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eMethods. 

Current process 
The current process relies on a combination of surgeon and scheduler estimates, as well as the Epic software 
procedure time averaging calculations. The Epic process currently represents the institution’s best effort to provide 
accurate estimates and uses the median of similar cases, identified with an inflexible decision rule based on exact 
procedure matches, scheduled surgeons, and scheduled surgical platforms. This algorithm only works well when it 
identifies previous cases that match the CPT code combination of the current case; when this is not so, it provides 
unreliable estimates or simply provides a duration of zero, forcing the [human] scheduler to determine duration. 
Thus, this process relies on oversight from the scheduler, who may overwrite the duration (at times, at the request of 
the surgeon). In 2017 the Epic estimates were overwritten nearly 50% of the time. The error in case duration 
estimates was far larger if the human input was ignored–perhaps due to the heterogeneity of case mix, i.e. the vast 
number of unique CPT code combinations present at a cancer center. In this study, we chose to compare the 
predictive accuracy of the machine learning model with the current process, a stricter criterion that reflects the 
current state. 

Modeling 
The notes were streamlined by: 1) removing stop-words such as “the”, “is”, “are”, etc.; 2) words were converted into 
binary (presence or absence) variables; 3) words were categorized into unigrams, bigrams and trigrams; 4) words 
were run through a LASSO regression so that only words with predictive value across many cases were included. 
We then trained a model using these features and the Random Forest algorithm [1] as implemented in the R package 
“ranger” [2]. We chose the Random Forest model because, in this instance it outperformed other Machine Learning 
models we tested, including gradient boosting machine and linear regression. The training process used an 80/20 
train/test split as well as a 10-fold cross validation, and minimized Root Mean Square Error; this helped reduce the 
risk of overfitting a model to a sample set that only represents part of the population and extends the model’s ability 
to work in a real-world setting. 
We performed testing to ensure that the majority of each input was available prior to surgery and excluded inputs 
that were often missing. For example, the ASA score was often not available until the day of surgery; thus, we 
excluded this potentially valuable variable from the model. If there were only a few missing inputs, we 
automatically imputed values using simple assumptions and averaging. For example, if a categorical variable such as 
race was missing, we would calculate the Mode of this field from that service to impute, and if a continuous variable 
such as BMI was missing, we would impute it using the average value for that surgical service. 
 
Outcome measures  
The primary outcome measure was case duration accuracy, primarily measured as the MAE in the scheduled case 
duration. Error was defined as planned case duration minus the actual case duration, as recorded in the Electronic 
Health Record. Cases performed in less time than planned were considered “over-predicted” and noted to have 
positive scheduling error. This impacts operations differently from “under-predicting” (i.e. when cases take longer 
than planned), which has a negative scheduling error. By averaging the magnitude of the individual errors, MAE 
measures the inaccuracy of an average case and prevents individual errors from “canceling out.” By contrast, the 
mean error (ME)–a secondary accuracy metric–measures whether an average case is performed in less or more time 
than expected.  

As the primary outcome metric, MAE was used for the power calculation that determined the sample size of the 
trial. The nonparametric Mann-Whitney U test of two means was chosen to test the differences in MAE, due to the 
non-normal and strictly positive distribution of the MAE.  

The study protocol also provided for subgroup analyses to assess the efficacy of the predictive model across the 
different surgical services and locations included in the study. However, the sample size derived from the power 
analysis was designed only to detect statistical significance for the combined sample. The protocol also included 
secondary accuracy metrics, including the ME and percent of cases scheduled accurately within 60 minutes. The 
two-sided t-test of means for two samples was used to test for differences in ME after the conclusion of the study. 
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Finally, the study assessed the impact of accurate prediction of case duration on two important operational metrics: 
patient wait time (the difference between planned and actual “toes in” times); and surgeon wait time (the amount of 
time that surgeons wait between cases). These secondary analyses were also recorded in the IRB protocol. 
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eDiscussion. 

 

General findings 
There are many examples of health centers utilizing retrospective datasets including data, statistics, and machine 
learning to improve accuracy in predicting surgical case duration. The early literature includes the 1996 study by 
Dexter [1] in which the focus was to assess the upper boundaries of surgical case duration for a limited set of 
procedures, in order to ascertain the possibility of adding more cases to the schedule without extending the day 
significantly. Since then, several studies have focused on fitting statistical models, including log-normal distribution 
models, multiple linear regression models and machine learning models [2-10]. Each of these studies utilized 
retrospective data to test the validity and performance of their predictive modeling approach. They showed that 
accuracy may be improved using larger datasets leveraging the Electronic Health Record, surgeon estimate as an 
input, and different modeling approaches. However, we found no examples of studies that actually implemented 
case duration predictions into daily operations prior to the day of surgery. Dexter [11] described implementation of a 
model providing the remaining expected duration of an ongoing surgical case in the OR  when cases are delayed. 
Our study provides the full case duration estimate prior to the day of surgery, to assist with planning for the entire 
day.  

Data availability prior to surgery 
We forced an added level of rigor to ensure the availability of the input data prior to the day of surgery. Most inputs 
are dependent on health systems’ nightly database extract/transfer/load processes, and some inputs are not recorded 
digitally until the day of surgery. Notably, the ASA score was used in several earlier studies; we also found that this 
input was a strong predictor in our early models. However, this data is rarely available digitally before the day of 
surgery. Consequently, a model that includes this datapoint would not provide a prediction prior to surgery without 
performance loss, compared with results derived from a retrospective dataset. Health systems wishing to leverage 
this data point must ensure that the ASA score is consistently available digitally, in advance of surgery. 

Procedure combinations 
Published case duration prediction studies are generally limited to a subset of procedures within a single surgical 
service or exclude CPT code combinations that occur less frequently. For example, Stepaniak et al. [2] excluded 
procedures that occurred <10 times in their dataset. They estimated this exclusion to be minimal, but it still 
comprised 14% of the total population. In the current study, we did not omit any procedure combination groups. 
Although it may be challenging to develop accurate predictions for every possible CPT code combination, we deem 
it necessary to successful implementation of a predictive model into the scheduling workflow of a busy operating 
suite.  

Hosseini et al.7 used a classification algorithm to cluster over 2,000 procedures into 49 categories. Instead of using 
surgical procedures in the model directly, we aggregated the RVU for each case as model inputs. We also explored 
other ways to group procedures, including identifying similar words in the procedure code descriptions. It might also 
be possible to develop unsupervised models that cluster procedure code combinations of similar duration and 
variability. While these approaches hold promise for future model iterations, our RVU-based approach enabled us to 
develop a model for each service that included all possible procedure code combinations. 

Operational impact 
As we implemented the model in a controlled setting, we were able to measure operational outcome metrics that 
have not been published before. We were able to demonstrate the benefits of such a model for patient, staff, and 
perioperative surgical resources (pre- and post-surgical areas). As the control group tended to under-predict case 
duration, and the intervention group limited over- or under-predictions, we were able to reduce patient wait time by 
33 minutes on average. This was achieved without increasing time between cases (turnover time) that might 
otherwise increase the surgeon’s wait time. The improvement we demonstrated is not a simple tradeoff of “who is 
waiting for whom”, but rather a net improvement.  

It is important to note that we designed the study to allow our surgeons to overwrite scheduled durations at their 
discretion. However, we received no such demands and the surgeons involved in the study did not report any 
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disruptions in their surgical days due to implementation of the study. Similarly, the anesthesiologists and surgical 
staff did not report any complaints related to implementation of the study. 

In addition to improvement in patient wait time and turnover time between cases on the day of surgery, operational 
impact included greater efficiency in the use of pre-surgical resources. Reduced patient wait time in the pre-surgical 
area correlates strongly with a reduced need for pre-surgical beds. We also showed a reduction in the use of pre-
surgical beds, which could lead to reduced wait time for registered patients waiting for those beds. More 
importantly, a proportion of pre-surgical beds are also used as PACU beds; therefore, any reduction in use of pre-
surgical beds could improve the flow of patients from OR into PACU after surgery.  

For the sake of simplicity, we decided to weigh (i.e. penalize) under-predictions and over-predictions evenly and 
optimize the model to produce errors centered around zero. The ideal is to minimize both under- and over-
predictions. However, one could imagine a scenario in which an organization had more than enough pre-surgical 
rooms and staff and might be inclined to sacrifice a marginal amount of patient wait time in order to minimize the 
risk of an unoccupied OR. Conversely, another organization with an especially high focus on reducing the time 
patients spend in the system, or an organization with limited preoperative resources, might choose to reduce patient 
wait time, minimizing patients’ time in the facility at the cost of reduced OR utilization. If there is deviation from 
the safe choice of centering the error around zero, it would be necessary to quantify the cost of patient wait time 
compared with the cost of time between cases (i.e. turnover time or surgeon wait time). 
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