Supplementary Tables and Figures

Gene name	GenBank accession No.	Primer Sequence (5'-3')	Tm/°C	Size/bp
Gapdh	XM_005680968.3	Fwd: CCACGCCATCACTGCCACCC	58	116
		Rev: CAGCCTTGGCAGCGCCAGTA		
Dmrt1	XM_005683769.3	Fwd:CCCGTGCCTGATGATTGA Rev:GGCGATTCTCCGAGTTTT	58	380
TNF-α	NM_013693.3	Fwd: CCTGTAGCCCACGTCGTAG	58	148
		Rev: GGGAGTAGACAAGGTACAACCC		
IL-6	NM_001314054.1	Fwd: GAAACCGCTATGAAGTTCCTCTCTG	58	136
		Rev: TGTTGGGAGTGGTATCCTCTGTGA		
IFNα	NM_010503.2	Fwd: TACTCAGCAGACCTTGAACCT	58	307
		Rev: CAGTCTTGGCAGCAAGTTGAC		
IFNβ	NM_010510.1	Fwd: GGATCCTCCACGCTGCGTTCC	58	153
		Rev: CCGCCCTGTAGGTGAGGTTGA		
Plzf	JX047313.1	Fwd: CACCGCAACAGCCAGCACTAT	58	127
		Rev: CAGCGTACAGCAGGTCATCCAG		
Csflr	XM_006525586.3	Fwd: AACTATGTTGTCAAGGGCAATGC	58	99
		Rev: GGACCACACATCACTCTGAACTG		
Nanog	FI970651 1	Fwd: GGAACTGCTGGGGGAAAATTA	58	118
Nunog	13770031.1	Rev:TACAAATCTTCAGGCTGTATGTTG	58	
Pcna	NM_011045.2	Fwd: AGTGGAGAACTTGGAAATGGAA	58	167
		Rev: GAGACAGTGGAGTGGCTTTTGT		
IL-8	NM_011339.2	Fwd: TGATAGCAGTCCCAAAAAATG	58	73
		Rev: CCAACAGTAGCCTTCACCCAT		
IL-10	NM_010548.2	Fwd: CTGGACAACATACTGCTAACCGA	58	112
		Rev: CCTGGGGCATCACTTCTACC		
TLR2	XM_018060889.1	Fwd: CGTGTTATCAGTTATGAGAAT	58	203
		Rev: GAGCGTCACAGCGGTAG		
TLR4	NM_001285574.1	Fwd: TAAAGAACTTGGAGGAGGGGCG	58	138
		Rev: GGGACACCACGACAATCACC		
TLR5	NM 001285699.1	Fwd: GGGACTCAGCCTCAGAGACAA	58	197
	_	Rev: TGACCCAATGGATAAAAGCACTA		
TRAF3	XM_013973268.2	Fwd: GAGTCCCTCCAGAACCG	58	223
		Rev: TCCGCCGCTTGTAGTCG		

Supplementary Table S1 Sequence of primers used in PCR amplification

Supplementary Table S2 H1 vs. shDmrt1 GO enrichment histogram

Description	Term_type	Corrected_pValue	DEG_item	
oxidation-reduction process	biological_process	0	110	
proteolysis	biological_process	0.000425	81	
cell adhesion	biological_process	0.000562	17	
transmembrane transport	biological_process	0.000738	78	
signal transduction	biological_process	0.00145	52	
metabolic process	biological_process	0.004103	58	
immune response	biological_process	0.014321	27	
oxidoreductase activity	molecular_function	0	60	
protein binding	molecular_function	0.000439	384	
catalytic activity	molecular_function	0.001278	46	
cysteine-type endopeptidase inhibitor activity	molecular_function	0.002236	11	
oxidoreductase activity, acting on the CH-CH group of donors	molecular_function	0.032465	11	
viral envelope	cellular_component	0.001751	8	
myosin complex	cellular_component	0.018035	13	
extracellular matrix	cellular component	0.032871	9	

Supplementary Table S3 H1 vs. shDmrt1 KEGG enriched pathways

#Pathway	KO	Enrichment Factor	Q-value	Gene Number
Fatty acid metabolism	ko01212	3.57	5.20E-08	27
Valine, leucine and isoleucine degradation	ko00280	3.38	2.81E-07	27
Cytokine-cytokine receptor interaction	ko04060	1.89	3.49E-06	74
Propanoate metabolism	ko00640	4.25	3.73E-06	17
Fatty acid degradation	ko00071	3.31	4.06E-06	24
Malaria	ko05144	3.17	2.23E-05	23
Rheumatoid arthritis	ko05323	2.51	6.22E-05	32
Glycine, serine and threonine metabolism	ko00260	3.29	7.14E-05	20
Amoebiasis	ko05146	2.2	9.59E-05	41
PPAR signaling pathway	ko03320	2.47	0.000226	30
Phagosome	ko04145	1.92	0.000875	48
Osteoclast differentiation	ko04380	2.05	0.001633	38
ECM-receptor interaction	ko04512	2.25	0.002916	29
Protein digestion and absorption	ko04974	2.2	0.004783	29
Tuberculosis	ko05152	1.81	0.004833	48
Leishmaniasis	ko05140	2.38	0.005676	24
Biosynthesis of unsaturated fatty acids	ko01040	3.38	0.006636	13
TNF signaling pathway	ko04668	2.04	0.007265	33
Mineral absorption	ko04978	2.7	0.008961	18
beta-Alanine metabolism	ko00410	2.95	0.021098	14

	HI O G	10 10		10 10			1
#ID	h1-9_Cou nt	shDmrt1-9 _Count	н1-9_ррк М	shDmrt1-9_ FPKM	FDR	log2FC	regulat ed
Dmrt1(ENSMUSG00000024	360	39	8.348695	0.938961	6.88E-15	-3.18009	down
Zbtb16(ENSMUSG0000006 6687)	452	54	2.932735	0.350825	8.55E-15	-3.05989	down
Kit(ENSMUSG000000567 2)	1965	239	22.20534	2.820006	0	-3.07551	down
Etv5(ENSMUSG000000130 89)	1092	317	14.60727	4.274957	1.58E-06	-1.82524	down
Gata4(ENSMUSG00000021 944)	2478	444	41.45055	7.917682	1.69E-12	-2.52272	down
Sox9(ENSMUSG00000005 67)	956	299	12.80558	4.161969	9.56E-06	-1.71747	down
Il1b(ENSMUSG000002739 8)	64	1234	2.58645	50.2955	0	4.173474	up
Tnf(ENSMUSG000002440 1)	280	2511	9.265935	82.96671	0	3.106113	up
Tlr4(ENSMUSG000000390 05)	772	2064	6.374413	14.34809	0.001531	1.367774	up
Tlr2(ENSMUSG000000279 95)	1552	8647	32.42067	186.2071	1.66E-11	2.427948	up
Tlr6(ENSMUSG000000514 98)	354	1139	5.478673	17.37242	3.80E-05	1.631319	up
Nfkb2(ENSMUSG00000025 225)	1408	3705	23.66947	65.2301	0.002421	1.346008	up
Tlr13(ENSMUSG00000033 777)	943	2415	12.0945	30.3329	0.003568	1.306223	up
Cxcl10(ENSMUSG0000003 4855)	515	1290	33.12505	82.51052	0.004899	1.272612	up

Supplementary Table S4 H1 vs. shDmrt1 differentially expressed genes

Supplementary Figure S1. Knockdown of Dmrt1 in seminiferous tubules resulted in widespread degeneration of Sertoli cells. A: Immunofluorescence staining of Sox9 in pSIH-H1-shDmrt1 or pSIH-H1 lentivirus-injected testes. Scale bar: 200 μ m. B: Immunofluorescence staining of Dmrt1 and Sox9 in pSIH-H1-shDmrt1 or pSIH-H1 lentivirus-injected testes. Scale bar: pSIH-H1 or pSIH-H1 lentivirus-injected testes. Scale bar: 100 μ m. C: Immunohistochemical detection of IL-6 and TNF α in normal testes and LPS-injected testes. Scale bar: 50 μ m. D: shDmrt1 and H1 lentivirus were injected into seminiferous tubules of mouse testes harmlessly.

Supplementary Figure S2. TLR4 was mainly expressed in mGSCs and resulted in immune response. A: TLR4 was mainly located in spermatogonial stem cells. Knockdown of Dmrt1 expression in testicular cells led to up-regulation of TLR4. Scale bar: 50 μm. B TLR2 was mainly located in spermatocytes. Knockdown of Dmrt1 expression in testicular cells led to up-regulation of TLR2. Scale bar: 50 μm. C: Immunohistochemical staining of TLR5. Scale bar: 50 μm. D: mRNA expression levels of TLRs after mGSCs were treated with different concentrations of LPS. E: Protein expression levels of TLRs after mGSCs were treated with different and normalized to GAPDH. For all statistical analyses, **P*<0.05, ***P*<0.01, ****P*<0.001.

Supplementary Figure S3. TLR4 located in mGSCs was mainly responsible for immune response in seminiferous tubules. A: Co-immunofluorescence staining of ID4 and TLR4 in Testis-H1 and Testis-shDmrt1. Scale bar: 100 μ m. B: Immunohistochemical staining of F4/80 in Testis-H1 and Testis-shDmrt1. Scale bar: 50 μ m. C: mRNA expression level of TLR4 in Leydig cells, macrophages, and mGSCs in Dmrt1-knockdown testes, respectively. For all statistical analyses, **P*<0.05, ***P*<0.01, ****P*<0.001

Supplementary Figure S4. Isolation and identification of mGSCs, Leydig cells, and macrophages. A: Characteristics of mGSCs, Leydig cells, and macrophages. Scale bar: 100 μ m. B: Immunofluorescence staining of F4/80 in mGSCs and macrophages. Scale bar: 200 μ m. C: Immunofluorescence staining of 3 β -HSD in mGSCs and Leydig cells. Scale bar: 200 μ m. D: Immunofluorescence staining of GFR α 1 in mGSCs and macrophages. Scale bar: 200 μ m.

Supplementary Figure S5. Dmrt1 inhibited TLR4 signaling pathways in mGSCs. A: Immunofluorescence detection TAK-242-treated mGSCs-shDmrt1 of TLR4 in and mGSCs-shDmrt1. Scale bar: 400 μm. B: Immunofluorescence detection of NF-κB in TAK-242-treated mGSCs-shDmrt1 mGSCs-shDmrt1. Scale and bar: 400 C: μm. Immunofluorescence detection of TLR4 in shTLR4 lentivirus-treated mGSCs-shDmrt1 and H1 lentivirus-treated mGSCs-shDmrt1. Scale bar: 400 µm. D: Immunofluorescence detection of NF-kB in shTLR4 lentivirus-treated mGSCs-shDmrt1 and H1 lentivirus-treated mGSCs-shDmrt1. Scale bar: 400 µm.

Supplementary Figure S6. Flow cytometry data of cell cycle and apoptosis. A: Flow cytometry of cell cycle in mGSCs under LPS treatment (0, 0.5, and 1 μ g/mL), respectively. B: Flow cytometry of cell cycle in MSCs under LPS treatment (0, 0.5, and 1 μ g/mL), respectively. C: Flow cytometry of apoptosis in mGSCs under LPS treatment (0, 0.5, and 1 μ g/mL), respectively. D:

Flow cytometry of apoptosis in MSCs under LPS treatment (0, 0.5, and 1 μ g/mL), respectively. For each test, three biological replicates were conducted.

Supplementary Figure S7. Flow cytometry data of cell cycle in LPS-mGSCs. Flow cytometry data of cell cycle in LPS-mGSCs, LPS-mGSCs-H1, and LPS-mGSCs-shDmrt1, respectively. For each test, three biological replicates were conducted.