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1 Summary of interactions

To summarize interactions between physical elements: Ligands are treated as hard spheres, so there is zero
repulsion until they approach the chain, or each other, until within 1 radius, after which there is infinite
repulsion. Bound ligands are constrained to move with the chain, equivalent to an infinitely-strong bond.
Interactions with the membrane are modeled using the general forms in Main Text Eqs. 5-6, where the
parameters EP0 and EB0 are estimated by constraining the model to satisfy two experimental observations
(tyrosine phosphorylation and basic residue mutation). Within-chain interactions are omitted, i.e., it is a
non-interacting FJC.

2 Local stiffening

As described in Main Text Fig. 4, we explore the consequences of assuming that a phosphorylation event
locally stiffens the region around the tyrosine. Here, we explore stiffening ranges beyond 11 amino acids in
Fig. S4. For maximal local stiffening, i.e. all residues becoming stiff upon first phosphorylation, the binding
rate increases to 1.0 in units relative to the free-space (unoccluded) rate, since the kinase is uninhibited and
always able to access the binding sites.

At intermediate values of local stiffening, the average binding rate does not consistently increase but oscillates
(Fig. S4A). This phenomenon can be understood by considering the distribution of tyrosines along ζ. The
six tyrosines are grouped in pairs, constituting ITAMs. The tyrosines in each pair are significantly closer to
each other than to the tyrosines of the next ITAM, leading to an evens-odds effect in which even-numbered
tyrosines are fast compared to odd-numbered tyrosines.

The Main Text figures weight the phosphorylation rates by their likelihood. Without weighting by most
likely phosphorylation states, the average binding rate smoothly increases with number of phosphorylations,
as shown in Fig. S3.

3 Ultrasensitivity and alternate definitions of Hill coefficients

Here we investigate two complementary defintions of ultrasensitivity.Both definitions extract a Hill coefficient
from the dose-respone curves. We refer to them here as switch-like behavior and threshold behavior. The
switch-like behavior of a dose-response curve describes how quickly it increases from a less-phosphorylated
state to a more-phosphorylated state and can be used as a measure of cooperativity. Mathematically, the
switch-like behavior is the maximum logarithmic slope of each curve. Specifically, for a kinase-phosphatase
ratio r, if the fraction of tyrosines phosphoryated is p(r), then

Hswitch = max

(
d

dr

(
log

(
p(r)

1 − p(r)

)))
. (1)

Alternatively, the threshold behavior of the curve describes how high of a dose is required before a response
occurs. We calculate this value as

Hthreshold = log10(81)/log10(EC90/EC10). (2)

We calculate the switch-like and threshold behavior of the dose-response curves under constant and steric
dephosphorylation in Fig. S6.

For constant dephosphorylation, the switch-like behavior increases with the number of amino acids stiffened
per phosphorylation event. When 1/12 chain is stiffened per event, the switch hill coefficient is 1.8, suggesting
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moderate switch-like behavior, while the threshold hill coefficient is less than 1.2, suggesting a poor threshold
(Fig. S6C). For steric dephosphorylation, the same increasing trend persists, but at 1/12 chain local stiffening,
the switch hill coefficient is only 1.3 and the threshold hill coefficient is about 0.8 (Fig. S6D). Local stiffening
therefore creates cooperativity, even under reversible phosphorylation, but makes a poor threshold.

In Fig. S9 we show the Hill coefficients for the ε membrane affinity model presented in the Main Text, but
with the threshold definition of Hill coefficient in Eq. 2.

4 Multimodality in binding rates

We simulate simultaneous ligand binding to 10 sites distributed among 1, 5, and 10 chains. Specifically, we
consider the rate of binding a sixth ligand to the complex. Under this construction, there are 1260 ways (=
5 × 10 choose 5) a sixth ligand may bind to the complex. Histograms of these 1260 binding rates for each
complex construction show that multimodality can arise in some cases. When there are 5 filaments, with 2
binding sites each, we see bimodality in the binding rates when the space between binding sites is 8 amino
acids (Fig. S11). We find weak tri-modality when the binding site spacing is longer (20 amino acids).

To explore how this multi-modality arises, we investigated characteristics of the binding sites. We split the
binding sites into two categories: binding sites on a filament with no ligands bound and binding sites on a
filament that already has a ligand bound. When we plot the histograms of the binding rates by category, we
find that the bimodal distribution can be explained. Binding a second ligand to a filament is harder than
binding the first ligand, since the second filament will experience steric occlusion from the other ligand in
addition to the filament itself. This results in a lower binding rate compared to ligands binding to empty
filaments (Fig. S11). Steric occlusion from ligands on the same filament is increased when the space between
the binding sites is shorter. This explains the high separation between the two modes of binding rates for
the shorter binding site spacing compared to the longer binding site spacing.

5 List of Supporting Movies

• Supporting Movie SM1: Example of simulated TCR with two bound ligands. The chains of the TCR
are shown simulated as freely-jointed chains (ζ - green, ε - red, δ - blue, γ - purple) with ITAM binding
sites shown as black squares. Chains are anchored (black x) in a narrow base configuration, ∼ 1.5 nm
apart and not allowed to pass below the membrane (yellow). Two bound ligands (opaque orange
spheres) are shown attached to TCR. A third ligand attempts to bind a specific binding site. When
binding region is occluded in a configuration, ligand cannot bind (transparent orange sphere). When
polymers, bound ligands, and membrane are all outside of binding region, the ligand may bind (not
shown). Radius of ligands is 2.1 nm.
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Fig. S1: Disorder leads to accessibility differences, which im-
plies binding rate differences between phosphorylation sites.
Reaction rates of a kinase binding to the six binding sites of membrane
bound ζ in a given phosphorylation state. In this case, results are
shown assuming each phosphorylation event locally stiffens 11 amino
acids. Dark red: low binding rate; white: high binding rate; black:
phosphorylated site. Left two columns show the pre-reaction num-
ber modified and phosphorylation state before the next binding event
(white: unphosphorylated site; black: phosphorylated site).
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ferent ranges of local stiffening/unstiffening per binding event. No stiffening (0 stiffening) shown in
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Fig. S4: Local stiffening: Binding rates for long-range stiffening.
Sequence-dependent average binding rates of a kinase binding to cytosolic ζ
(A) and cytosolic ζ with evenly spaced tyrosines (B) at different phosphoryla-
tion states for varying range of local stiffening (pink: no residues are stiffened;
blue: all residues are stiffened after first phosphorylation). For small and large
magnitudes of local stiffening, the average binding rate increases with each
phosphorylation. For intermediate magnitudes of local stiffening, cytosolic ζ
exhibits oscillations in the average binding rate with an overall increase (A)
while cytosolic ζ with evenly spaced tyrosines increases without oscillations
(B). In both cases at maximal local stiffening per phosphorylation, the en-
tire domain is stiff leading to uninhibited kinase binding. Schematic below
axis shows example configuration for each phosphorylation state. Unphospho-
rylated residues represented by black stars, phosphorylated residues are red
stars. Kinase and phosphatase radius is 2.1nm. Rates are normalized to the
free-space binding rate.
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Fig. S9: Membrane affinity: Dose response curves
for ε alternative Hill coefficient definitions. (A)
Fraction of sites phosphorylated over kinase intrinsic
rate compared to phosphatase intrinsic rate for varying
strengths of phosphorylated tyrosine potential (EP0),
assuming a phosphatase with (i) negligible size (constant
dephosphorylation) or (ii) 2.1 nm radius, equivalent to
the kinase (steric dephosphorylation). Black dashed line
indicates linear dose response, i.e., Hill coefficient 1. (B)
Hill coefficients for varying strengths of phosphorylated
tyrosine potential (EP0), assuming a phosphatase of (i)
negligible size or (ii) radius of 2.1 nm, equal to the ki-
nase. Hill coefficients calculated from maximum log-log
slope (black line) or log(81)/log(EC90/EC10) (gray line)
of the dose response curves. Error bars for max log slope
indicate root-mean-square error from a cubic polynomial
fit to slope. Error bars for log(81)/log(EC90/EC10) in-
dicate standard deviation of hill coefficients from boot-
strap sampling from dose-response curve. In both cases,
the Hill coefficient increases with the strength of phos-
phorylated tyrosine potential, even when dephosphory-
lation is assumed to be sterically hindered (B). Rates
are normalized to the free-space binding rate.
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Fig. S10: Optimal distribution of ten binding
sites on multiple chains is dependent on mem-
brane spacing of subunits. (A) Schematic for dis-
tribution of 10 binding sites on multiple chains. For
each, filaments are distributed evenly on a (1) narrow
circle of radius 1.5 nm, and (2) wide circle of radius
5 nm. (B) Average binding rates of sixth binding
event to constructed domain against number of fila-
ments in domain (color bar; dark red: short spacing
between binding sites; bright red: long spacing) and
subunit configuration (Bi) 1.5nm radius, (Bii) 5nm ra-
dius. Simulations sweep over binding site spacing from
8 to 20 amino acids, indicated by color. Ligand radius
is 2.7 nm.
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Fig. S11: Bimodality of binding rates can be ex-
plained by ligands bound to target filament. (A)
Histograms of binding rates of sixth binding event to
constructed domains in wide base configuration. (B)
Histograms of binding rates from (A) colored by bind-
ing to filaments with no ligands bound (blue) and fil-
aments with ligands bound (orange). Ligand radius is
2.7 nm.
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Fig. S12: Full results of integrative model shows counteracting effects of rate enhance-
ment and rate reduction. (A) Rate enhancement of kinase phosphorylating TCR λK > 1 leads
to more switch-like dose response of both amount of phosphorylation (top) and amount of ZAP70
bound (bottom). (B) Rate decrease of ZAP70 binding λZ < 1 leads to shallow dose-response for
both amount of phosphorylation and amount of ZAP70 bound. In addition, for ZAP70-bound, the
rate decrease also leads to a lower saturating value, i.e., ECmax. (C) When both rate enhancement
(λK = 1.2) and rate decrease (λZ < 1, different values explored) are present, the switch-like response
is abrogated. (D) Ultrasensitivity quantified using the log-effective-concentration definition Eq. 2
for a range of λK ≥ 1 and a range of λZ ≤ 1.
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