Supplementary material

Clinical sequencing yield in epilepsy, autism spectrum disorder, and intellectual disability

A systematic review and meta-analysis

Arthur Stefanski, Yamile Calle-Lopez, Costin Leu, Eduardo Pérez-Palma, Elia Pestana-Knight, Dennis Lal

Corresponding author:

Dennis Lal, PhD Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Cleveland, OH 44195, US Tel: +1 216 704 1519 Email: lald@ccf.org

1. Cohorts stratified into subgroups

1.1. Meta analyses by disorder

1.1.1.	Figure S1. Meta-analysis of the diagnostic yield by disorder	4-6
1.1.2.	Figure S2. Funnel plot of all ASD studies	7
1.1.3.	Figure S3. Funnel plot of all epilepsy studies	7
1.1.4.	Figure S4. Funnel plot of all ID studies	8
1.1.5.	Figure S5. Error bar plot of the diagnostic yield by disorder	8
1.2. Meta	analyses by disorder subtype	
1.2.1.	Figure S6. Meta-analysis of the diagnostic yield by seizure type	9-10
1.2.2.	Figure S7. Funnel plot of all FE studies	11
1.2.3.	Figure S8. Funnel plot of all GE studies	11
1.2.4.	Figure S9. Funnel plot of all GE&FE studies	12
1.2.5.	Figure S10. Meta-analysis of the diagnostic yield by disorder subtype	13
1.2.6.	Figure S11. Funnel plot of all epilepsy without ID studies	14
1.2.7.	Figure S12. Funnel plot of all ASD with ID or DD studies	14
1.2.8.	Figure S13. Funnel plot of all epilepsy with ID studies	15
1.2.9.	Figure S14. Meta-analysis of the diagnostic yield by DEE	16-17
1.2.10.	Figure S15. Funnel plot of all WS studies	17
1.2.11.	Figure S16. Funnel plot of all other DEE studies	18
1.2.12.	Figure S17. Error bar plot of the diagnostic yield by subtype	18
1.3. Meta	analyses by sequencing technology	
1.3.1.	Figure S18. Meta-analysis of the diagnostic yield of sequencing	19-21
technolo	gies	
1.3.2.	Figure S19. Funnel plot over all Panel studies	21
1.3.3.	Figure S20. Funnel plot over all ES studies	22
1.3.4.	Figure S21. Error bar plot of the diagnostic yield by sequencing	22
technolo	рду	
1.4. Meta	analyses by age of onset	
1.4.1.	Figure S22. Meta-analysis of the diagnostic yield of all epilepsy studies	23
by age c	of onset	
1.4.2.	Figure S23. Funnel plot of all Neonatal/Infantile studies	24
1.4.3.	Figure S24. Funnel plot of all Childhood studies	24
1.4.4.	Figure S25. Funnel plot of all Any Age studies	25

2.	Reported genes	
	2.1. Figure S26. Number and rate of genes with pathogenic variant	26
3.	Variant interpretation, VUS, and benign variants	
	3.1. Figure S27. Level of variant interpretation and reporting as well as the	
	proportion of the studies which reported VUS and benign variants	27
4.	References of all studies included in meta-analysis	
	4.1.Table S1. List of all 103 studies	28-35

1. Cohorts stratified into subgroups

1.1. By disorder

1.1.1. Figure S1. Meta-analysis of the diagnostic yield by disorder

Disorder subgroups (N=107)	Cases	Total	Proportion	95% CI	
ID (N=21)					
Xiao et al. 2017	19	33	0.58	[0 39.0 75]	
Stojanovic et al., 2020	49	88	0.56	[0.45: 0.66]	
Gilissen et al., 2014	21	50	0.42	[0.28: 0.57]	
Kim et al., 2019	45	108	0.42	[0.32: 0.52]	— <u>—</u> —
Srivastava et al., 2014	32	78	0.41	[0.30: 0.53]	
Jezela-Stanek et al., 2020	8	21	0.38	[0.18: 0.62]	
Yokoi et al., 2020	75	200	0.38	[0.31; 0.45]	
Vrijenhoek et al., 2018	128	370	0.35	[0.30; 0.40]	
Gieldon et al., 2018	36	106	0.34	[0.25; 0.44]	— <u>—</u>
Chérot et al., 2017	50	155	0.32	[0.25; 0.40]	
Han et al., 2019	10	35	0.29	[0.15; 0.46]	
Aspromonte et al., 2019	41	146	0.28	[0.21; 0.36]	
Tran Mau-Them et al., 2020	18	70	0.26	[0.16; 0.38]	
Prasad et al., 2018	12	53	0.23	[0.12; 0.36]	
Tan et al., 2015	11	52	0.21	[0.11; 0.35]	;
Han et al., 2018	8	38	0.21	[0.10; 0.37]	; ;
Pekeles et al., 2018	10	48	0.21	[0.10; 0.35]	— <u>—</u>
de Ligt et al., 2012	16	100	0.16	[0.09; 0.25]	- <u></u>
Grozeva et al., 2015	107	986	0.11	[0.09; 0.13]	
Morgan et al., 2015	7	65	0.11	[0.04; 0.21]	
Ibarluzea et al., 2020	4	61	0.07	[0.02; 0.16]	
Random effects model		2863	0.28	[0.22; 0.35]	-
Heterogeneity: / ² = 92% [89%; 94%]					
Epilepsy (N=72)					
Shellhaas et al., 2017	17	26	0.65	[0.44; 0.83]	
Palmer et al., 2018	16	30	0.53	[0.34; 0.72]	
Tumienė et al., 2017	44	86	0.51	[0.40; 0.62]	— <u>—</u>
Lemke et al., 2012	16	33	0.48	[0.31; 0.66]	
Jang et al., 2019	53	112	0.47	[0.38; 0.57]	
Fernández-Marmiesse et al., 2019	104	246	0.42	[0.36; 0.49]	
Routier et al., 2019	11	27	0.41	[0.22; 0.61]	
Gokben et al., 2016	12	30	0.40	[0.23; 0.59]	÷
Rochtus et al., 2020	50	125	0.40	[0.31; 0.49]	
Long et al., 2019	24	61	0.39	[0.27; 0.53]	
Lee et al., 2018	22	57	0.39	[0.26; 0.52]	
Kwong et al., 2015	10	26	0.38	[0.20; 0.59]	
Rim et al., 2018	28	74	0.38	[0.27; 0.50]	<u>-</u>
Costain et al., 2019	71	197	0.36	[0.29; 0.43]	
Na et al., 2020	52	150	0.35	[0.27; 0.43]	
Zhou et al., 2018	24	70	0.34	[0.23; 0.47]	
Helbig et al., 2016	105	314	0.33	[0.28; 0.39]	
Thevenon et al., 2016	14	43	0.33	[0.19; 0.49]	
					• •

0.2 0.4 0.6 0.8 1 Diagnostic yield

Disorder subgroups	Cases	Total	Proportion	95% CI	
Yang et al., 2018	235	733	0.32	[0.29; 0.36]	-
Papuc et al., 2018	20	63	0.32	[0.21; 0.45]	
Zhang et al., 2017	55	174	0.32	[0.25; 0.39]	
Peng et al., 2019	86	273	0.32	[0.26; 0.37]	
Muona et al., 2014	26	84	0.31	[0.21; 0.42]	
Aspromonte et al., 2019	17	55	0.31	[0.19; 0.45]	
Benson et al., 2020	28	96	0.29	[0.20; 0.39]	- <u>-</u>
Fung et al., 2018	9	31	0.29	[0.14; 0.48]	
Wirrell et al., 2015	11	38	0.29	[0.15; 0.46]	
Yamamoto et al., 2019	13	45	0.29	[0.16; 0.44]	
Krey et al., 2019	13	45	0.29	[0.16; 0.44]	
Berg et al., 2017	42	147	0.29	[0.21; 0.37]	
Halvardson et al., 2016	11	39	0.28	[0.15; 0.45]	
Tonduti et al., 2018	14	50	0.28	[0.16; 0.42]	
Staněk et al., 2018	42	151	0.28	[0.21; 0.36]	
Miao et al., 2018	39	141	0.28	[0.20; 0.36]	
Hamdan et al., 2017	53	197	0.27	[0.21; 0.34]	
Snoeijen-Schouwenaars et al., 2018	25	100	0.25	[0.17; 0.35]	— <u>—</u>
Liu et al., 2018	40	172	0.23	[0.17: 0.30]	
Johannesen et al 2020	46	200	0.23	[0.17: 0.29]	
Møller et al 2016	49	216	0.23	[0.17: 0.29]	
Allen et al., 2015	11	50	0.22	[0.12: 0.36]	
Borlot et al. 2019	14	64	0.22	[0.13: 0.34]	
Balciuniene et al., 2019	33	151	0.22	[0.16; 0.29]	
Wang et al. 2014	6	28	0.21	[0.08: 0.41]	
Berkovic et al. 2019	35	166	0.21	[0.00, 0.11]	
Kodera et al. 2013	11	53	0.21	[0.13, 0.20] $[0.11 \cdot 0.34]$	
Parrini et al 2016	71	349	0.21	[0.11, 0.34]	
Oates et al 2018	19	96	0.20	[0.10, 0.29]	
Ortega-Moreno et al 2017	17	87	0.20	[0.12, 0.29]	
Sanders et al 2019	18	93	0.20	[0.12, 0.29]	
Arafat et al 2017	13	68	0.19	[0.12, 0.29]	
Wang et al 2019	22	120	0.19	[0.11, 0.50]	
Butler et al. 2017	62	339	0.10	[0.12, 0.20] $[0.14 \cdot 0.23]$	
Zhang et al. 2015	46	253	0.10	[0.14, 0.23]	
Trump et al. 2015	71	400	0.10	[0.14, 0.23]	
Hoelz et al. 2019	16	400 Q1	0.18	[0.14, 0.22]	
Michaud et al. 2014	10	11	0.16	[0.10, 0.27]	
Symonds et al. 2019	/8	222	0.10	[0.07, 0.50]	
Lindy et al. 2018	1215	8565	0.14	[0.11, 0.15]	
Hesse et al. 2018	1313	305	0.15	[0.13, 0.10]	
Mercimek-Mahmutoglu et al. 2015	40	202	0.15	[0.11, 0.20]	
Truty of al. 2019	1/51	9769	0.15	[0.08, 0.24]	
$\frac{11}{2019}$	1451	9709	0.15	[0.14, 0.10]	
Sogal at al. 2016	14	90	0.13	[0.06; 0.25]	
Segar et al., 2010	22	249	0.14	[0.06; 0.27]	
Nalig et al., 2019	52	243	0.13	[0.04; 0.18]	
Terre et al., 2017	5	40	0.12	[0.04; 0.27]	
Isang et al., 2019	12	50	0.12	[0.05; 0.24]	
Krenn et al., 2020	13	112	0.12	[0.06; 0.19]	
Angione et al., 2019	5	5/	0.09	[0.03; 0.19]	_ <u></u>
IVIUIT et al., 2019	/	92	0.08	[0.03; 0.15]	- <u></u>
Licchetta et al., 2019	6	87	0.07	[0.03; 0.14]	- <u>u</u>
					٠

0.2 0.4 0.6 0.8 Diagnostic yield

Disorder subgroups	Cases	Total	Proportion	95% CI	
Licchetta et al., 2019	6	87	0.07	[0.03; 0.14]	
Tsai et al., 2018	11	593	0.02	[0.01; 0.03]	
Hildebrand et al., 2016	2	251	0.01	[0.00; 0.03]	⊕
Random effects model		27944	0.24	[0.22; 0.27]	+
Heterogeneity: / ² = 93% [91%; 94%]					
ASD (N=14)					
Long et al., 2019	15	23	0.65	[0.43; 0.84]	
Ji et al., 2019	42	106	0.40	[0.30; 0.50]	— <u>—</u> —
Bi et al., 2012	7	20	0.35	[0.15; 0.59]	
Yamamoto et al., 2019	17	54	0.31	[0.20; 0.46]	
Rossi et al., 2017	42	163	0.26	[0.19; 0.33]	- <u>-</u>
Codina-Solà et al., 2015	7	36	0.19	[0.08; 0.36]	
Tran et al., 2020	16	100	0.16	[0.09; 0.25]	
Alvarez-Mora et al., 2016	6	41	0.15	[0.06; 0.29]	
Zhou et al., 2019	70	539	0.13	[0.10; 0.16]	⊕
Du et al., 2018	7	80	0.09	[0.04; 0.17]	
Tammimies et al., 2015	8	95	0.08	[0.04; 0.16]	-
Callaghan et al., 2019	5	119	0.04	[0.01; 0.10]	
Chérot et al., 2017	2	54	0.04	[0.00; 0.13]	
Kalsner et al., 2017	0	100	0.00	[0.00; 0.04]	G
Random effects model		1530	0.17	[0.11; 0.25]	-
Heterogeneity: / ² = 89% [83%; 93%]					
Random effects model		32337	0.24	[0.22; 0.26]	•
Heterogeneity: / ² = 93% [91%; 93%]					
					0 0.2 0.4 0.6 0.8 1
					Diagnostic yield

Abbreviations: $CI = confidence interval, I^2 = estimated proportion of the variance in study estimates that is due to heterogeneity, Proportion = fraction of individuals with a positive genetic test, i.e. pathogenic or likely pathogenic variant.$

1.1.3. Figure S3. Funnel plot of all epilepsy studies

Grey dots = Original studies.

1.1.5. Figure S5. Error bar plot of the diagnostic yield by disorder

Abbreviations: ASD = autism spectrum disorder, ID = intellectual disability.

1.1.4. Figure S4. Funnel plot of all ID studies

1.2. Meta analyses by disorder subtype

1.2.1. Figure S6. Meta-analysis of the diagnostic yield by seizure type

Seizure type (N=81)	Cases	Total	Proportion	95% CI			
FE (N=15)							
Shellhaas et al., 2017	17	26	0.65	[0.44; 0.83]			
Gokben et al., 2016	12	30	0.40	[0.23: 0.59]			
Na et al., 2020	52	150	0.35	[0.27: 0.43]		— <u>—</u>	
Miao et al 2018	39	141	0.28	[0.20: 0.36]	_		
Møller et al., 2016	49	216	0.23	[0.17: 0.29]	-8		
Allen et al., 2015	11	50	0.22	[0.12: 0.36]		<u> </u>	
Kodera et al., 2013	11	53	0.21	[0.11: 0.34]			
Wu et al., 2020	14	96	0.15	[0.08: 0.23]	-8-		
Segal et al., 2016	7	49	0.14	[0.06; 0.27]		_	
Perucca et al., 2017	5	40	0.12	[0.04; 0.27]		_	
Tsang et al., 2019	6	50	0.12	[0.05: 0.24]		-	
Krenn et al., 2020	13	112	0.12	[0.06; 0.19]			
Licchetta et al 2019	6	87	0.07	[0.03: 0.14]	-8		
Tsai et al., 2018	11	593	0.02	[0.01: 0.03]	æ		
Hildebrand et al., 2016	2	251	0.01	[0.00: 0.03]	⊞		
Random effects model		1944	0.16	[0.10: 0.24]			
Heterogeneity: <i>I</i> ² = 92% [88%; 94%]							
GE (N=7)							
Lee et al., 2018	22	57	0.39	[0.26; 0.52]		<u> </u>	
Costain et al., 2019	71	197	0.36	[0.29; 0.43]			
Benson et al., 2020	28	96	0.29	[0.20; 0.39]	_	-	
Hamdan et al., 2017	53	197	0.27	[0.21; 0.34]	-		
Parrini et al., 2016	71	349	0.20	[0.16; 0.25]	-	-	
Hesse et al., 2018	46	305	0.15	[0.11; 0.20]			
Angione et al., 2019	5	57	0.09	[0.03; 0.19]			
Random effects model		1258	0.24	[0.18; 0.32]			
Heterogeneity: / ² = 87% [75%; 93%]							
GE&FE (N=59)							
Shellhaas et al., 2017	17	26	0.65	[0.44; 0.83]			-0
Palmer et al., 2018	16	30	0.53	[0.34; 0.72]			
Long et al., 2019	45	88	0.51	[0.40; 0.62]			-
Lemke et al., 2012	16	33	0.48	[0.31; 0.66]			
Jang et al., 2019	53	112	0.47	[0.38; 0.57]			
Fernández-Marmiesse et al., 2019	104	246	0.42	[0.36; 0.49]			
Routier et al., 2019	11	27	0.41	[0.22; 0.61]			-
Gokben et al., 2016	12	30	0.40	[0.23; 0.59]			-
Rochtus et al., 2020	50	125	0.40	[0.31; 0.49]			
Kwong et al., 2015	10	26	0.38	[0.20; 0.59]	-		•
Rim et al., 2018	28	74	0.38	[0.27; 0.50]			
Costain et al., 2019	71	197	0.36	[0.29; 0.43]			
Na et al., 2020	52	150	0.35	[0.27; 0.43]			
Zhou et al., 2018	24	70	0.34	[0.23; 0.47]			
Helbig et al., 2016	105	314	0.33	[0.28; 0.39]			
Yang et al., 2018	235	733	0.32	[0.29; 0.36]		•	
					0 0.2	0.4 0	.6 0.8 1

Seizure type	Cases	Total	Proportion	95% CI	
Papuc et al., 2018	20	63	0.32	[0.21; 0.45]	
Zhang et al., 2017	55	174	0.32	[0.25; 0.39]	
Peng et al., 2019	86	273	0.32	[0.26; 0.37]	
Muona et al., 2014	26	84	0.31	[0.21; 0.42]	÷
Benson et al., 2020	28	96	0.29	[0.20; 0.39]	÷
Fung et al., 2018	9	31	0.29	[0.14; 0.48]	
Wirrell et al., 2015	11	38	0.29	[0.15; 0.46]	
Krey et al., 2019	13	45	0.29	[0.16; 0.44]	
Berg et al., 2017	42	147	0.29	[0.21; 0.37]	÷
Halvardson et al., 2016	11	39	0.28	[0.15; 0.45]	
Miao et al., 2018	39	141	0.28	[0.20; 0.36]	
Hamdan et al., 2017	53	197	0.27	[0.21; 0.34]	
Snoeijen-Schouwenaars et al., 2018	25	100	0.25	[0.17; 0.35]	- <u>-</u>
Liu et al., 2018	40	172	0.23	[0.17; 0.30]	
Johannesen et al., 2020	46	200	0.23	[0.17; 0.29]	- <u>-</u>
Møller et al., 2016	49	216	0.23	[0.17; 0.29]	- <u>-</u>
Allen et al., 2015	11	50	0.22	[0.12; 0.36]	— <u> </u>
Borlot et al., 2019	14	64	0.22	[0.13; 0.34]	— <u>—</u>
Balciuniene et al., 2019	33	151	0.22	[0.16; 0.29]	- <u>-</u>
Berkovic et al., 2019	35	166	0.21	[0.15; 0.28]	- <u></u>
Kodera et al., 2013	11	53	0.21	[0.11; 0.34]	— <u>—</u>
Parrini et al., 2016	71	349	0.20	[0.16; 0.25]	-
Oates et al., 2018	19	96	0.20	[0.12; 0.29]	— <u>—</u>
Ortega-Moreno et al., 2017	17	87	0.20	[0.12; 0.29]	- <u></u>
Sanders et al., 2019	18	93	0.19	[0.12; 0.29]	-
Arafat et al., 2017	13	68	0.19	[0.11; 0.30]	
Wang et al., 2019	22	120	0.18	[0.12; 0.26]	
Butler et al., 2017	62	339	0.18	[0.14; 0.23]	
Zhang et al., 2015	46	253	0.18	[0.14; 0.23]	- ••
Trump et al., 2016	71	400	0.18	[0.14; 0.22]	
Hoelz et al., 2019	16	91	0.18	[0.10; 0.27]	
Michaud et al., 2014	7	44	0.16	[0.07; 0.30]	
Symonds et al., 2019	48	333	0.14	[0.11; 0.19]	⊕
Lindy et al., 2018	1315	8565	0.15	[0.15; 0.16]	B
Hesse et al., 2018	46	305	0.15	[0.11; 0.20]	<u>₽</u>
Mercimek-Mahmutoglu et al., 2015	14	93	0.15	[0.08; 0.24]	
Truty et al., 2019	1451	9769	0.15	[0.14; 0.16]	
Wu et al., 2020	14	96	0.15	[0.08; 0.23]	
Segal et al., 2016	7	49	0.14	[0.06; 0.27]	— <u>—</u>
Kang et al., 2019	32	243	0.13	[0.09; 0.18]	-
Tsang et al., 2019	6	50	0.12	[0.05; 0.24]	
Muir et al., 2019	7	92	0.08	[0.03; 0.15]	-
Isai et al., 2018	11	593	0.02	[0.01; 0.03]	
Random effects model		26909	0.25	[0.22; 0.28]	*
Heterogeneity: / ² = 93% [92%; 94%]					
Random effects model		30111	0.23	[0.21; 0.26]	÷
Heterogeneity: <i>I</i> ² = 93% [92%; 94%]				· · · · · · · · · · · · · · · · · · ·	
					0 0.2 0.4 0.6 0.8
					Diagnostic yield

Abbreviations: CI = confidence interval, $I^2 = estimated proportion of the variance in study estimates that is due to heterogeneity, Proportion = fraction of individuals with a positive genetic test, i.e. pathogenic or likely pathogenic variant.$

Grey dots = Original studies.

1.2.3. Figure S8. Funnel plot of all GE studies

Grey dots = Original studies.

Grey dots = Original studies.

1.2.5. Figure S10. Meta-analysis of the diagnostic yield by disorder subtype

Abbreviations: ID = intellectual disability, CI = confidence interval, I^2 = estimated proportion of the variance in study estimates that is due to heterogeneity, Proportion = fraction of individuals with a positive genetic test, i.e. pathogenic or likely pathogenic variant.

1.2.6. Figure S11. Funnel plot of all epilepsy without ID studies

Logit Transformed Proportion

Grey dots = Original studies.

1.2.7. Figure S12. Funnel plot of all ASD with ID or DD studies

Grey dots = Original studies.

Grey dots = Original studies.

1.2.9. S14. Meta-analysis of the diagnostic yield by DEE

DEEs (N=41)	Cases	Total	Proportion	95% CI	
West syndrome (N=16)					
Rochtus et al., 2020	16	44	0.36	[0.22; 0.52]	
Na et al., 2020	17	51	0.33	[0.21; 0.48]	
Wirrell et al., 2015	11	34	0.32	[0.17; 0.51]	
Rim et al., 2018	16	51	0.31	[0.19; 0.46]	
Krey et al., 2019	13	45	0.29	[0.16; 0.44]	— <u> </u>
Helbig et al., 2016	10	42	0.24	[0.12; 0.39]	
Zhang et al., 2017	20	85	0.24	[0.15; 0.34]	— <u> </u>
Oates et al., 2018	5	30	0.17	[0.06; 0.35]	
Berg et al., 2017	12	76	0.16	[0.08; 0.26]	— <u>—</u>
Michaud et al., 2014	5	44	0.11	[0.04; 0.25]	- <u>-</u>
Symonds et al., 2019	3	27	0.11	[0.02; 0.29]	— <u>—</u>
Arafat et al., 2017	4	44	0.09	[0.03; 0.22]	- <u>-</u>
Wang et al., 2019	2	26	0.08	[0.01; 0.25]	— <u>—</u>
Muir et al., 2019	7	92	0.08	[0.03; 0.15]	- <u></u>
Parrini et al., 2016	4	57	0.07	[0.02; 0.17]	- <u>-</u>
Kodera et al., 2013	1	20	0.05	[0.00; 0.25]	
Random effects model		768	0.19	[0.14; 0.24]	•
Heterogeneity: / ² = 68% [46%; 81%]					
Other DEEs (N=25)					
Peng et al., 2019	24	34	0.71	[0.53; 0.85]	
Shellhaas et al., 2017	17	26	0.65	[0.44; 0.83]	
Symonds et al., 2019	26	43	0.60	[0.44; 0.75]	
Palmer et al., 2018	16	30	0.53	[0.34; 0.72]	
Rochtus et al., 2020	23	44	0.52	[0.37; 0.68]	
Rim et al., 2018	11	22	0.50	[0.28; 0.72]	· · · · · · · · · · · · · · · · · · ·
Jang et al., 2019	11	22	0.50	[0.28; 0.72]	
Zhou et al., 2018	23	49	0.47	[0.33; 0.62]	
Na et al., 2020	29	64	0.45	[0.33; 0.58]	
Hoelz et al., 2019	9	22	0.41	[0.21; 0.64]	
Routier et al., 2019	11	27	0.41	[0.22; 0.61]	
Kwong et al., 2015	10	26	0.38	[0.20; 0.59]	
Arafat et al., 2017	9	24	0.38	[0.19; 0.59]	
Papuc et al., 2018	20	63	0.32	[0.21; 0.45]	
Liu et al., 2018	26	83	0.31	[0.22; 0.42]	
Allen et al., 2015	9	29	0.31	[0.15; 0.51]	
Fung et al., 2018	9	31	0.29	[0.14; 0.48]	
Hamdan et al., 2017	53	197	0.27	[0.21; 0.34]	
Oates et al., 2018	9	34	0.26	[0.13; 0.44]	
Zhang et al., 2015	17	65	0.26	[0.16; 0.39]	
Ortega-Moreno et al., 2017	16	62	0.26	[0.16; 0.38]	
Wang et al., 2019	15	59	0.25	[0.15; 0.38]	
Kodera et al., 2013	5	20	0.25	[0.09; 0.49]	
Mercimek-Mahmutoglu et al., 2015	14	93	0.15	[0.08; 0.24]	
Angione et al., 2019	2	57	0.04	[0.00; 0.12]	<u>-</u> —
Random effects model		1226	0.37	[0.31; 0.43]	•
Heterogeneity: / ² = 76% [65%; 84%]					
Random effects model		1994	0.29	[0.25; 0.34]	
Heterogeneity: /² = 78% [71%; 84%]					
					Diagnostic yield

Abbreviations: DEEs = developmental epileptic encephalopathies, CI = confidence interval, l^2 = estimated proportion of the variance in study estimates that is due to heterogeneity, Proportion = fraction of individuals with a positive genetic test, i.e. pathogenic or likely pathogenic variant.

Grey dots = Original studies.

Logit Transformed Proportion

1.2.12. Figure S17. Error bar plot by subtype

Abbreviations: GE&FE = combined generalized and focal epilepsy, FE = focal epilepsy, GE = generalized epilepsy, WS = West syndrome, ASD with ID or DD = autism spectrum disorder with intellectual disability or developmental delay, DEEs = developmental epileptic encephalopathies.

1.3. Meta analyses by sequencing technology

1.3.1. Figure S18. Meta-analysis of the diagnostic yield of sequencing technologies

Sequencing technology subgroups (N=109) Cases Total Proportion 95% CI

Panel (N=73)				
Shellhaas et al., 2017	17	26	0.65 [0.44; 0.83]	
Stojanovic et al., 2020	49	88	0.56 [0.45; 0.66]	
Tumienė et al., 2017	44	86	0.51 [0.40; 0.62]	— <u>—</u>
Lemke et al., 2012	16	33	0.48 [0.31; 0.66]	
Jang et al., 2019	53	112	0.47 [0.38; 0.57]	
Peng et al., 2019	26	58	0.45 [0.32; 0.58]	<u>_</u>
Fernández-Marmiesse et al., 2019	104	246	0.42 [0.36; 0.49]	
Kim et al., 2019	45	108	0.42 [0.32; 0.52]	
Gokben et al., 2016	12	30	0.40 [0.23; 0.59]	· · · · · · · · · · · · · · · · · · ·
Lee et al., 2018	22	57	0.39 [0.26; 0.52]	
Kwong et al., 2015	10	26	0.38 [0.20; 0.59]	
Jezela-Stanek et al., 2020	8	21	0.38 [0.18: 0.62]	
Rim et al., 2018	28	74	0.38 [0.27: 0.50]	
Yokoi et al., 2020	75	200	0.38 [0.31: 0.45]	
Na et al., 2020	52	150	0.35 [0.27: 0.43]	
Zhou et al., 2018	24	70	0.34 [0.23: 0.47]	
Gieldon et al. 2018	36	106	$0.34 \ [0.25, 0.44]$	
Berg et al. 2017	11	33	0.33 [0.18.0.52]	
Peng et al. 2019	46	141	0.33 [0.10, 0.52]	
7hang et al. 2017	55	174	0.32 [0.25, 0.39]	
Fung et al. 2018	9	31	0.32 [0.23, 0.33] 0.29 [0.14 0.48]	
Wirrell et al. 2015	11	38	0.29 [0.14, 0.46]	
Krev et al. 2019	13	45	0.29 [0.15, 0.40] 0.29 [0.16, 0.44]	
Han et al. 2019	10	35	0.29 [0.10, 0.44] 0.29 [0.15, 0.46]	
Tonduti et al. 2018	1/	50	0.23 [0.15, 0.40] 0.28 [0.16, 0.42]	
Staněk et al. 2018	17	151	0.28 [0.10, 0.42] 0.28 [0.21, 0.36]	
Miao et al. 2018	30	1/1	0.28 [0.21, 0.36]	
Vang et al. 2018	127	476	0.23 [0.20, 0.30]	
Specific Schouwengers et al. 2018	25	100	0.27 [0.23, 0.31] 0.25 [0.17, 0.25]	
Liu et al. 2018	25	172	0.23 [0.17, 0.33] 0.22 [0.17, 0.30]	
La et al., 2018	40	200	0.23 [0.17, 0.30]	
Møller et al. 2016	40	200	0.23 [0.17, 0.29] 0.22 [0.17, 0.29]	
Vamamete et al., 2010	49	122	0.23 [0.17, 0.23]	
Allon et al. 2015	50 11	122	0.25 [0.10, 0.51]	
Alleh et al., 2015	11	50	$0.22 \ [0.12, 0.30]$	
Boriot et al., 2019	14	151	$0.22 \ [0.13; 0.34]$	
Mong et al. 2014	33	121	$0.22 \ [0.16; 0.29]$	
Tan at al. 2015	D 11	28	$0.21 \ [0.08; 0.41]$	
Tan et al., 2015	11	52	$0.21 \ [0.11; 0.35]$	
Han et al., 2018	8	38	$0.21 \ [0.10; 0.37]$;
Pekeles et al., 2018	10	48	$0.21 \ [0.10; 0.35]$	
Parrini et al., 2016	/1	349	0.20 [0.16; 0.25]	
Oates et al., 2018	19	96	0.20 [0.12; 0.29]	
Ortega-Moreno et al., 2017	17	87	0.20 [0.12; 0.29]	
Aspromonte et al., 2019	29	150	0.19 [0.13; 0.27]	- <u>+</u>
Arafat et al., 2017	13	68	0.19 [0.11; 0.30]	
Costain et al., 2019	31	163	0.19 [0.13; 0.26]	- <u></u>
Wang et al., 2019	22	120	0.18 [0.12; 0.26]	-
				*
				-

Diagnostic yield

0.6

0.8

1

0.2 0.4

Sequencing technology subgroups	Cases	Total	Proportion	95% CI	
Butler et al., 2017	62	339	0.18	[0.14; 0.23]	B
Zhang et al., 2015	46	253	0.18	[0.14; 0.23]	- B -
Trump et al., 2016	71	400	0.18	[0.14; 0.22]	
Hoelz et al., 2019	16	91	0.18	[0.10; 0.27]	- <u>B</u> +
Sanders et al., 2019	11	64	0.17	[0.09; 0.29]	
Michaud et al., 2014	7	44	0.16	[0.07; 0.30]	— <u>—</u>
Symonds et al., 2019	48	333	0.14	[0.11; 0.19]	
Lindy et al., 2018	1315	8565	0.15	[0.15; 0.16]	
Hesse et al., 2018	46	305	0.15	[0.11: 0.20]	
Mercimek-Mahmutoglu et al., 2015	14	93	0.15	[0.08; 0.24]	
Truty et al., 2019	1451	9769	0.15	[0.14: 0.16]	
Alvarez-Mora et al., 2016	6	41	0.15	[0.06: 0.29]	
Wu et al., 2020	14	96	0.15	[0.08: 0.23]	
Segal et al., 2016	7	49	0.14	[0.06: 0.27]	
Kang et al., 2019	32	243	0.13	[0.09: 0.18]	
Zhou et al., 2019	70	539	0.13	[0.10: 0.16]	
Perucca et al. 2017	, 0	40	0.12	[0.10, 0.10]	
Tsang et al 2019	6	50	0.12	[0.05, 0.27]	
Krenn et al. 2020	13	112	0.12	[0.05, 0.24]	
Grozeva et al. 2015	107	986	0.12	[0.00, 0.13]	
Morgan et al. 2015	107	65	0.11	[0.03, 0.13]	
Muir et al. 2019	, 7	60	0.11	[0.04, 0.21]	
Ibarluzea et al. 2020	/	61	0.08	[0.03, 0.13]	
	11	502	0.07	[0.02, 0.10]	
Hildobrand at al. 2016	2	253	0.02	[0.01, 0.03]	E
Kalepor et al. 2017	2	100	0.01	[0.00, 0.03]	
Pandom offacts model	0	29665	0.00	[0.00, 0.04]	
Heterogeneity: $l^2 = 92\%$ [91%: 93%]		20005	0.25	[0.20; 0.25]	
ES (N=36)					
Xiao et al., 2017	19	33	0.58	[0.39; 0.75]	
Palmer et al., 2018	16	30	0.53	[0.34; 0.72]	
Long et al., 2019	45	88	0.51	[0.40; 0.62]	
Yang et al., 2018	108	257	0.42	[0.36; 0.48]	
Gilissen et al., 2014	21	50	0.42	[0.28; 0.57]	
Srivastava et al., 2014	32	78	0.41	[0.30; 0.53]	
Routier et al., 2019	11	27	0.41	[0.22; 0.61]	
Rochtus et al., 2020	50	125	0.40	[0.31; 0.49]	
Ji et al., 2019	42	106	0.40	[0.30; 0.50]	
Costain et al., 2019	40	109	0.37	[0.28; 0.46]	
Bi et al., 2012	7	20	0.35	[0.15; 0.59]	
Vrijenhoek et al., 2018	128	370	0.35	[0.30; 0.40]	
Helbig et al., 2016	105	314	0.33	[0.28; 0.39]	
Thevenon et al., 2016	14	43	0.33	[0.19; 0.49]	
Papuc et al., 2018	20	63	0.32	[0.21; 0.45]	- <u>-</u>
Muona et al., 2014	26	84	0.31	[0.21; 0.42]	
Benson et al., 2020	28	96	0.29	[0.20; 0.39]	
Halvardson et al., 2016	11	39	0.28	[0.15; 0.45]	— <u>—</u>
Berg et al., 2017	31	114	0.27	[0.19; 0.36]	
Hamdan et al., 2017	53	197	0.27	[0.21; 0.34]	
Chérot et al., 2017	56	216	0.26	[0.20: 0.32]	
Rossi et al., 2017	42	163	0.26	[0.19: 0.33]	
Tran Mau-Them et al., 2020	18	70	0.26	[0.16; 0.38]	
·					4

0.2 0.4 0.6 0.8 1 Diagnostic yield

0

Abbreviations: CI = confidence interval, $I^2 = estimated proportion of the variance in study estimates that is due to heterogeneity, Proportion = fraction of individuals with a positive genetic test, i.e. pathogenic or likely pathogenic variant.$

1.3.2. Figure S19. Funnel plot of all Panel studies

Grey dots = Original studies.

The diagnostic yield across Panel and ES.

Abbreviations: Panel = targeted gene panel sequencing, ES = exome sequencing.

1.4. Meta analyses by age of onset

1.4.1. Figure S22. Meta-analysis of the diagnostic yield of all epilepsy studies by age of onset

Epilepsy Studies by Age of Onset (N=21) Cases Total Proportion 95% CI

Abbreviations: $CI = confidence interval, I^2 = estimated proportion of the variance in study estimates that is due to heterogeneity, Proportion = fraction of individuals with a positive genetic test, i.e. pathogenic or likely pathogenic variant.$

Grey dots = Original studies.

1.4.3. Figure S24. Funnel plot of all Childhood studies

Logit Transformed Proportion

Grey dots = Original studies.

Grey dots = Original studies.

2. Reported genes

2.1. Figure S26. Number and rate of genes with pathogenic variant

The bars represent the number of genes with pathogenic variants. The line represents the rate of genes per month and year. The number of identified genes increased rapidly in recent years for epilepsy. For ASD and ID the number of reported genes with pathogenic variants is low. Abbreviations: ASD = autism spectrum disorder, ID = intellectual disability, * = Data were collected until May 20, 2020.

3. Variant interpretation, VUS, and benign variants

3.1. Figure S27. Level of variant interpretation and reporting as well as the proportion of the studies which reported VUS and benign variants

Data analyzed from 103 studies. **A** Since the introduction of the ACMG guidelines in 2015, there is a clear trend in adopting these in clinical sequencing studies beginning in 2016. **B** Reporting VUS becomes more common practice over time. **C** Benign variants are still being reported rather infrequently to date; their potential clinical use is considered low. **D** The number of studies reporting VUS has increased significantly after the introduction of the ACMG guidelines (OR = 38.6, P = 5.2×10^{-14}).

Abbreviation: * = Data were collected until May 20, 2020.

4. References of all studies included in meta-analysis

- 4.1. Table S1. List of all 103 studies
- 1. Allen NM, Conroy J, Shahwan A, Lynch B, Correa RG, Pena SDJ, et al. Unexplained early onset epileptic encephalopathy: Exome screening and phenotype expansion. Epilepsia. 2016 Jan;57(1):e12–7.
- Alvarez-Mora MI, Calvo Escalona R, Puig Navarro O, Madrigal I, Quintela I, Amigo J, et al. Comprehensive molecular testing in patients with high functioning autism spectrum disorder. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2016 Feb;784– 785:46–52.
- 3. Angione K, Eschbach K, Smith G, Joshi C, Demarest S. Genetic testing in a cohort of patients with potential epilepsy with myoclonic-atonic seizures. Epilepsy Research. 2019 Feb;150:70–7.
- 4. Arafat A, Jing P, Ma Y, Pu M, Nan G, Fang H, et al. Unexplained Early Infantile Epileptic Encephalopathy in Han Chinese Children: Next-Generation Sequencing and Phenotype Enriching. Sci Rep. 2017 May;7(1):46227.
- 5. Aspromonte MC, Bellini M, Gasparini A, Carraro M, Bettella E, Polli R, et al. Characterization of intellectual disability and autism comorbidity through gene panel sequencing. Hum Mutat. 2019;40(9):1346–63.
- Balciuniene J, DeChene ET, Akgumus G, Romasko EJ, Cao K, Dubbs HA, et al. Use of a Dynamic Genetic Testing Approach for Childhood-Onset Epilepsy. JAMA Netw Open. 2019 Apr 5;2(4):e192129.
- Benson KA, White M, Allen NM, Byrne S, Carton R, Comerford E, et al. A comparison of genomic diagnostics in adults and children with epilepsy and comorbid intellectual disability. Eur J Hum Genet. 2020 Apr 1;
- 8. Berg AT, Coryell J, Saneto RP, Grinspan ZM, Alexander JJ, Kekis M, et al. Early-Life Epilepsies and the Emerging Role of Genetic Testing. JAMA Pediatr. 2017 01;171(9):863–71.
- 9. Bi C, Wu J, Jiang T, Liu Q, Cai W, Yu P, et al. Mutations of *ANK3* identified by exome sequencing are associated with autism susceptibility. Hum Mutat. 2012 Dec;33(12):1635–8.
- Borlot F, de Almeida BI, Combe SL, Andrade DM, Filloux FM, Myers KA. Clinical utility of multigene panel testing in adults with epilepsy and intellectual disability. Epilepsia. 2019;60(8):1661–9.
- 11. Butler KM, da Silva C, Alexander JJ, Hegde M, Escayg A. Diagnostic Yield From 339 Epilepsy Patients Screened on a Clinical Gene Panel. Pediatric Neurology. 2017 Dec;77:61–6.
- Callaghan DB, Rogic S, Tan PPC, Calli K, Qiao Y, Baldwin R, et al. Whole genome sequencing and variant discovery in the ASPIRE autism spectrum disorder cohort. Clin Genet. 2019 Apr 30;cge.13556.

- Cerebral Calcification International Study Group, Tonduti D, Panteghini C, Pichiecchio A, Decio A, Carecchio M, et al. Encephalopathies with intracranial calcification in children: clinical and genetic characterization. Orphanet J Rare Dis. 2018 Dec;13(1):135.
- 14. Chérot E, Keren B, Dubourg C, Carré W, Fradin M, Lavillaureix A, et al. Using medical exome sequencing to identify the causes of neurodevelopmental disorders: Experience of 2 clinical units and 216 patients: CHÉROT et al . Clin Genet. 2018 Mar;93(3):567–76.
- 15. Codina-Solà M, Rodríguez-Santiago B, Homs A, Santoyo J, Rigau M, Aznar-Laín G, et al. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders. Molecular Autism. 2015 Dec;6(1):21.
- Costain G, Cordeiro D, Matviychuk D, Mercimek-Andrews S. Clinical Application of Targeted Next-Generation Sequencing Panels and Whole Exome Sequencing in Childhood Epilepsy. Neuroscience. 2019 Sep 2;
- de Ligt J, Willemsen MH, van Bon BWM, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic Exome Sequencing in Persons with Severe Intellectual Disability. N Engl J Med. 2012 Nov 15;367(20):1921–9.
- Du X, Gao X, Liu X, Shen L, Wang K, Fan Y, et al. Genetic Diagnostic Evaluation of Trio-Based Whole Exome Sequencing Among Children With Diagnosed or Suspected Autism Spectrum Disorder. Front Genet. 2018 Nov 30;9:594.
- 19. Epilepsy Genetics Initiative. The Epilepsy Genetics Initiative: Systematic reanalysis of diagnostic exomes increases yield. Epilepsia. 2019 May;60(5):797–806.
- Fernández-Marmiesse A, Roca I, Díaz-Flores F, Cantarín V, Pérez-Poyato MS, Fontalba A, et al. Rare Variants in 48 Genes Account for 42% of Cases of Epilepsy With or Without Neurodevelopmental Delay in 246 Pediatric Patients. Front Neurosci. 2019;13:1135.
- 21. Fung C-W, Kwong AK-Y, Wong VC-N. Gene panel analysis for nonsyndromic cryptogenic neonatal/infantile epileptic encephalopathy. Epilepsia Open. 2017 Jun;2(2):236–43.
- Gieldon L, Mackenroth L, Kahlert A-K, Lemke JR, Porrmann J, Schallner J, et al. Diagnostic value of partial exome sequencing in developmental disorders. Kaya N, editor. PLoS ONE. 2018 Aug 9;13(8):e0201041.
- 23. Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BWM, Willemsen MH, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014 Jul;511(7509):344–7.
- 24. Gokben S, Onay H, Yilmaz S, Atik T, Serdaroglu G, Tekin H, et al. Targeted next generation sequencing: the diagnostic value in early-onset epileptic encephalopathy. Acta Neurol Belg. 2017 Mar;117(1):131–8.
- 25. Grozeva D, Carss K, Spasic-Boskovic O, Tejada M-I, Gecz J, Shaw M, et al. Targeted Next-Generation Sequencing Analysis of 1,000 Individuals with Intellectual Disability: HUMAN MUTATION. Human Mutation. 2015 Dec;36(12):1197–204.

- Halvardson J, Zhao JJ, Zaghlool A, Wentzel C, Georgii-Hemming P, Månsson E, et al. Mutations in *HECW2* are associated with intellectual disability and epilepsy. J Med Genet. 2016 Oct;53(10):697–704.
- 27. Hamdan FF, Myers CT, Cossette P, Lemay P, Spiegelman D, Laporte AD, et al. High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. The American Journal of Human Genetics. 2017 Nov;101(5):664–85.
- 28. Han JY, Jang JH, Park J, Lee IG. Targeted Next-Generation Sequencing of Korean Patients With Developmental Delay and/or Intellectual Disability. Front Pediatr. 2018 Dec 17;6:391.
- 29. Han JY, Jang W, Park J, Kim M, Kim Y, Lee IG. Diagnostic approach with genetic tests for global developmental delay and/or intellectual disability: Single tertiary center experience. Annals of Human Genetics. 2019 May;83(3):115–23.
- 30. Helbig KL, Farwell Hagman KD, Shinde DN, Mroske C, Powis Z, Li S, et al. Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy. Genet Med. 2016 Sep;18(9):898–905.
- 31. Hesse AN, Bevilacqua J, Shankar K, Reddi HV. Retrospective genotype-phenotype analysis in a 305 patient cohort referred for testing of a targeted epilepsy panel. Epilepsy Research. 2018 Aug;144:53–61.
- 32. Hildebrand MS, Myers CT, Carvill GL, Regan BM, Damiano JA, Mullen SA, et al. A targeted resequencing gene panel for focal epilepsy. Neurology. 2016 Apr 26;86(17):1605–12.
- Hoelz H, Herdl C, Gerstl L, Tacke M, Vill K, von Stuelpnagel C, et al. Impact on Clinical Decision Making of Next-Generation Sequencing in Pediatric Epilepsy in a Tertiary Epilepsy Referral Center. Clin EEG Neurosci. 2019 Sep 25;1550059419876518.
- 34. Ibarluzea N, Hoz AB de la, Villate O, Llano I, Ocio I, Martí I, et al. Targeted Next-Generation Sequencing in Patients with Suggestive X-Linked Intellectual Disability. Genes (Basel). 2020 02;11(1).
- 35. Jang SS, Kim SY, Kim H, Hwang H, Chae JH, Kim KJ, et al. Diagnostic Yield of Epilepsy Panel Testing in Patients With Seizure Onset Within the First Year of Life. Front Neurol. 2019;10:988.
- 36. Jezela-Stanek A, Ciara E, Jurkiewicz D, Kucharczyk M, Jędrzejowska M, Chrzanowska KH, et al. The phenotype-driven computational analysis yields clinical diagnosis for patients with atypical manifestations of known intellectual disability syndromes. Mol Genet Genomic Med. 2020 Apr 26;e1263.
- 37. Ji J, Shen L, Bootwalla M, Quindipan C, Tatarinova T, T Maglinte D, et al. A semi-automated whole exome sequencing workflow leads to increased diagnostic yield and identification of novel candidate variants. Molecular Case Studies. 2019 Feb 12;5:mcs.a003756.
- Johannesen KM, Nikanorova N, Marjanovic D, Pavbro A, Larsen LHG, Rubboli G, et al. Utility of genetic testing for therapeutic decision-making in adults with epilepsy. Epilepsia [Internet]. 2020 May 19 [cited 2020 May 20];n/a(n/a). Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.16533

- Kalsner L, Twachtman-Bassett J, Tokarski K, Stanley C, Dumont-Mathieu T, Cotney J, et al. Genetic testing including targeted gene panel in a diverse clinical population of children with autism spectrum disorder: Findings and implications. Mol Genet Genomic Med. 2018;6(2):171– 85.
- 40. Kang KW, Kim W, Cho YW, Lee SK, Jung K-Y, Shin W, et al. Genetic characteristics of nonfamilial epilepsy. PeerJ. 2019;7:e8278.
- 41. Kim SH, Kim B, Lee JS, Kim HD, Choi JR, Lee S-T, et al. Proband-Only Clinical Exome Sequencing for Neurodevelopmental Disabilities. Pediatric Neurology. 2019 Feb;S0887899418313481.
- 42. Kodera H, Kato M, Nord AS, Walsh T, Lee M, Yamanaka G, et al. Targeted capture and sequencing for detection of mutations causing early onset epileptic encephalopathy. Epilepsia. 2013 Jul;54(7):1262–9.
- 43. Krenn M, Wagner M, Hotzy C, Graf E, Weber S, Brunet T, et al. Diagnostic exome sequencing in non-acquired focal epilepsies highlights a major role of GATOR1 complex genes. J Med Genet. 2020 Feb 21;
- Krey I, Krois-Neudenberger J, Hentschel J, Syrbe S, Polster T, Hanker B, et al. Genotypephenotype correlation on 45 individuals with West syndrome. Eur J Paediatr Neurol. 2019 Nov 26;
- 45. Kwong AK-Y, Ho AC-C, Fung C-W, Wong VC-N. Analysis of mutations in 7 genes associated with neuronal excitability and synaptic transmission in a cohort of children with non-syndromic infantile epileptic encephalopathy. PLoS ONE. 2015;10(5):e0126446.
- 46. Lee CG, Lee J, Lee M. Multi-gene panel testing in Korean patients with common genetic generalized epilepsy syndromes. Russo E, editor. PLoS ONE. 2018 Jun 20;13(6):e0199321.
- 47. Lemke JR, Riesch E, Scheurenbrand T, Schubach M, Wilhelm C, Steiner I, et al. Targeted next generation sequencing as a diagnostic tool in epileptic disorders: Epilepsy Panel. Epilepsia. 2012 Aug;53(8):1387–98.
- 48. Licchetta L, Pippucci T, Baldassari S, Minardi R, Provini F, Mostacci B, et al. Sleep-related hypermotor epilepsy (SHE): Contribution of known genes in 103 patients. Seizure. 2019 Nov 23;74:60–4.
- 49. Lindy AS, Stosser MB, Butler E, Downtain-Pickersgill C, Shanmugham A, Retterer K, et al. Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders. Epilepsia. 2018;59(5):1062–71.
- 50. Liu J, Tong L, Song S, Niu Y, Li J, Wu X, et al. Novel and de novo mutations in pediatric refractory epilepsy. Mol Brain. 2018 Dec;11(1):48.
- Long S, Zhou H, Li S, Wang T, Ma Y, Li C, et al. The Clinical and Genetic Features of Cooccurring Epilepsy and Autism Spectrum Disorder in Chinese Children. Front Neurol. 2019;10:505.

- Mercimek-Mahmutoglu S, Patel J, Cordeiro D, Hewson S, Callen D, Donner EJ, et al. Diagnostic yield of genetic testing in epileptic encephalopathy in childhood. Epilepsia. 2015 May;56(5):707–16.
- 53. Miao P, Feng J, Guo Y, Wang J, Xu X, Wang Y, et al. Genotype and phenotype analysis using an epilepsy-associated gene panel in Chinese pediatric epilepsy patients. Clin Genet. 2018 Dec;94(6):512–20.
- 54. Michaud JL, Lachance M, Hamdan FF, Carmant L, Lortie A, Diadori P, et al. The genetic landscape of infantile spasms. Human Molecular Genetics. 2014 Sep 15;23(18):4846–58.
- 55. Møller RS, Larsen LHG, Johannesen KM, Talvik I, Talvik T, Vaher U, et al. Gene Panel Testing in Epileptic Encephalopathies and Familial Epilepsies. Mol Syndromol. 2016;7(4):210–9.
- 56. Morgan A, Gandin I, Belcaro C, Palumbo P, Palumbo O, Biamino E, et al. Target sequencing approach intended to discover new mutations in non-syndromic intellectual disability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2015 Nov;781:32–6.
- 57. Muir AM, Myers CT, Nguyen NT, Saykally J, Craiu D, De Jonghe P, et al. Genetic heterogeneity in infantile spasms. Epilepsy Res. 2019;156:106181.
- 58. Muona M, Berkovic SF, Dibbens LM, Oliver KL, Maljevic S, Bayly MA, et al. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet. 2015 Jan;47(1):39–46.
- 59. Na J-H, Shin S, Yang D, Kim B, Kim HD, Kim S, et al. Targeted gene panel sequencing in early infantile onset developmental and epileptic encephalopathy. Brain Dev. 2020 Mar 2;
- 60. Oates S, Tang S, Rosch R, Lear R, Hughes EF, Williams RE, et al. Incorporating epilepsy genetics into clinical practice: a 360° evaluation. npj Genomic Med. 2018 Dec;3(1):13.
- Ortega-Moreno L, Giráldez BG, Soto-Insuga V, Losada-Del Pozo R, Rodrigo-Moreno M, Alarcón-Morcillo C, et al. Molecular diagnosis of patients with epilepsy and developmental delay using a customized panel of epilepsy genes. Russo E, editor. PLoS ONE. 2017 Nov 30;12(11):e0188978.
- 62. Palmer EE, Schofield D, Shrestha R, Kandula T, Macintosh R, Lawson JA, et al. Integrating exome sequencing into a diagnostic pathway for epileptic encephalopathy: Evidence of clinical utility and cost effectiveness. Mol Genet Genomic Med. 2018 Mar;6(2):186–99.
- 63. Papuc SM, Abela L, Steindl K, Begemann A, Simmons TL, Schmitt B, et al. The role of recessive inheritance in early-onset epileptic encephalopathies: a combined whole-exome sequencing and copy number study. Eur J Hum Genet. 2019 Mar;27(3):408–21.
- Parrini E, Marini C, Mei D, Galuppi A, Cellini E, Pucatti D, et al. Diagnostic Targeted Resequencing in 349 Patients with Drug-Resistant Pediatric Epilepsies Identifies Causative Mutations in 30 Different Genes: HUMAN MUTATION. Human Mutation. 2017 Feb;38(2):216– 25.
- 65. Pekeles H, Accogli A, Boudrahem-Addour N, Russell L, Parente F, Srour M. Diagnostic Yield of Intellectual Disability Gene Panels. Pediatric Neurology. 2019 Mar;92:32–6.

- 66. Peng J, Pang N, Wang Y, Wang X-L, Chen J, Xiong J, et al. Next-generation sequencing improves treatment efficacy and reduces hospitalization in children with drug-resistant epilepsy. CNS Neurosci Ther. 2019;25(1):14–20.
- 67. Perucca P, Scheffer IE, Harvey AS, James PA, Lunke S, Thorne N, et al. Real-world utility of whole exome sequencing with targeted gene analysis for focal epilepsy. Epilepsy Research. 2017 Mar;131:1–8.
- 68. Prasad A, Sdano MA, Vanzo RJ, Mowery-Rushton PA, Serrano MA, Hensel CH, et al. Clinical utility of exome sequencing in individuals with large homozygous regions detected by chromosomal microarray analysis. BMC Med Genet. 2018 Dec;19(1):46.
- 69. Rim JH, Kim SH, Hwang IS, Kwon SS, Kim J, Kim HW, et al. Efficient strategy for the molecular diagnosis of intractable early-onset epilepsy using targeted gene sequencing. BMC Med Genomics. 2018 Dec;11(1):6.
- 70. Rochtus A, Olson HE, Smith L, Keith LG, El Achkar C, Taylor A, et al. Genetic diagnoses in epilepsy: The impact of dynamic exome analysis in a pediatric cohort. Epilepsia. 2020 Jan 19;
- 71. Rossi M, El-Khechen D, Black MH, Farwell Hagman KD, Tang S, Powis Z. Outcomes of Diagnostic Exome Sequencing in Patients With Diagnosed or Suspected Autism Spectrum Disorders. Pediatric Neurology. 2017 May;70:34-43.e2.
- 72. Routier L, Verny F, Barcia G, Chemaly N, Desguerre I, Colleaux L, et al. Exome sequencing findings in 27 patients with myoclonic-atonic epilepsy: Is there a major genetic factor? Clin Genet. 2019 Sep;96(3):254–60.
- 73. Sanders MWCB, Lemmens CMC, Jansen FE, Brilstra EH, Koeleman BPC, Braun KPJ, et al. Implications of genetic diagnostics in epilepsy surgery candidates: A single-center cohort study. Epilepsia Open. 2019 Dec;4(4):609–17.
- Segal E, Pedro H, Valdez-Gonzalez K, Parisotto S, Gliksman F, Thompson S, et al. Diagnostic Yield of Epilepsy Panels in Children With Medication-Refractory Epilepsy. Pediatric Neurology. 2016 Nov;64:66–71.
- 75. Shellhaas RA, Wusthoff CJ, Tsuchida TN, Glass HC, Chu CJ, Massey SL, et al. Profile of neonatal epilepsies: Characteristics of a prospective US cohort. Neurology. 2017 Aug 29;89(9):893–9.
- 76. Snoeijen-Schouwenaars FM, van Ool JS, Verhoeven JS, van Mierlo P, Braakman HMH, Smeets EE, et al. Diagnostic exome sequencing in 100 consecutive patients with both epilepsy and intellectual disability. Epilepsia. 2019 Jan;60(1):155–64.
- 77. Srivastava S, Cohen JS, Vernon H, Barañano K, McClellan R, Jamal L, et al. Clinical whole exome sequencing in child neurology practice: WES in Child Neurology. Ann Neurol. 2014 Oct;76(4):473–83.
- 78. Staněk D, Laššuthová P, Štěrbová K, Vlčková M, Neupauerová J, Krůtová M, et al. Detection rate of causal variants in severe childhood epilepsy is highest in patients with seizure onset within the first four weeks of life. Orphanet J Rare Dis. 2018 Dec;13(1):71.

- 79. Stojanovic JR, Miletic A, Peterlin B, Maver A, Mijovic M, Borlja N, et al. Diagnostic and Clinical Utility of Clinical Exome Sequencing in Children With Moderate and Severe Global Developmental Delay / Intellectual Disability. J Child Neurol. 2020 Feb;35(2):116–31.
- Symonds JD, Zuberi SM, Stewart K, McLellan A, O'Regan M, MacLeod S, et al. Incidence and phenotypes of childhood-onset genetic epilepsies: a prospective population-based national cohort. Brain [Internet]. [cited 2019 Jul 17]; Available from: https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awz195/5532195
- 81. Tammimies K, Marshall CR, Walker S, Kaur G, Thiruvahindrapuram B, Lionel AC, et al. Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in Children With Autism Spectrum Disorder. JAMA. 2015 Sep 1;314(9):895.
- 82. Tan CA, Topper S, del Gaudio D, Nelakuditi V, Shchelochkov O, Nowaczyk MJM, et al. Characterization of patients referred for non-specific intellectual disability testing: the importance of autosomal genes for diagnosis: Characterization of patients referred for nonspecific ID testing. Clin Genet. 2016 Apr;89(4):478–83.
- 83. Thevenon J, Duffourd Y, Masurel-Paulet A, Lefebvre M, Feillet F, El Chehadeh-Djebbar S, et al. Diagnostic odyssey in severe neurodevelopmental disorders: toward clinical whole-exome sequencing as a first-line diagnostic test: Diagnostic odyssey in severe neurodevelopmental disorders. Clin Genet. 2016 Jun;89(6):700–7.
- 84. Tran KT, Le VS, Bui HTP, Do DH, Ly HTT, Nguyen HT, et al. Genetic landscape of autism spectrum disorder in Vietnamese children. Sci Rep. 2020 Mar 19;10(1):5034.
- 85. Tran Mau-Them F, Moutton S, Racine C, Vitobello A, Bruel A-L, Nambot S, et al. Second-tier trio exome sequencing after negative solo clinical exome sequencing: an efficient strategy to increase diagnostic yield and decipher molecular bases in undiagnosed developmental disorders. Hum Genet [Internet]. 2020 May 12 [cited 2020 May 20]; Available from: https://doi.org/10.1007/s00439-020-02178-8
- 86. Trump N, McTague A, Brittain H, Papandreou A, Meyer E, Ngoh A, et al. Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. J Med Genet. 2016 May;53(5):310–7.
- 87. Truty R, Patil N, Sankar R, Sullivan J, Millichap J, Carvill G, et al. Possible precision medicine implications from genetic testing using combined detection of sequence and intragenic copy number variants in a large cohort with childhood epilepsy. Epilepsia Open [Internet]. [cited 2019 Jul 16];0(0). Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/epi4.12348
- 88. Tsai M-H, Chan C-K, Chang Y-C, Lin C-H, Liou C-W, Chang W-N, et al. Molecular Genetic Characterization of Patients With Focal Epilepsy Using a Customized Targeted Resequencing Gene Panel. Front Neurol. 2018 Jul 6;9:515.
- 89. Tsang MH-Y, Leung GK-C, Ho AC-C, Yeung K-S, Mak CC-Y, Pei SL-C, et al. Exome sequencing identifies molecular diagnosis in children with drug-resistant epilepsy. Epilepsia Open. 2019 Mar;4(1):63–72.

- Tumienė B, Maver A, Writzl K, Hodžić A, Čuturilo G, Kuzmanić-Šamija R, et al. Diagnostic exome sequencing of syndromic epilepsy patients in clinical practice. Clin Genet. 2018 May;93(5):1057–62.
- 91. Vrijenhoek T, Middelburg EM, Monroe GR, van Gassen KLI, Geenen JW, Hövels AM, et al. Whole-exome sequencing in intellectual disability; cost before and after a diagnosis. Eur J Hum Genet. 2018 Nov;26(11):1566–71.
- 92. Wang J, Gotway G, Pascual JM, Park JY. Diagnostic Yield of Clinical Next-Generation Sequencing Panels for Epilepsy. JAMA Neurol. 2014 May 1;71(5):650.
- 93. Wang J, Wen Y, Zhang Q, Yu S, Chen Y, Wu X, et al. Gene mutational analysis in a cohort of Chinese children with unexplained epilepsy: Identification of a new KCND3 phenotype and novel genes causing Dravet syndrome. Seizure. 2019 Mar 1;66.
- 94. Wirrell EC, Shellhaas RA, Joshi C, Keator C, Kumar S, Mitchell WG, et al. How should children with West syndrome be efficiently and accurately investigated? Results from the National Infantile Spasms Consortium. Epilepsia. 2015 Apr;56(4):617–25.
- 95. Wu C-C, Tsai M-H, Chu Y-J, Weng W-C, Fan P-C, Lee W-T. The role of targeted gene panel in pediatric drug-resistant epilepsy. Epilepsy Behav. 2020 Mar 10;106:107003.
- 96. Xiao B, Qiu W, Ji X, Liu X, Huang Z, Liu H, et al. Marked yield of re-evaluating phenotype and exome/target sequencing data in 33 individuals with intellectual disabilities. Am J Med Genet. 2018 Jan;176(1):107–15.
- 97. Yamamoto T, Imaizumi T, Yamamoto-Shimojima K, Lu Y, Yanagishita T, Shimada S, et al. Genomic backgrounds of Japanese patients with undiagnosed neurodevelopmental disorders. Brain Dev. 2019 Jun 3;
- 98. Yang L, Kong Y, Dong X, Hu L, Lin Y, Chen X, et al. Clinical and genetic spectrum of a large cohort of children with epilepsy in China. Genet Med. 2019 Mar;21(3):564–71.
- 99. Yokoi T, Enomoto Y, Tsurusaki Y, Harada N, Saito T, Nagai J-I, et al. An efficient genetic test flow for multiple congenital anomaly and intellectual disability. Pediatr Int. 2020 Jan 18;
- 100. Zhang Q, Li J, Zhao Y, Bao X, Wei L, Wang J. Gene mutation analysis of 175 Chinese patients with early-onset epileptic encephalopathy: Gene mutation analysis of Chinese patients with EOEEs. Clin Genet. 2017 May;91(5):717–24.
- 101. Zhang Y, Kong W, Gao Y, Liu X, Gao K, Xie H, et al. Gene Mutation Analysis in 253 Chinese Children with Unexplained Epilepsy and Intellectual/Developmental Disabilities. Shapiro MS, editor. PLoS ONE. 2015 Nov 6;10(11):e0141782.
- 102. Zhou P, He N, Zhang J-W, Lin Z-J, Wang J, Yan L-M, et al. Novel mutations and phenotypes of epilepsy-associated genes in epileptic encephalopathies. Genes, Brain and Behavior. 2018 Nov;17(8):e12456.
- 103. Zhou W-Z, Zhang J, Li Z, Lin X, Li J, Wang S, et al. Targeted resequencing of 358 candidate genes for autism spectrum disorder in a Chinese cohort reveals diagnostic potential and genotype-phenotype correlations. Hum Mutat. 2019 Jun;40(6):801–15.