Supplementary information for

Endophilin A2 deficiency protects rodents from autoimmune arthritis by modulating T cell activation

Authors:

Ulrika Norin^{*1}, Carola Rintisch^{2,1}, Liesu Meng^{1,3}, Florian Forster¹, Diana Ekman⁴, Jonatan Tuncel¹, Katrin Klocke¹, Johan Bäcklund¹, Min Yang¹, Michael Y. Bonner¹, Gonzalo Fernandez Lahore¹, Klementy Shchetynsky⁵, Maria Bergquist⁶, Inger Gjertsson⁶, Norbert Hubner^{2,7}, Liselotte Bäckdahl¹, Rikard Holmdahl^{*1,3}

* Corresponding authors

Supplementary figure 1. Arthritis resistance in DA^{Mut} rat is not due to environmental factors. a) Mean arthritis score in 5 DA and 7 DA^{Mut} rats after pristane immunization in conventional animal facility. b) Mean arthritis score in 5 DA and 4 DA^{Mut} rats after pristane immunization in SPF (FELASA II) animal facility. Data are presented as mean with error bars indicating ±SEM with each dot representing an individual value.

Supplementary figure 2. No difference in activated and anergic T cells after GPI-protein and ovalbumin immunization. Frequency and mean fluorescence intensity of activation and anergy markers in CD4+T cells from draining lymph nodes ten days after immunization with GPI protein (5 *SH3gl1* deficient mice and 4 wild type littermates) and ovalbumin (4 *SH3gl1* deficient mice and 6 wild type littermates). Data are presented as mean with error bars indicating ±SEM with each dot representing an individual value.

Supplementary figure 3. EA2 deficiency does not affect the general health of rodents or leads to increased susceptibility to a bacterial infection nor excessive tumor growth. a) Weight of DA and DA^{Mut} rats at 1.5 years of age b) Number of white blood cells (WBCs) in heparinized blood of 11 DA and 11 DA^{Mut} rats at 1.5 years of age c) Number of red blood cells (RBCs) in heparinized blood of DA and DA^{Mut} rats at 1.5 years of age d) Number of platelets in heparinized blood of DA and DA^{Mut} rats at 1.5 years of age e) Number of pups born from 6 individual DA and DA^{Mut} breeding pairs during a period of approximately one year. f) Mean arthritis score after induction of septic arthritis using *Staphylococcus aureus* LS-1 in 10 *Sh3gl1* deficient and 10 wildtype littermate mice. g) Colony-forming units in kidneys ten days after *Staphylococcus aureus* LS-1 infection. h) Tumor growth in 7 *SH3gl1* deficient mice and 5 wild type littermates after injection of melanoma cells. Data are presented as mean with error bars indicating ±SEM with each dot representing an individual value.

Supplementary figure 4. Co-localization of EA2 and the TCR in Jurkat and EA2 CRISPR knock-out cells. a) Detection of EA2 and TCR co-localization in unstimulated and anti-CD3/CD28 stimulated cells with proximity-ligase assay. b) Quantification of number of interactions determined as the ratio of TexasRed positive cells and DAPI positive cells in Jurkat and EA2 knock-out cells. c) Pooled ratio of TexasRed positive cells and DAPI positive cells from the three and seven-minute time points in *SHgl1* sufficient and *SH3gl1* deficient cells compared to the unstimulated samples. Non-parametrical Mann-Whitney U test was used for statistical evaluation of data. Data are presented as mean with error bars indicating ±SEM with each dot representing an individual value.

Supplementary figure 5. EA2 does not regulate activation induced CD25 expression nor IL-2 internalization. a) Expression of the IL-2 receptor CD25 after anti-CD3/CD28 stimulation in T cells from $6 SH3g11^{-/-}$ and $6 SH3g11^{+/+}$ mice. b) Expression of intracellular IL-2 in T cells before and 10 minutes after IL-2 stimulation in 3 $SH3g11^{-/-}$ and 3 $SH3g11^{+/+}$ mice. Data are presented as mean with error bars indicating ±SEM with each dot representing an individual value.

Supplementary figure 6. Knock-down efficacy of EA2 in EA2 CRISPR knock-out cells. a) *SH3gl1* gene expression in EA2 CRISPR Jurkat knock-out cells relative to normal Jurkat cells. b) Western blot analysis of the expression of the Endophilin A2 protein in EA2 CRISPR Jurkat knock-out cells. Histone 2B was used as loading control.

FSC-H Ungated Pseudo-color graph (unsmoothed, high res Event Count: 300000

SSC-W FSC-W, FSC-H subset Pseudo-color graph (unsmoothed, high res Event Count: 261720

10² 10³ 10⁴ CD4-BV655 B220neg Pseudo-color graph (unsmoothed, high res Event Count: 218698

SSC-W, SSC-H subset Pseudo-color graph (unsmoothed, high res Event Count: 245841

а

10³ 10⁴ CD25-PE

105

Supplementary figure 7. Representative FlowJo plots displaying stepwise gating strategy for flow cytometry analysis with subsequent number of cells analyzed within each gate. a) Gating strategy for thymocyte populations shown in Figure 3e. b) Gating strategy for identification of T cell activation and anergy shown in Figure 3f c) Gating strategy for TCR internalization in rat T cells shown in Figure 4b d) Gating strategy for identification of proliferation of T cells shown in Figure 4f e) Gating strategy for TCR internalization in T cells from lymph nodes shown in Figure 4i f) Gating strategy for TCR internalization in CRISPR Jurkat T cells shown in Figure 5a g) Gating strategy for identification of t cell activation and anergy shown in Supplementary figure 2 h) Gating strategy for identification of expression of CD25 on T cells shown in Supplementary figure 5a i) Gating strategy for identification of intracellular levels of IL-2 shown in Supplementary figure 5b

Supplementary Table 1. Sequences of PCR primers used for H3K4me3 and H4ac ChIP-

qPCR

Gene	Primer set	Forward primer	Reverse primer
Gapdh	1	TACTTCGGCCACCCTATCCA	CATGCCGGTCTGGCTAAATT
Sh3gl1	1	CGAGAAACTGAACTCCGGATCT	GGAACGAATGGTTCTCCAGTTAA
Sh3gl1	2	CGGAAACCTTAGTTCGAGCG	AACTGCTTCTTCAGCCCCG
Sh3gl1	3	CAGGCCACAGAAAATGTTTGTC	GCCCTGTGCAGACTTGGTAAG