Supplementary Info: The inflammatory response induced by Pseudomonas aeruginosa in macrophages enhances apoptotic cell removal Adriana Valeria Jäger *†, Paula Arias †, Maria Virginia Tribulatti, Marcela Adriana Brocco, Maria Victoria Pepe, Arlinet Kierbel * Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde", IIBIO, Universidad Nacional de San Martín (UNSAM), CONICET † These authors contributed equally to this work. * These authors are co-senior authors. Correspondence: A.V. Jäger and A. Kierbel, Instituto de Investigaciones Biotecnológicas (IIBIO), Universidad Nacional de San Martín, Buenos Aires B1650HMP, Argentina. Correspondence: avjager@gmail.com; akierbel@iibintech.com.ar a b PAK-mCherry / CFSE-apoptotic cells **Supplementary Figure S1.** *P. aeruginosa adheres to J774 apoptotic cells.* **a.** Flow cytometry analysis of Annexin V-Sytox Green double staining of UV-treated J774 cells. On the flow cytometric scatter graph, the right upper quadrant represents our population of interest: the late apoptotic cells (Q2: 62%). The right lower quadrant represents the early apoptotic cells (Q3: 22%). **b.** Projected confocal Z-stack of apoptotic J774 co-incubated with bacteria for one hour. Almost all bacteria were found adhered to dead cells with few free bacteria remaining. Green: CFSE-labeled apoptotic cells. Red: PAK-mCherry. C | Particle # | Volume
(µm³) | Volume
(voxels) | Position | |------------|-----------------|--------------------|---------------| | 1 | 44 | 4705 | Intracellular | | 2 | 26 | 2846 | Extracellular | **Supplementary Figure S2:** *Image analysis.* Representative image showing how the Object counter tool from ImageJ is used to evaluate the volume of BMDM-associated apoptotic cell material. **a.** CFSE-labeled apoptotic cells (green) associated with phalloidin-labeled cells (red). Scale bar: 10 μ m. **b.** "Object or particle map" rendered by the Object counter tool. **c.** A chart listing the volume (in voxels and μ m³) of the particles. The localization (i.e. extracellular or intracellular) of apoptotic material was defined visually. Supplementary Figure S3: P. aeruginosa is eliminated by J774 macrophage-like cell line. Intracellular bacterial survival over time was measured by standard antibiotic protection assays. J774 were infected with a MOI of 20 for 60 min, followed by 60 min of antibiotic treatment. Subsequently intracellular survival was determined by the CFU method at different time points. The mean of CFU \pm SEM was calculated. Data were normalized to time 0 (100%). Three independent experiments were performed. Supplementary Figure S4: BMDM responsiveness to LPS inflammatory stimulus. a. CD86 and MHC-II expression on BMDM surface after LPS-stimulation. BMDM were incubated for one hour with LPS (1 μg/ml) or left untreated (Control) and surface molecule expression was determined by flow cytometry. Representative histogram plots are shown. b. BMDM Phagocytic Index is increased by LPS pre-stimulation. BMDM were incubated for 50 min with LPS (500 ng/ml) or left untreated (Control). The phagocytic capacities were checked 18 hours after pre-stimuli. Data were normalized to the Control (non-stimulus: 100%) and expressed as mean of bacteria/cell ± SEM. * p=0.0357 vs. Control by unpaired t-test. c. Cytokine gene expression was determined in BMDM after stimulus with LPS and expressed as a fold change with respect to Control (non-stimulus). BMDM were incubated for 50 min with LPS (100 ng/ml) or left untreated (Control). Six hours after the initiation of the experiment, RNA was extracted. Three pro-inflammatory cytokines were tested by RT-qPCR: II-6, TNFα and II-1β. Data are presented as mean Fold Change ± SD and were normalized to Ywhaz mRNA levels. Reactions were run in triplicates. Significant differences were found for the three cytokines between LPS-treated and Control groups (**** p≤0.0003 by unpaired t-test).