2.20	20.4	
124	-0.11	15.7	-0.19	15.9	0.05	15.3	0.57	15.0	
13 13 ¹ (inner)	2.44	142.0	2 27	142.9	2 28	144.0	2.62	144.8	
13 ¹ (outer)	1.71	19.0	1.66	19.1	2.06	20.6	2.20	20.4	
13 ²	-0.16	16.0	-0.19	15.9	0.62	15.6	0.57	15.0	
14		142.7		142.8		145.0		144.9	
15		113.4		114.9		113.1		114.1	
15 ¹		132.2		132.1		132.1		131.7	
154		133.1		133.1		132.9		133.0	
15° 154	8.00	126.1	8.06	126.4	8.02	126.0	8.01	126.2	
15 ⁵	8.11	134.2	8.12	134.2	8.11 7.00	134.4	8.13	134.3	
156	0.00	130.5	0.U3 8.66	130.0	1.99	130.9	0.01	130.7	
16	0.02	145.6	0.00	143 9	0.32	143.6	0.00	143.2	
17		143.8		143.9		143.8		142.2	
17 ¹ (inner)	2.52	20.0	2.48	20.5	1.86	40.0	2.54	40.0	
17 ¹ (outer)	2.19	20.6	2.09	20.5	2.63	19.8	1.78	18.2	
17 ²	0.71	15.3	0.67	15.2	0.05	15.3	0.08	16.2	
18	0.15	144.7	0.05	142.0	0.05	144.0	0.51	142.2	
18'(inner)	2.45	20.2	2.63	19.1	2.38	20.6	2.54	18.2	
18 ²	2.00	15.7	-0.04	15.9	2.00	15.6	1.78	16.2	
19	0.40	144.9	-0.04	144_1	0.02	145.0	0.00	143.2	
20		111.5		112.0		113.1		114.1	
20 ¹		131.9		132.0		132.1		131.7	
20 ²		133.2		133.0		132.9		133.0	
20 ³	8.04	126.1	7.90	125.9	8.02	126.0	8.01	126.2	
20 ⁴	8.09	134.1	8.08	134.2	8.11	134.4	8.13	134.3	
20 ⁵	8.03	130.7	7.94	130.5	7.99	130.9	8.01	130.7	
20°	8.72	140.2	8.74	140.4	8.92	140.1	8.63	140.6	
21	-1.25	127.0	-2.15	125.9	-1.42	126.5	-2.58	125.8	
22	-0.89	127.3	-1.08	127.0	-1.42	126.5	-0.82	125.1	
∠3 24	-1.37	125.9	-1.38	120.9	-1.42	120.5	-2.58	125.8	
24	-1.01	120.9	-1.08	127.0	-1.42	120.0	-0.82	120.1	

Structural Determination of Receptor-Substrate Complexes and Atropisomers

In the structure of $\alpha_3\beta$ -P1·[HSO₄-]₆[H₂SO₄][CH₃OH][H₂O]₄ the counter anion HSO₄⁻ was modeled over two positions S3, S1D using rigid models and SIMU, SADI, ISOR restraints in an 80:20 % occupancy. Another HSO₄⁻ entity was modeled over three positions (S4, S1D, S1C) using rigid models and SIMU restraint in a 50:30:20 % occupancy. Yet another HSO₄⁻ was modeled over four positions (S2D, S2C, S2B, S5) using rigid models and SIMU restraint in a 20:10:20:50 % occupancy. One H₂SO₄ was modeled over three positions (S7, S3D, S1A) using rigid models and SIMU restraint in a 30:30:40 % occupancy. One MeOH molecule was modeled over four positions (C2S, C1S, C3S, C4S) using SIMU, ISOR, SADI and DFIX restraint in a 25:25:20:30 % occupancy. One of the solvent H₂O molecules was modeled over two positions (O2CA and O32) using restraint ISOR in a 40:60 % occupancy. All of the phenyl rings of the porphyrin at C5, C10, C15, and C20 were modeled over two positions at 43:57, 50:50, 74:26, 50:50 and fixed using command AFIX 66, SIMU and SADI. Six of the ethyl groups at C2, C3, C8, C12, C13, and C17 were modeled over two positions at 10:90, 24:74, 62:38, 49:51, 26:74 and 10:90 % occupancy, respectively using SIMU and SADI restraints.

In the structure of α_{4} -P1·[C₆H₅SO₃-]₆[H₂O][CD₃CN]₂ two of the acetonitrile solvent molecules were modeled over seven positions (N5, N6, N7, N4A, N3A, N1A, N2A) using rigid models and SIMU restrains in 15:50:50:25:20:25:15 % occupancy. One of the benzenesulfonic acids was modeled over two positions (S1B, S3) using rigid models and SIMU, DFIX restraints in a 55:45 % occupancy. Phenyl rings of three benzenesulfonic acids were modeled over two positions (S1, S2, S5) using AFIX 66, SIMU and DFIX restraints in a 40:60 %, 67:33 %, 75:25 % occupancy, respectively. Moreover, benzenesulfonic acid (S5) oxygen atoms were modeled in 75:25 % occupancy along with the phenyl ring. Three ethyl groups at C7, C8, and C13 were modeled over two positions in 71:29 %, 17:29 %, 55:45 % occupancy, respectively using SIMU and SADI restrains.

In the structure of α_3 , β -P1·[C₆H₅SO₃-]₆[H₂O]₂ three of the benzenesulfonic acid molecules were modeled over 2 positions (S3 and S1A, S5 and S3A, S1 and S1C) using rigid models and SIMU restrains in 53:47%, 36:64% 60:40% occupancy, respectively. Oxygen atoms of two benzenesulfonic acid molecules (S2 and S4) were modeled over 2 positions using SIMU and SADI restrains in 75:25%, 26:74% occupancy, respectively. One of the benzenesulfonic acid molecule was modeled over 5 positions (S1D, S1B, S2A, S2C, and S6) using rigid models and SIMU restraints in 20:25:15:25:15% occupancy. The ethyl group at C13 was modeled over 2 positions in 24:76% occupancy using SIMU and SADI restraints. Another ethyl group was modeled over two positions in 40:60% occupancy and fixed using command AFIX 66, SIMU and SADI. The structure contains a solvent accessible void that contained a small number of solvent molecules (around 38 electrons), possibly methanol or acetonitrile; however, due to high disorder, these could not be modeled and were omitted using PLATON squeeze.

In the structure of α_4 -1•[(CH₃)₂SO]₅ three of the dimethyl sulfoxide molecules were modeled over 2 positions (S1 and S1A, S4 and S4A, S3 and S3A, S5 and S5A) using SIMU and SUMP restraints in 4:96%, 89:11% 93:7% occupancies, respectively. One of the dimethyl sulfoxide solvent molecules was modeled over 3 positions (S8, S8A, and S5B) using SIMU and SUMP restraints in 56:27:17 % occupancy.

In the structure of **CP1**•[BF₄⁻]₂ the collected diffraction pattern was found to have cubic symmetry, and a solution was found in cubic space group $I\overline{4}$ 3d. This compound was disordered over two orientations related by 180-degree rotation of the aryl rings in a refined ratio of 0.50(11) : 0.50(11). One of the ethyl groups was similarly disordered over two positions, between a pseudocis and pseudo-trans orientation at a refined ratio of 0.684(15) : 0.316(15). The BF₄⁻ anion was disordered over two overlapping symmetry-equivalent orientations and held to an occupancy of 0.5. In each case, symmetry-related atoms were held to SADI and SIMU restraints to prevent overfitting. A global loose SIMU restraint was also applied, due to weak high angle data. Due to these disordered components, the derived Flack parameter is meaningless, and no direct evidence can be brought to bear on the atropisomeric ratios in this crystal determination. The squeeze routine in PLATON was used to account for highly disordered solvent (6 water molecules per unit formula).

In the structure of $\alpha_3\beta$ -1 the ethyl groups at C2, C3, C7, C8, C12, C13, and C17 were modeled over 2 positions in 68:22 13:87 26:74 30:70 66:34 80:20 3:97 % occupancy, respectively using SIMU and SADI restraints. Four of the phenyl rings at C5, C10, C15, and C20 were modeled over two positions in 35:65 % occupancy and fixed using command AFIX 66, SIMU and SADI. The structure contained a solvent-accessible void with a small number of solvent molecules, possibly methanol and water or dichloromethane; however, due to a high degree of disorder, these could not be modeled and were omitted using PLATON squeeze.

Table S2. Details of XRD data refinement of α_4 -P1•[C₆H₅SO₃⁻]₆[H₂O][CD₃CN]₂, α_4 -1•[(CH₃)₂SO]₅ and CP1•[BF₄⁻]₂.

Compound	<i>α</i> 4-P1 •[C ₆ H ₅ SO ₃ ⁻] ₆ [H ₂ O][CD ₃ CN] ₂	<i>α₄</i> -1 •[(CH ₃) ₂ SO] ₅	CP1• [BF ₄ ⁻] ₂
CCDC #	2012196	2012199	2012200
Empirical formula	$C_{100}H_{104}D_6N_{10}O_{19}S_6$	$C_{70}H_{96}N_8O_5S_5$	$C_{60}H_{68}B_2F_8N_8$
Formula weight	1954.73	1289.76	1074.84
Temperature/K	100(2)	100(2)	100(2)
Crystal system	monoclinic	orthorhombic	cubic
Space group	P21/n	Pbca	l 4 3d
a/Å	14.3842(4)	21.2713(8)	26.404(3)
b/Å	30.2287(10)	23.8513(8)	26.404(3)
c/Å	25.0716(8)	27.7727(9)	26.404(3)
α/°	90	90	90
β/°	104.894(2)	90	90
γ/°	90	90	90
Volume/ų	10535.3(6)	14090.4(8)	18409(6)
Ζ	4	8	12
D _{calc} g/cm ³	1.232	1.216	1.163
µ/mm⁻¹	1.761	0.218	0.086
F(000)	4113.0	5536.0	6792.0
Crystal size/mm ³	0.4 × 0.25 × 0.09	0.27 × 0.2 × 0.17	0.36 × 0.34 × 0.17
Radiation	CuKα	ΜοΚα	ΜοΚα
Wavelength/Å	1.54178	0.71073	0.71073
20/°	6.466 to 139.982	4.824 to 55.244	3.778 to 50.808
Reflections collected	97515	209918	209989
Independent reflections	19804	16280	2828
Rint	0.0813	0.1187	0.0559
Rsigma	0.0992	0.0477	0.0122
Restraints	1142	595	678
Parameters	1631	987	249
GooF	1.036	1.033	1.095
R₁ [l> 2σ (l)]	0.0924	0.0796	0.0822
wR2 [l> 2σ (l)]	0.2748	0.1976	0.2286
R₁ [all data]	0.1253	0.1340	0.0876
wR ₂ [all data]	0.3087	0.2452	0.2377
Largest peak/e Å ⁻³	1.32	1.02	0.35
Deepest hole/e Å ⁻³	-0.77	-0.82	-0.41

Table S3. Details of XRD data refinement of $\alpha_{3,\beta}$ -**1**, $\alpha_{3,\beta}$ -**P1**•[C₆H₅SO₃⁻]₆[H₂O]₂ and $\alpha_{3,\beta}$ -**P1**•[HSO₄⁻]₆[H₂SO₄][CH₃OH][H₂O]₄.

Compound	α ₃ ,β- 1	<i>α₃,β-</i> P1 •[C ₆ H ₅ SO ₃ ⁻] ₆ [H ₂ O] ₂	α ₃ ,β- P1 •[HSO ₄ ⁻] ₆ [H ₂ SO ₄][CH ₃ OH][H ₂ O] ₄
CCDC #	2012198	2012197	2012195
Empirical formula	$C_{60}H_{66}N_8$	$C_{96}H_{106}N_8O_{20}S_6$	C ₆₁ H ₉₂ N ₈ O ₃₃ S ₇
Formula weight	899.20	1884.24	1689.84
Temperature/K	100(2)	100(2)	100(2)
Crystal system	triclinic	triclinic	triclinic
Space group	ΡĪ	PĪ	PĪ
a/Å	13.4646(9)	13.890(3)	13.2007(5)
b/Å	13.7785(9)	16.457(3)	14.5421(5)
<i>c/</i> Å	16.0771(11)	21.147(3)	23.9326(9)
α/°	105.194(2)	81.292(5)	105.4300(10)
β/°	96.975(2)	82.916(4)	90.996(2)
γ/°	107.247(2)	80.393(6)	115.7820(10)
Volume/ų	2684.0(3)	4687.5(14)	3940.6(3)
Ζ	2	2	2
D _{calc} g/cm ³	1.113	1.335	1.424
µ/mm⁻¹	0.066	1.962	0.290
F(000)	964.0	1988.0	1780.0
Crystal size/mm ³	$0.34 \times 0.09 \times 0.06$	0.25 × 0.2 × 0.1	0.455 × 0.142 × 0.056
Radiation	ΜοΚα	CuKα	ΜοΚα
Wavelength/Å	0.71073	1.54178	0.71073
20/°	5.134 to 51.088	4.248 to 139.05	5.332 to 50.5
Reflections collected	50635	43476	36013
Independent reflections	9967	17189	14224
R _{int}	0.1530	0.0339	0.0522
Rsigma	0.1063	0.0474	0.0760
Restraints	1034	2216	2373
Parameters	925	1819	1653
GooF	1.005	1.234	1.023
R₁ [l> 2σ (l)]	0.0783	0.0971	0.0942
wR2[l> 2σ (l)]	0.1868	0.2940	0.2657
R₁ [all data]	0.1759	0.1196	0.1457
wR₂ [all data]	0.2422	0.3205	0.3088
Largest peak/e Å ⁻³	0.38	0.88	1.10
Deepest hole/e Å-3	-0.25	-0.78	-0.90

Figure S40. Side and top views of the single porphyrin units in the single crystal X-ray structures obtained. Non-essential hydrogen atoms were omitted for clarity and thermal ellipsoids give 50% probability.

Side view

Top view

*α*₄-**P1**•[SO₄^{2–}][HSO₄[–]]₄ CCDC 1935664 See ref. [11]

α4**-2** CCDC 1935662 See ref. [11]

*α*₃,β-**2** CCDC 1935663 See ref. [11]

Side view

Figure S41. Side and top views of the single porphyrin units discussed. Non-essential hydrogen atoms were omitted for clarity and thermal ellipsoids give 50% probability.

 α_4 -P1·[C₆H₅SO₃⁻]₆[H₂O][CD₃CN]₂

Structure occupies (Å³) 3303.21 (31.35%) Radius [volume] of the largest spherical void is 4.80 Å [463.25 Å³]

Figure S42. Crystal packing illustrations of a) α₄-P1•[SO₄²⁻][HSO₄⁻]₄ and b) α₄-P1•[C₆H₅SO₃⁻]₆[H₂O][CD₃CN]₂. On the left, single units are highlighted in green; on the right, representation of single units without counter anions and solvents (non-essential hydrogen atoms omitted for clarity and thermal ellipsoids give 50% probability).

↑↑↑↓ α₃,β-**Ρ1**•[HSO₄-]₆[H₂SO₄][CH₃OH][H₂O]₄

Cell volume (Å³) 3940.635 Radius [volume] of the largest spherical void is 3.40 Å [164.64 Å³] Structure occupies (Å³) 1718.92 (43.62%)

Figure S43. Crystal packing illustrations of a) $\alpha_{3,\beta}$ -P1•[HSO₄⁻]₆[H₂SO₄][CH₃OH][H₂O]₄ and b) $\alpha_{3,\beta}$ -P1•[C₆H₅SO₃⁻]₆[H₂O]₂. On the left, single units are highlighted in green; on the right, representation of single units without counter anions and solvents (non-essential hydrogen atoms omitted for clarity and thermal ellipsoids give 50% probability).

WILEY-VCH

Figure S44. Core interactions observed in various protonated porphyrins showing different type complexes: a) T-shaped; b) Y-shaped; c) I-shaped; d) H-shaped; e) X-shaped. See figure S40 and S41 for more structural detail. (meso- and β-substituents and non-essential hydrogen atoms omitted for clarity and thermal ellipsoids give 50% probability).

 Table S4. Summary of protonated porphyrins deposited in the Cambridge Crystallographic Data Centre (CCDC).

-							-		
	Database	Deposition		Binding		Database	Deposition		Binding
No.	Identifier	Number	Counter anion	mode	No.	Identifier	Number	Counter anion	mode
1	ANIHIQ	1477658	CIO ₄ ⁻	I	39	QARCAQ	1506817	CF_3COO^-	I
2	ASUNAD	238703	CI ⁻	I	40	QEZKIP	159608	CF_3COO^-	I
3	BASJUA	118284	CF_3COO^-	I	41	QOSYUT	718407	CI ⁻	I
4	BEJDIG	1496256	BiCl ₆ ^{3–}	I	42	QURRAY	1058018	$C_6H_2(NO_2)_3O^-$	I
5	CETPEX	614470	CF_3COO^-	I	43	RALVAC	257492	CF_3COO^-	I
6	COFYAY	688606	C ₅ H ₄ NCOO ⁻	I	44	RARQEJ	1544022	CI ⁻	۱*
7	FARBEI	1431307	$C_6H_2(NO_2)_3O^-$	I	45	RATXUI	1498506	CF_3COO^-	I
8	FATQUP	956522	CF_3COO^-	I	46	REVROZ	1248861	CIO ₄ ⁻	I
9	FIMRAV	247692	CI ⁻	I	47	RUHQAM	1252430	CIO ₄ ⁻	I
10	FOKZUC	700701	CI⁻	I	48	RUHQEQ	1252431	CIO ₄ ⁻	I
11	GOBSOF	113958	CF₃COO [−]	I	49	RUHQIU	1252432	CIO ₄ ⁻	I
12	GOBYIF	113963	CF₃COO [−]	I	50	SEPVIT	272182	CF₃COO [−]	I
13	GUZMUJ	209626	$C_6H_2(NO_2)_3O^-$	I	51	TIQLAH	626214	CI ⁻	I
14	KEVDAT	1549180	Cl⁻	I	52	TIQLEL	626215	Cl [−]	I
15	KIBLIQ	140336	CF_3COO^-	I	53	TIQLIP	626216	CI ⁻	I
16	KIBMAJ	140337	CF₃COO [−]	I	54	TPPFEC	1275452	CI⁻	I
17	KIBMEN	140338	CF₃COO [−]	I	55	TPYPRC10	1275614	CI ⁻	Ι
18	KIBPEQ	140340	CF₃COO [−]	I	56	VACSIC	188053	CI⁻	I
19	KIBPEQ01	140339	CF₃COO [−]	I	57	VOGZAT	670105	CI ⁻	I
20	LEXSIQ	122174	HSO ₄ ⁻	I	58	WINXEW	1294090	CH₃COO [−]	I
21	LEYFOK	122173	$CH_3SO_4^-$	I	59	WIXDIT	1868761	$CF_3SO_3^-$	I
22	LEYFUQ	122172	CF₃COO [−]	I	60	WIXZAF	644581	BF ₄ ⁻	Н
23	LEYHIG	122171	CF₃COO [−]	I	61	WUKBOT	152532	CIO ₄ ⁻	Н
24	LEYPEK	122177	Cl⁻	I	62	XAQKOR	866745	CI ⁻	I
25	LEYQAH	122178	CF₃COO [−]	I	63	XARVIW	280014	CF₃COO [−]	1
26	LOGMOJ	116299	$CH_3SO_3^-$	I	64	XEDFOD	866776	ClO ₄ ⁻	1
27	LOLPOR	147305	C ₈ H ₇ O ₃	I	65	XEDFUJ	866777	ClO ₄ ⁻	I
28	MANHOZ	221910	CF_3COO^-	I	66	XEDGAQ	866778	CI ⁻	I
29	MANHUF	237514	CF ₃ COO ⁻	I	67	XEDGEU	866779	CI ⁻	I
30	MANJAN	238568	CF ₃ COO ⁻	I	68	XEKDEZ	1563442	CF_3COO^-	I
31	MIGNEW	654893	CI ⁻	I	69	XOSYAI	1935664	HSO ₄ ⁻	Y
32	NICPEV	644176	$CHB_{11}CI_{11}^{-}$	I	70	YEVJAN	1301876	CIO ₄ ⁻	I
33	NUFTEO	727607	$C_{10}H_7COO^-$	Ι	71	YEVKAL	122175	CF_3COO^-	l**
34	NUHKUW	1223952	CI ⁻	I	72	ΥΕνκιτ	1301879	CF_3COO^-	I
35	OCAQAN	1012816	HSO ₄	Ι	73	YEVKIT01	122176	CF_3COO^-	Ι
36	OCIQEY	825053	OH⁻	I	74	YEVKOZ	1301880	$CF_{3}COO^{-}$	۱*
37	PACXEY	793068	$C_{10}H_9FeCOO^-$	I	75	YEVKUF	1301881	CF_3COO^-	I
38	PF7XAW	1576905	CI						

*Binary heterogeneous binding mode. In RARQEJ the secondary counter anion is 4-(1-benzylpyridin-1-ium-4-yl)benzoate; In EVKOZ the secondary counter anion is acetate.

**'cis'-protonated porphyrin

Figure S45. Linear display of the skeletal deviations: a) free base $\uparrow\uparrow\uparrow\uparrow$ **1** (light blue) and Ni(II) $\uparrow\uparrow\uparrow\uparrow$ **2** (orange); b) $\uparrow\uparrow\uparrow\uparrow\uparrow$ **P1** with H₂SO₄ (yellow) and **BSA** (red); c) free base $\uparrow\uparrow\uparrow\downarrow$ **1** (grey) and Ni(II) $\uparrow\uparrow\uparrow\downarrow\downarrow$ **2** (green); d) $\uparrow\uparrow\uparrow\downarrow\downarrow$ **P1** with H₂SO₄ (brown) and **BSA** (dark blue); e) $\uparrow\uparrow\uparrow\uparrow\uparrow$ **P1** with **BSA** (red) and H₄TtBP with TFA.^[36c]

a) Out of plane distortion modes

Figure S46. Illustration of the a) out-of-plane and b) in-plane normal-coordinate structural decomposition results for $\uparrow\uparrow\uparrow\uparrow\uparrow$ and $\uparrow\uparrow\uparrow\downarrow\downarrow$ atropisomers in free base 1, Ni(II) 2 and protonated P1 with H₂SO₄ and BSA forms.

Figure S47. Improper rotation represented in the $\alpha,\beta,\alpha,\beta$ -P1 atropisomer. The X-ray crystal structure of $\alpha,\beta,\alpha,\beta$ -2 was used to visualize the symmetrical units observed from NMR analysis.

References

- APEX3, Version 2016.9-0, Bruker AXS, Inc., Madison, WI, 2016. [S1]
- SADABS, Version 2016/2, Bruker AXS, Inc., Madison, WI, 2014. [S2]
- W. Jentzen, X.-Z. Song, J. A. Shelnutt, J. Phys. Chem. B 1997, 101, 1684–1699. [S3]
- L. Sun and J. A. Shelnutt, NSDGUI (Version 1.3 Alpha version), Sandia National Laboratory, Albuquerque, USA., [S4] 2000-2001.
- [S5]
- H. Hope, *Prog. Inorg. Chem.* **2007**, *41*, 1–19. a) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.* **2009**, *42*, 339–341; [S6] b) G. Sheldrick, Acta Crystallogr. 2015, A71, 3-8.