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Supplementary Figures 
 

 
Supplementary Fig. 1: Description of the retrospective cohort. We provide information on the collected 
data per hospital for all patients.  
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Supplementary Fig. 2: Neural network to predict severity from 3D chest CT scans. The final prediction 
of the network is one of the 6 variables of the AI-severity score. Two different pipelines were used: 
one using Resnet50 (trained with MocoV2 on 1 million public CT scan slices) as encoder (model 1) 
and one using EfficientNet B0 as encoder (model 2).   
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Supplementary Fig. 3: Calibration plot. We considered five bins with the same number of patients to                
compare predicted probabilities provided by AI-severity and observed frequencies. We used the            
quantiles of the predicted probabilities as provided by AI-severity to construct bins. 95% confidence              
intervals were obtained using non-parametric bootstrap. Lines in red were obtained using linear             
regression by regressing the true outcome with the predicted probability as a predictor variable. The               
histogram displays the distribution of AI-severity for the hospitalized patients. The code to generate              
the figure was excerpted from the webpage https://darrendahly.github.io/post/homr/. 
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Supplementary Fig. 4: Boxplot to compare automatic quantification of disease extent using a neural 
network segmentation model and disease extent as quantified by a radiologist. The coding of disease 
extent in the radiologist report is as follows: 0 (0% of lesions), 1 (<10% of lesions), 2 (between 10 and 
25% of lesions), 3 (between 25 and 50% of lesions), 4 (between 50 and 75% of lesions), 5 (more than 
75% of lesions). The lower and upper hinges correspond to the first and third quartiles. The upper 
whisker extends from the hinge to the largest value no further than 1.5 * IQR from the hinge (where 
IQR is the inter-quartile range). The lower whisker extends from the hinge to the smallest value at 
most 1.5 * IQR of the hinge. Data beyond the end of the whiskers are called "outlying" points and are 
plotted individually. The sample sizes for each boxplot are as follows: n=22 (disease extent=0), n=54 
(disease extent=1), n=38 (disease extent=2), n=11 (disease extent=3), n=15 (disease extent=4), n=13 
(disease extent=5). 
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Supplementary Fig. 5: AUC values when comparing AI-severity to AI-segment and to the model 
including Clinical, Biological variables and disease extent extracted from a Radiologic Report (C & B & 
RR). All three models were trained using the severity outcome defined as an oxygen flow rate of 15 
L/min or higher, the need for mechanical ventilation, or death. When evaluating the three models on 
the alternative outcomes, models were not trained again. AUC results are reported on the leftover KB 
patients from the development cohort (150 patients) and the external validation set from IGR (135 
patients). Error bars represent the 95% confidence intervals. Stars indicate the order of magnitude of 
p-values for the DeLong one-sided test in which we test if AUCAI-severity  > AUCother score, • 0.05<p≤0.10, * 
0.01<p≤ 0.O5, ** 0.001<p≤0.01, *** p≤ 0.001.  
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Supplementary Fig. 6: AUC values when comparing the model that includes Clinical, and Biological              
variables (C & B) to the three models that additionally include CT-scan information (AI-severity, C & B                 
& RR, AI-segment). All four models were trained using the severity outcome defined as an oxygen                
flow rate of 15 L/min or higher, the need for mechanical ventilation, or death. When evaluating the                 
three models on the alternative outcomes, models were not trained again. AUC results are reported               
on the leftover KB patients from the development cohort (150 patients) and the external validation set                
from IGR (135 patients). Error bars represent the 95% confidence intervals. Stars indicate the order of                
magnitude of p-values for the DeLong one-sided test in which we test AUCC & B < AUCother score , •                   
0.05<p≤ 0.10, * 0.01<p≤0.05, ** 0.001<p≤0.01, *** p≤0.001. 
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Supplementary Fig. 7: Point estimates of differences of AUC when comparing AI-severity, which             
includes CT-scan information in addition to clinical and biological variables, to C & B, which includes                
clinical and biological variables only. For each variable, we consider two subgroups whether or not the                
patient value is above or below the median value. CRP, LDH, Neutrophil and Leukocytes are               
variables for which higher values indicate higher inflammation whereas higher inflammatory response            
corresponds to lower values of lymphocyte counts. For the development cohort (KB), there are 150               
leftover individuals that were not used during training and for the validation cohort (IGR), there are                
135 individuals. 
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Supplementary Fig. 8: AUC curve as a function of the number of clinical and biological information 
added to the multimodal model. Variables included in the models consist of CT scan variables only 
and then a greedy algorithm adds clinical or biological variables iteratively. At each step of the 
algorithm, the variable that results in the largest increase of AUC score is added.  
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Supplementary Tables 
 

 
Supplementary Table 1: AI-severity model performances on other classification tasks than severity 
prediction. AUC scores are reported on both KB and IGR validation sets when re-training the 
AI-severity model to predict a few clinical and radiological variables we have selected. To retrain the 
model, we considered the last hidden layer of AI-severity as a feature vector and used logistic 
regression to predict clinical/radiological outcome. 
 
 

 
Supplementary Table 2: Coefficients, transformation, and units to compute the AI-severity score.  
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Variable AUC for the 150 leftover patients 
of the KB development cohort 

AUC for the 135 IGR patients of 
the validation cohort 

Age > 60 0.884 (0.828 - 0.940) 0.786 (0.710 - 0.862) 

Sex 0.933 (0.892 - 0.975) 0.893 (0.838 - 0.947) 

Oxygen saturation > 90 0.761 (0.681 - 0.840) 0.782 (0.676 - 0.888) 

Disease extent > 2 0.926 (0.887 - 0.965) 0.881 (0.819 -0.943) 

Crazy paving 0.775 (0.700 - 0.851) 0.725 (0.637 - 0.812) 

Condensation 0.6365 (0.534 - 0.737) 0.675 (0.583 -0.767) 

GGO 0.800 (0.655 - 0.944) 0.583 (0.475 - 0.690) 

Variable Coding/unit Transformation Coefficient 

Oxygen 
saturation % -log(1 + 100 - X) -0.569 

Neural network 
variable  None 0.769 

Age year None 0.0121 

Sex 
1 for male 
0 for female None 0.412 

Platelet G/L log(0.001 + X) -0.567 

Urea  mmol/L log(0.001 + X) 0.393 
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Model description KB IGR KB CV 

O2 ≥15L/min or Ventilation or Death 

AI-severity 0.774 (0.691-0.856) 0.789 (0.704-0.874) 0.793 (0.689-0.881) 

Neural network 
analysis 

0.763 (0.674-0.851) 0.748 (0.657-0.839) 0.748 (0.627-0.839) 

C & B 0.747 (0.662-0.833) 0.745 (0.647-0.842) 0.776 (0.686-0.871) 

C & B & RR 0.783 (0.702-0.865) 0.748 (0.658-0.839) 0.793 (0.713-0.899) 

AI-segment 0.744 (0.655-0.833) 0.783 (0.692-0.874) 0.787 (0.685-0.881) 

MIT analytics 0.703 (0.611-0.796) 0.615 (0.508-0.722)  

CALL 0.642 (0.549-0.735) 0.582 (0.482-0.681)  

Colombi et al. 0.695 (0.603-0.787) 0.554 (0.452-0.656)  

Colombi et al. (with 
CT scan) 

0.702 (0.613-0.792) 0.561 (0.456-0.666)  

COVID_GRAM 0.716 (0.631-0.802) 0.713 (0.610-0.817)  

CURB65 0.701 (0.610-0.792) 0.674 (0.579-0.770)  

Yan et al. 0.694 (0.606-0.782) 0.604 (0.508-0.700)  

NEWS2_carr 0.624 (0.526-0.722) 0.716 (0.619-0.813)  

NEWS2 for 
COVID-19 

0.698 (0.606-0.790) 0.760 (0.672-0.848)  

4C mortality 0.702 (0.611-0.792) 0.661 (0.559-0.763)  

Liang et al. 0.676 (0.575-0.777) 0.652 (0.549-0.756)  

Death or ICU 

AI-severity 0.788 (0.711-0.864) 0.856 (0.788-0.924) 0.793 (0.708-0.890) 

Neural network 
analysis 

0.767 (0.685-0.849) 0.825 (0.748-0.902) 0.749 (0.632-0.857) 

C & B 0.770 (0.688-0.851) 0.812 (0.732-0.892) 0.782 (0.679-0.878) 

C & B & RR 0.784 (0.706-0.862) 0.832 (0.757-0.906) 0.794 (0.714-0.892) 

AI-segment 0.755 (0.671-0.838) 0.849 (0.774-0.924) 0.792 (0.715-0.900) 

MIT analytics 0.703 (0.614-0.791) 0.660 (0.564-0.756)  

CALL 0.598 (0.503-0.693) 0.604 (0.504-0.704)  

Colombi et al. 0.670 (0.579-0.761) 0.587 (0.486-0.687)  

Colombi et al. (with 
CT scan) 

0.651 (0.558-0.745) 0.614 (0.510-0,718)  



 
Supplementary Table 3: AUC values for the different models on the different sets. Each model (Neural 
network analysis, AI-severity, C & B, C & B & RR, AI-segment) was trained on 646 patients from KB. 
Results are reported on the leftover 150 patients from the development KB cohort and for the 135 
patients from the IGR validation set. For the models we trained, we also report performance obtained 
using 5 fold cross validation stratified by outcome and age (CV KB). For each outcome, the best 
models are highlighted in boldface. C & B: Clinical and Biological variables, C & B & RR: Clinical and 
Biological variables and the ones of the Radiological Report. 
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COVID_GRAM 0.708 (0.621-0.795) 0.713 (0.611-0.814)  

CURB65 0.688 (0.598-0.778) 0.709 (0.618-0.800)  

Yan et al. 0.717 (0.634-0.800) 0.675 (0.582-0.767)  

NEWS2_carr 0.626 (0.531-0.720) 0.739 (0.647-0.830)  

NEWS2 for 
COVID-19 

0.716 (0.630-0.802) 0.790 (0.713-0.868)  

4C mortality 0.704 (0.615-0.792) 0.684 (0.588-0.780)  

Liang et al. 0.709 (0.613-0.804) 0.744 (0.653-0.835)  

Death 

AI-severity 0.810 (0.734-0.886) 0.880 (0.815-0.944) 0.787 (0.718-0.902) 

Neural network 
analysis 

0.752 (0.660-0.845) 0.753 (0.644-0.862) 0.710 (0.630-0.835) 

C & B 0.769 (0.681-0.858) 0.887 (0.822-0.951) 0.794 (0.683-0.914) 

C & B & RR 0.809 (0.726-0.893) 0.834 (0.752-0.917) 0.786 (0.685-0.924) 

AI-segment 0.785 (0.698-0.872) 0.877 (0.806-0.947) 0,782 (0.711-0.916) 

MIT analytics 0.818 (0.729-0.907) 0.660 (0.546-0.773)  

CALL 0.707 (0.604-0.810) 0.596 (0.484-0.709)  

Colombi et al. 0.779 (0.689-0.869) 0.579 (0.462-0.697)  

Colombi et al. (with 
CT scan) 

0.772 (0.688-0.856) 0.498 (0.372-0.625)  

COVID_GRAM 0.791 (0.700-0.882) 0.789 (0.690-0.888)  

CURB65 0.814 (0.736-0.888) 0.700 (0.592-0.808)  

Yan et al. 0.637 (0.532-0.743) 0.707 (0.600-0.814)  

NEWS2_carr 0.641 (0.536-0.746) 0.641 (0.516-0.767)  

NEWS2 for 
COVID-19 

0.746 (0.656-0.836) 0.762 (0.670-0.854)  

4C mortality 0.807 (0.729-0.886) 0.739 (0.640-0.838)  

Liang et al. 0.605 (0.479-0.730) 0.757 (0.629-0.885)  



 
Supplementary Table 4: Correlation of clinical and biological variables with the prognosis obtained 
with a weakly-supervised neural network. Correlation was computed using 817 patients from the KB 
hospital. Variables are sorted in decreasing order when considering the squared correlation value for 
ranking.  
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 Correlation Lower 95% C.I. Upper 95% C.I. 

Disease extent 0.62 0.58 0.67 

Oxygen saturation -0.53 -0.58 -0.48 

LDH 0.46 0.39 0.52 

CRP 0.43 0.37 0.49 

Age 0.3 0.24 0.36 

Respiratory rate 0.25 0.17 0.32 

Neutrophil 0.25 0.18 0.31 

Leucocytes 0.22 0.15 0.29 

Urea 0.18 0.11 0.25 

Ferritin 0.15 0.03 0.26 

Diastolic pressure -0.15 -0.22 -0.07 

BMI 0.14 0.04 0.23 

Total bilirubin 0.11 0.03 0.18 

Platelet 0.09 0.02 0.16 

Weight 0.08 -0.01 0.16 

Creatine kinase 0.07 -0.01 0.15 

Haemoglobin -0.06 -0.14 0.01 

Body temperature 0.06 -0.01 0.13 

Cardiac frequency -0.06 -0.13 0.02 

Conjugated bilirubin -0.05 -0.32 0.23 

Lymphocyte -0.04 -0.11 0.03 

Systolic pressure -0.04 -0.11 0.03 

Symptoms duration 
before examination 

-0.04 -0.11 0.03 

Monocyte -0.02 -0.09 0.05 

Height -0.01 -0.11 0.09 



 
 
 

 
Supplementary Table 5: Names of the variables included in the different models. 
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Models Variables included 

1. AI-severity 
2. AI-segment 
3. Clinical & bio 
& Radiological 
Report (C & B & 
RR) 

Oxygen 
saturation 

Disease 
extent Age Sex Platelet Urea     

Clinical and bio 
(C & B) 

Oxygen 
saturation Age Sex LDH Platelet 

Chronic 
kidney 
disease 

Dyspnea Hypertension Neutrophil Urea 



 
Supplementary Table 6: imputed values for the missing or partially-missing variables of the 
severity/mortality scores for COVID-19 patients. We used 0 for imputation as the missing variables 
are included in linear models only and the constant value does not impact AUC. 
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Score Variable Value used 

CALL score  Comorbidity 1 if any of cardiac disease, asthma, emphysema, 
diabetes, or hypertension else 0 

Colombi et al. Cardiovascular 
disease 

1 if any of cardiac disease or hypertension else 0 

COVID-Gram and 
Liang et al. 

XRay abnormality 1 if any lesion is observed on the CT scan, else 0 

COVID-gram Hemoptysis 0 

COVID-gram, 
NEWS2 

Unconsciousness 0 

COVID-gram Number of 
comorbidities 

Count of cardiac disease, asthma, diabetes, 
emphysema, chronic kidney disease, hypertension 
 

Liang et al. Number of 
comorbidities 

Count of cardiac disease, diabetes, emphysema, chronic 
kidney disease, cancer, hypertension 

Liang et al. Chronic 
obstructive 
pulmonary 
disease 

Same value as emphysema 

4C Number of 
comorbidities 

Count of cardiac disease, diabetes, emphysema, chronic 
kidney disease, cancer 

4C Glasgow coma 
score 

0 

NEWS2 Air or oxygen 0 

NEWS2 Oxygen liters 0 

NEWS2 for 
COVID 

Estimated 
Glomerular 
Filtration Rate 

0  

CURB-65 Confusion 0 



Supplementary Notes 

Annotation scenario of CT scans by radiologists  
Two radiologists (4 and 9 years of experience) examined and annotated 307 anonymized             

chest scans independently and without access to the patient's clinic or COVID-19 PCR             

results. All CT images were viewed with lung window parameters (width, 1500 HU; level,              

-550 HU) using the SPYD software developed by Owkin. Regions of interest were annotated              

by the radiologists in four distinct classes: healthy pulmonary parenchyma, ground glass            

opacity, consolidation, crazy-paving. The presence of organomegaly was also notified when           

present, as a binary class. When multiple CT images were available for a single patient, the                

image to analyze was selected using the SPYD software. One AI and imaging PhD student               

also provided full 3D annotation of the four classes on 22 anonymized chest scans using the                

3D Slicer software.  

 
Method to segment CT-scans 
The model used to perform segmentation and compute the AI-segment score was based on              

3 segmentation networks: 3D Resnet50 (Hara, Kataoka, and Satoh 2017) , 2.5D U-Net, and              

2D U-Net (Ronneberger, Fischer, and Brox 2015). U-Net consists of convolution, max            

pooling, ReLU activations, concatenation and up-sampling layers with sections: contraction,          

bottleneck, and expansion (Supplementary Fig. 9). ResNet contains convolutions, max          

pooling, batch normalization, and ReLU layers that are grouped in multiple bottleneck            

blocks. All models were trained on CT scans provided by Kremlin-Bicêtre (KB) and             

evaluated on annotated CT scans from Institut Gustave Roussy (IGR). The dataset was             

divided into two categories: Fully Annotated Scans (FAS) composed of 22 scans (8 from KB               

and 14 from IGR) and Partially Annotated Scans (PAS) composed of 307 scans (176 from               

KB and 131 from IGR). PAS contains a total of 7,374 annotated slices and 24,476,521               

annotated pixels, i.e. 24 slices per PAS and 3,319 pixels annotated per slice on average.  
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Supplementary Fig. 9: architecture of the segmentation model. Proposed pipeline to generate lesion 
volumetry estimates from patient CT scans employing ensemble of segmentation networks. 
Normalized patient scans are provided to our trained 2.5D U-Net and 3D ResNet50. The masks 
predicted from both models are then merged by arithmetic mean. In parallel, we segment left-right 
lungs from the patient scans using a dedicated U-Net. Finally, the left-right lung mask is used to 
mask-out lesions in left and right lungs from the ensemble output. This pipeline utilizes the 
complementary features learned by a weak model (2.5D U-Net) and a strong one (3D ResNet50). 
 

 

2D U-Net was trained for left/right lung segmentation and 3D ResNet and 2.5D U-Net were               

used for lesion segmentation. 3D ResNet50 was trained on 8 KB FAS (i.e. 3,704 slices).               

Inputs for the 3D ResNet consist of a height and a width of 128, and a depth of 32. We                    

initialized the 3D ResNet with pretrained weights (Chen, Ma, and Zheng 2019). We then              

trained the network with Stochastic Gradient Descent for parameter optimization and an            

initial learning rate of 0.1 with a decay factor of 0.1 every 20 epochs. The network was                 

trained for a total of 100 epochs. For the 2.5D U-Net, we first pretrained the network on a                  

left-right lung segmentation task using the LCTCS dataset (Yang et al. 2018). The network              

was then trained on the KB dataset using Adam optimization algorithm with a learning rate,               

weight decay, gradient clipping and learning rate decay parameters of 1e-3, 1e-8, 1e-1, and              

0.1 (applied at epochs 90 and 150) for 300 epochs. While the validation set remains the                

same as when evaluating the 3D resnet50 model, 176 KB PAS scans were added to the 8                 

KB FAS, in the training set. PAS were only added to the 2.5D U-Net training set due to the                   

incompleteness of the annotated volume in the scans which would not satisfy the volumetric              
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requirements of the 3D ResNet50 input. Finally, for the left/right lung segmentation, the 2D              

U-Net was trained on the 8 KB FAS. Similarly to 2.5D U-Net, Adam optimization algorithm               

was used with a learning rate, weight decay, gradient clipping, learning rate decay, and              

number of epochs of 1e-3, 1e-8, 1e-1, 0.1 (applied at epoch 70), and 104. Both 2.5D U-Net                 

and 2D U-Net used affine transformation and contrast change for data augmentation while             

3D ResNet50 used affine transformation, contrast change, thin plate splines, and flipping. 3D             

ResNet and 2.5D U-Net are trained through the minimization of a cross entropy loss and 2D                

U-Net minimized a binary cross entropy loss. All training was performed on NVIDIA Tesla              

V100 GPUs using Pytorch as a coding framework. During the validation phase, ensemble             

inference (Baldeon Calisto and Lai-Yuen 2020) was performed on all available scans by             

averaging lesion masks, which were predicted from the 3D ResNet and 2.5D U-Net models,              

using arithmetic mean. 

 

We evaluated the segmentation model on three distinct aspects. First, we evaluated its             

ability to perform accurate segmentation. To this aim, we computed F1 scores for the PAS               

(partially annotated scans) and FAS (fully annotated scans), of the IGR test set, when              

discriminating lesions versus sane areas inside the lung. Micro-averaging was used to limit             

the effect of class imbalance for the three different lesion types. We also reported the               

accuracy to discriminate background versus lung regions using FAS where background           

regions outside of the lung were annotated. Second, we evaluated its ability to estimate the               

proportion of each lesion type per scan. To this aim, we computed the median, minimum and                

maximum of the absolute value of the difference between the ground truth percentage of              

each lesion type obtained from radiologists’ annotations and the estimated ones, on the 14              

available FAS of the IGR dataset. Third, we evaluated to what extent the segmentation              

model reproduces the analysis reported by radiologists. To this aim, we first compared the              

binary decision ‘presence or absence of a lesion type’ of the network to the radiologist report                

considered as ground truth. A lesion type was detected by the segmentation model when its               

estimated volumetry, averaged over both lungs, was above a certain threshold. The            

difference was then evaluated in terms of detection accuracy and F1 score, for two threshold               

values, using all scans of the IGR dataset (Supplementary Table 7). Then, we compared              

disease extent as evaluated by radiologists to the one predicted by the neural network              

(Supplementary Fig. 3). 
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Supplementary Fig. 10: Axial chest CT scans and segmentation results. COVID-19 radiology patterns,             
as provided by the neural network model for segmentation, for 3 patients with COVID-19.              
Green/transparent: sane lung; blue: GGO; yellow : crazy paving; red: consolidation. (Top) Patient with              
diffuse distribution, and multiple large regions of subpleural GGO with consolidation to the right and               
left lower lobe. Estimated disease extent by AI: 69%/47% (right/left). Radiologist report: critical stage              
of COVID-19 (stage 5). (Middle) Patient with diffuse distribution and multiple large regions of              
subpleural GGO with superimposed intralobular and interlobular septal thickening (crazy paving).           
Estimated disease extent by AI: 51%/68% (right/left). Radiologist report: severe stage of COVID-19             
(stage 4). (Bottom) Patient with minimal impairment, and multiple small regions of subpleural GGO              
with consolidation to the right lower lobe. Estimated disease extent 13%/7% (left/right). Radiologist             
report: moderate stage of COVID-19 (stage 2). 
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Supplementary Table 7: Detection accuracy and F1 scores of the segmentation model when             
considering the radiologist report as ground truth. The binary decision used to compute the score is                
“presence or not of a lesion type”. Accuracy and F1 score are averaged over the IGR validation set.                   
We compared, for each patient of the IGR validation set, detection obtained using AI-segment to the                
information provided in the standardized radiologist report. When using the neural network, a lesion              
type is considered as present when its relative volume with respect to the full volume of both lungs, is                   
above a certain threshold indicated into parenthesis in the 1st column of the table. 
 
 

 

Supplementary Table 8: Association between severity and amount of lesions inferred by the             
segmentation model. For disease extent, we consider the proportion of lung volume. For the other               
three variables (GGO, consolidation, crazy paving), we normalize them by disease extent so that each               
variable measures the proportion of the corresponding lesion. Associations with severity are            
evaluated with logistic regression and reported with 2-sided p-values for each center and p-values              
were combined with Stouffer's method.  
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 GGO Crazy paving Consolidation 

Accuracy (1% thresh.) 0.7951 0.7684 0.6167 

F1 Score  (1% thresh.) 0.8848 0.6452 0.7473 

Accuracy (2% thresh.) 0.7876 0.7692 0.6667 

F1 Score  (2% thresh.) 0.8800 0.6182 0.7848 

Variable Center Odds ratio (95% 
lower - 95% 

upper) 

P-value P-value Stouffer 

GGO AI KB 0.61 (0.51,0.73) 3.57e-08  
1.37e-08  

GGO AI IGR 0.77 (0.54,1.10) 0.15 

Crazy Paving AI KB 1.60 (1.29,1.99) 1.74e-05  
7.10e-06 

Crazy Paving AI IGR 1.31 (0.92,1.87) 0.13 

Consolidation AI KB 1.51 (1.27,1.79) 2.85e-06  
1.32e-06 

Consolidation AI IGR 1.27 (0.89,1.82) 0.19 

Disease extent AI KB 2.15 (1.77,2.60) 7.90e-15  
1.92e-16 

Disease extent AI IGR 1.90 (1.30,2.79) 9e-4 



Segmentation results for CT-scans of hospitalized COVID-19 patients 

The segmentation model provides automatic quantification of the volume of lesions,           

expressed as a percentage of the full lung volume (Supplementary Fig. 10). These patterns              

included the three distinguishable features that appear as disease severity progresses:           

ground glass opacity (GGO), crazy paving, and finally consolidation. The model was trained             

on 184 patients from KB hospital (8 fully annotated scans, 176 partially annotated ones) and               

evaluated on 145 patients from IGR hospital (14 fully annotated scans and 131 partially              

annotated ones). To evaluate the segmentation network, we first compared its performance            

to that of radiologists manual annotation. The segmentation network discriminated lung           

regions from regions outside of the lung with an accuracy of 99.9% when evaluated on the                

fully annotated scans. Within the lung, the model's ability to discriminate between lesions             

and healthy areas had F1 values of 0.85 and 0.98 on partially and fully annotated scans. In                 

the fully annotated scans, the predicted volumes of each lesion type had relative errors              

(median [min-max]) of 3.77% [0.054%-14%] for GGO, 0.96% [0.058%-4.4%] for          

consolidation, and 5.92% [0.41%-13%] for sane lung (no crazy paving was present in these              

scans). We next compared the segmentation network to the information contained in the             

radiology reports. The F1 score measuring the ability of the network to detect the presence               

of a lesion type per patient, was of 0.88 for GGO, 0.65 for crazy paving, and 0.75 for                  

consolidation (Supplementary Table 7). Correlation between quantification of the proportion          

of lesions with the network and the radiologist evaluation was of 0.56 (Supplementary Fig.              

3). Inspection of visual results were also consistent with radiologist observations           

(Supplementary Fig. 10 for three representative cases). We lastly evaluated to what extent             

the segmentation network provided biomarkers of future severity (Supplementary Table 8).           

We found that severity was significantly associated to GGO extent (OR KB = 0.61              

(0.51,0.73), OR IGR = 0.77 (0.54,1.10), PStouffer = 1.37e-08), crazy paving extent (OR KB =               

1.60 (1.29-1.99), OR IGR = 1.31 (0.92,1.87), PStouffer = 7.10e-06), consolidation extent (OR             

KB = 1.51 (1.27,1.79), OR IGR = 1.27 (0.89,1.82), PStouffer = 1.32e-06) as well as total                

disease extent (OR KB = 2.15 (1.77,2.60), OR IGR = 1.90 (1.30,2.79), PStouffer = 1.92e-16)               

(accounting for multiple testing). 
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