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Theoretical highlights of complexity theory 

The Complexity theory can give useful quantitative parameters for the description of DNA structure. Such 

quantities are the Tsallis q-triplet (𝑞𝑠𝑒𝑛 , 𝑞𝑟𝑒𝑙, 𝑞𝑠𝑡𝑎𝑡), the Correlation dimensions, the Hurst exponent, the 

Lyapunov exponents, etc. According to Prigogine and Nicolis, far from equilibrium, nature can produce 

spatiotemporal self-organized forms through the extended probabilistic dynamics of correlations in 

agreement with the extended entropy principle (Prigogine, 1978; Nicolis and Prigogine, 1989; Nicolis, 1993; 

Prigogine, 1997; Davies, 2004). Far from equilibrium the entropy principle creates long-range correlations, 

as nature works to maximize the non-equilibrium entropy (Tsallis) function. The entropy principle for the far 

from equilibrium and open physical systems, as the biological systems are, leads to the creation of dissipative 

structures and self-organized multi-level and multi-scale long-range correlated physical forms. The 

maximization of Tsallis q-entropy can explain the formation of DNA structure as a non-equilibrium 

intermittent turbulence structure and a multiplicative self-organization process (Pavlos et al., 2015). From 

this point of view, the DNA structure is a constructed multifractal system of the four DNA bases (A, C, G, 

T) with high information redundancy. This in turn suggests that most, if not all of the DNA sequences are 

purposeful and relevant but not all of this information has been decoded.  

 

The underlying intermittent DNA turbulence which constructs the DNA sequence and the chromosomic high 

ordered system is mirrored in the well-known q-triplet of non-extensive statistical theory of Tsallis including 

three characteristic parameters (𝑞𝑠𝑒𝑛 , 𝑞𝑟𝑒𝑙, 𝑞𝑠𝑡𝑎𝑡). The 𝑞𝑠𝑒𝑛 parameter, describes the entropy production and 

the information redundancy, as the DNA sequence is constructed by the underlying DNA turbulence process, 

as multifractal DNA structure. The 𝑞𝑟𝑒𝑙 parameter describes the relaxation process of the DNA turbulence 

system to the meta-equilibrium stationary state of DNA structure, where the q-entropy (𝑆𝑞) of Tsallis statistics 

is maximized. The meta-equilibrium state with maximized entropy function corresponds to the chromosomic 

DNA system. The 𝑞𝑠𝑡𝑎𝑡 parameter describes the statistical probability distribution function of the DNA 

complex or random structure at the DNA turbulent stationary state. The DNA turbulence system can be 

described dynamically as an anomalous random walk process creating the DNA bases series. This dynamic 

can include critical points where the DNA turbulence dynamics can change. This constructive biological 

evolutionary phase transition process can develop the entire self-organized multifractal dynamical system. 

The variations of the Tsallis q-triplet along the DNA sequence is the quantitative manifestation of the 

biological evolution process throughout the constructive scenario of critical DNA turbulent phase transition 

processes. 

 

The multifractal character of this biological evolutionary process is mirrored at the evolution of the Hurst 

exponent along the DNA sequence. As the Hurst exponent changes along the DNA sequence it mirrors the 

degree of the multifractal character along the DNA structure. 

 

The DNA structure can be explained as the dynamical evolution of the biological complex system in the 

underlined natural state space to the DNA turbulence dynamics. This state space can be reconstructed by 

numbering the DNA sequence, supposing that the constructed DNA sequence corresponds also to the 

temporal aspect of the DNA sequence. This means that the natural numbering of DNA bases corresponds to 

the temporal evolution of DNA structuring. This permit us, to use the embedding theory of Takens (Takens, 

1981) for the multidimensional reconstruction of the state space underlying to the DNA dynamical process. 

This reconstructed state space describes the entire temporal biological evolution physical process. The DNA 

sequence is the one-dimensional time projection of the DNA Turbulence phase space in the form of the DNA 



“time series”. The DNA reconstructed state space can explain the multifractal structuring of DNA sequence 

and mirrors the sequence of evolutionary phase transition biological process as the topological phase 

transition process of the biological dynamical state space topology. The DNA correlation dimension can be 

estimated in the reconstructed DNA state space, as well as, other useful geometrical and dynamical 

parameters of the biological evolution, can also be estimated (Pavlos et al., 2015; Karakatsanis et al., 2018). 

After all, the DNA structure mirrors also the multifractal topology of the underlying DNA turbulence state 

space, as well as the critical DNA phase transition process during the biological evolution of species related 

to the DNA construction through non-linear strange dynamics. Moreover, the self-consistently to the DNA 

strange dynamics maximization of Tsallis q-entropy, structures the DNA state space multifractal topology. 

According to these theoretical concepts, in this study we use the sizes of DNA regions for the reconstruction 

of DNA state space according to Takens embedding theory. All the estimated parameters are related with the 

fractal topology of DNA state space. The changes of the complexity metrics correspond to the evolutionary 

topological phase transition process of the DNA state space, as well as of the underlying intermittent 

turbulence process of the chromosomic dynamical self-organization.  

Source of DNA Sequences 

The Genomic compartments we used in this study and the Gene definitions are taken from National Center 

for Biotechnology Information (NCBI) (RefSeq Annotation Release 108, 

https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Homo_sapiens/108/). This data base provides both, 

the gene and exon definitions. Based on these definitions we generated the intronic and intergenic region 

coordinates. For the repeat individual we used the Repeat Masker. We then merged the repeat individual to 

generate the repeat merge data. Coordinates for the non-repeat sequences were the complementary to merged 

repeat sequences. Using both the curated and derived definitions we generated the data as shown in Figure 

1. 

 

Transparent Methods 

Methodology of data analysis 

The methodology of the analysis of data are supported from metrics in physical and phase space. In order to 

unravel the symmetries and the order of information on the distribution of the lengths of the regions in the 

entire genome, we used complexity theory tools for data analysis such as: a) q-triplet estimation, b) estimation 

of correlation dimension and c) estimation of Hurst exponent on these data. A new technical factor, which 

we name the complexity factor (COFA), and tools from machine learning (ML) algorithms are used to better 

describe the variation of the metrics between genomic entities, with the ultimate goal of improving our depth 

of understanding of the DNA system. 

 

The dynamics of the DNA system in the phase space determines in the physical space the position of the 

fundamental four bases in the DNA chains in all genome entities. We understand that these positions included 

the necessary information for the following functions of DNA chains with an extended conclusion that the 

distribution of the genomic entities are not random, but it is a part of the dynamics. The information we get 

from a measured quantity from the physical space, is a part of the projection of the dynamics which produced 

this physical and measured quantity. The complexity metrics we used in the analysis reflected every time 

part of the dynamics in the physical or phase space. The statistics of the information and the dynamics are 

inextricably linked in a continuous interaction from physical space to phase space and vice versa. The 

dynamics produces in the phase space objects with strange geometry like strange attractors, islands, long 

range correlations, diffusion, multifractal behavior etc. Staying in that line of thinking, we supposed that the 

variations of the metrics for different entities of the whole genome corresponds to changes of the strange 

dynamics in the phase space, marking entities like regions, words, etc in the genome with the scope to input 

such information in supervised or unsupervised ML models and help us to uncover patterns and symmetries 

of information in the whole genome.  

  

An integrated analysis method of DNA entities 

 



We present in algorithmic steps the whole methodology: 

 

a) We prepare the arithmetic or text data from DNA system. If the data are text (independence bases, words, 

etc) we apply specific routines: like the distance a base to the next similar base or other methods, to transform 

the text data in arithmetic data, else we go to the next algorithmic step. b) We apply on arithmetic data the 

complexity metrics like: Hurst exponent, q-triplet of Tsallis, correlation dimension, etc (other complexity 

metrics). c) We produce the table of results for the whole data set. The results are then used to estimate the 

COFA index, which will be used as an external classifier for the ML models. d) Next, we choose the attributes 

(Hurst, q-triplet, etc) that will be used for various ML models. e) We apply ML models for classification, 

clustering and prediction based on the external classifier COFA. f) We produce the table of accuracy from 

the previous step. If the accuracy is not acceptable, we return to step d) and we repeat the procedure until the 

accuracy is acceptable. g) Once the accuracy of the model is acceptable, we present the final results from ML 

models and extract the final symmetries and laws of information from the analysis of the whole data set. 

Theoretical Framework 

The DNA chromosomic system taking into account the nonlinear and strange dynamics can be described 

from the general equation: 
𝑑𝑋⃗ (𝑟 ,𝑡)

𝑑𝑡
= 𝐹𝜆(𝑋 ,𝑊)     (S1) 

 

where the vector 𝑋  describes the state of the chromosomic chemical system, while the nonlinear function 

𝐹(𝑋 ,𝑊) describes the temporal change 𝑑𝑋 𝑑𝑡⁄  of the state vector. The state vector evolves temporarily in 

the state space of the biological evolution process. The control parameter 𝜆 describes the degree of physical 

connection of the DNA system with its biological and chemical environment while the quantity 𝑊 

corresponds to the temporal evolution of the system connection with its environment. The environment state 

function 𝑊 can be high or low dimensional. The dimension of the DNA state vector 𝑋  and the topology of 

the correspondent DNA state space can change according to the control parameter values. As the control 

parameter  𝜆 changes the profile of the dynamics of the system change also through phase transition self-

organization of the entire system. Complexity theory is related with the nonlinear and strange dynamics 

included to the equation (S1) and the statistical character of the system evolution in the state space. The 

multifractal topology of the state space is created through the entropy maximization principle (Pavlos et al., 

2015; Karakatsanis et al., 2018). 

1. Non-extensive statistical mechanics 

The non-extensive statistical theory is based mathematically on the nonlinear equation: 

 
𝑑𝑦

𝑑𝑥
= 𝑦𝑞 , (𝑦(0) = 1, 𝑞 ∈ 𝑅      (S2) 

with solution the q-exponential function such as: 𝑒𝑞
𝑥 = [1 + (1 − 𝑞)𝑥]

1

1−𝑞. For further characterizing the non-

Gaussian character of the dynamics, we proceed to the estimation of Tsallis q-triplet based on Tsallis 

nonextensive statistical mechanics. Nonextensive statistical mechanics includes the q-analog (extensions) of 

the classical Central Limit Theorem (CLT) and α-stable distributions corresponding to dynamical statistics 

of globally correlated systems. The q-extension of CLT leads to the definition of statistical q-parameters of 

which the most significant is the q-triplet(𝑞𝑠𝑒𝑛 , 𝑞𝑟𝑒𝑙, 𝑞𝑠𝑡𝑎𝑡), where the abbreviations 𝑠𝑒𝑛, 𝑟𝑒𝑙, and 𝑠𝑡𝑎𝑡, stand 

for sensitivity (to the initial conditions), relaxation and stationary (state) in nonextensive statistics 

respectively (Tsallis, 2004; Umarov et al., 2008; Tsallis, 2011). These quantities characterize three physical 

processes: a) q-entropy production (𝑞𝑠𝑒𝑛), (b) relaxation process (𝑞𝑟𝑒𝑙), c) equilibrium fluctuations (𝑞𝑠𝑡𝑎𝑡). 

The q-triplet values characterize the attractor set of the dynamics in the phase space of the dynamics and they 

can change when the dynamics of the system is attracted to another attractor set of the phase space. Equation 

(S2) for 𝑞 = 1 corresponds to the case of equilibrium Gaussian (Boltzmann-Gibbs (BG)) world (Tsallis, 

2009). In this case, the q-triplet of Tsallis simplifies to 𝑞𝑠𝑒𝑛 = 1, 𝑞𝑠𝑡𝑎𝑡 = 1, 𝑞𝑟𝑒𝑙 = 1. 

2. q-triplet of Tsallis theory (𝒒𝒔𝒆𝒏, 𝒒𝒓𝒆𝒍, 𝒒𝒔𝒕𝒂𝒕) 
 

(a) 𝑞𝑠𝑡𝑎𝑡 index 



A long-range-correlated meta-equilibrium non-extensive process can be described by the nonlinear 

differential equation (Tsallis, 2004; 2009): 

 
d(𝑝𝑖Z𝑞𝑠𝑡𝑎𝑡)

dEi
= −𝛽𝑞𝑠𝑡𝑎𝑡

(𝑝𝑖Z𝑞𝑠𝑡𝑎𝑡
)
𝑞𝑠𝑡𝑎𝑡

,     (S3) 

 

where stat stands for stationary state, and 𝛽𝑞𝑠𝑡𝑎𝑡
 is the adequate inverse temperature. The solution of this 

equation corresponds to the probability distribution: 

 

𝑝𝑖 =
𝑒𝑞𝑠𝑡𝑎𝑡

−𝛽𝑞𝑠𝑡𝑎𝑡𝐸𝑖

𝑍𝑞𝑠𝑡𝑎𝑡

      (S4) 

 

where 𝛽𝑞𝑠𝑡𝑎𝑡
≡

1

𝐾𝑇𝑠𝑡𝑎𝑡
 , and 𝑍𝑞𝑠𝑡𝑎𝑡

= ∑ 𝑒𝑞𝑠𝑡𝑎𝑡

−𝛽𝑞𝑠𝑡𝑎𝑡𝐸𝑗
𝑗 . Then the probability distribution is given: 

 

pi ∝ [1 − (1 − q)β𝑞𝑠𝑡𝑎𝑡
Ei]

1 𝑞𝑠𝑡𝑎𝑡−1⁄      (S5) 

 

for discrete energy states {𝐸𝑖} and by 

 

p(x) ∝ [1 − (1 − q)β𝑞𝑠𝑡𝑎𝑡
𝑥2]1 𝑞𝑠𝑡𝑎𝑡⁄ −1    (S6) 

 

for continuous 𝑥 states of {𝑋}, where the values of the magnitude 𝑋 correspond to the state points of the 

phase space. Distribution functions (S5) and (S6) correspond to the attracting stationary solution of the 

extended (anomalous) diffusion equation related to the nonlinear dynamics of the system. The stationary 

solutions 𝑃(𝑥) describe the probabilistic character of the dynamics on the attractor set of the phase space. 

The non-equilibrium dynamics can evolve on distinct attractor sets, depending upon the control parameters, 

while the 𝑞𝑠𝑡𝑎𝑡 exponent can change as the attractor set of the dynamics change. For the estimation of Tsallis 

q-Gaussian distributions we use the method described in Ferri (Ferri et al., 2010). 

 

In the following we show the flow chart of the methodology of the 𝑞𝑠𝑡𝑎𝑡 index: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure s1: “The flow chart of the index qstat, Related to Figure 5” 

 
 



(b) 𝑞𝑠𝑒𝑛 index 

Entropy production is related to the general profile of the attractor set of the dynamics. The profile of the 

attractor can be described by its multi-fractality as well as by its sensitivity to initial conditions. The 

sensitivity to initial conditions can be expressed as: 

 
d𝜉

dt
= λ𝑞𝑠𝑒𝑛

ξ𝑞𝑠𝑒𝑛       (S7) 

 

where 𝜉 is the trajectory deviation in the phase space: ξ ≡ log𝛥𝑥(0)→0 𝛥𝑥(𝑡) 𝛥𝑥(0)⁄ , where 𝛥𝑥(𝑡) is the 

distance between neighbouring trajectories (Tsallis, 2004). The solution of equation (S7) is given by: 

 

ξ(t) = 𝑒𝑞𝑠𝑒𝑛

𝜆𝑞𝑠𝑒𝑛𝑡
,    

 (S8) 

 

where sen stands for sensitivity.  

 

The 𝑞𝑠𝑒𝑛exponent is related to the multi-fractal profile of the attractor set according to 

 

 
1

1−qsen
=

1

αmin
−

1

αmax
,     (S9) 

 

where 𝛼𝑚𝑖𝑛 , 𝛼𝑚𝑎𝑥 corresponds to zero points of the multi-fractal exponent spectrum 𝑓(𝛼), that is 𝑓(𝛼𝑚𝑖𝑛) =
𝑓(𝛼𝑚𝑎𝑥) = 0. For the estimation of the multifractal spectrum we use the method described in Pavlos (Pavlos 

et al., 2014). 

 

By using 𝐷𝑞̅ spectrum we estimate the singularity spectrum 𝑓(𝛼) using the Legendre transformation: 

 

𝑓(𝛼) = 𝑞̅𝑎 − (𝑞̅ − 1)𝐷𝑞̅,     (S10) 

 

where 𝛼 =
𝑑𝜏(𝑞̅)

𝑑𝑞̅
. We note that the Tsallis q-entropy number is a special number corresponding to the 

extremization of Tsallis entropy of the system, while the 𝑞̅ describe the range of real values of generalized 

dimension spectrum 𝐷𝑞̅. 

 

The degree of multifractality is given by: 

 

𝛥𝑎 = 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛     (S11) 

 

and the degree of asymmetry A can be estimated by the relation: 

 

𝐴 =
𝑎0−𝑎𝑚𝑖𝑛

𝑎𝑚𝑎𝑥−𝑎0
      (S12) 

 

In particular, 𝛼0 corresponds to the largest fractal dimension, which in this case is 𝑓(𝛼) = 1. It is important 

to note here that the singularity exponents 𝛼 of the singularity spectrum 𝑓(𝛼) corresponds to the Holder 

exponent and reveal the intensity of the topological singularity of the phase space as well as how irregular 

are the physical magnitudes defined in the phase space of the system. The value 𝛼0, separates the values of 

𝛼 in two distinct intervals, 𝛼 < 𝛼0 and 𝛼 > 𝛼0 with different physical meaning. In particular, the left part of 

singularity spectrum 𝑓(𝛼) is related with values 𝛼 lower than the value 𝛼0, and correspond to the low 

dimensional regions of the phase space, which is described by the right part of 𝐷𝑞̅ spectrum. Similarly, the 

right part of the singularity spectrum 𝑓(𝛼) is related with values 𝛼 higher than 𝛼0 and correspond to the high 

dimensional regions of the phase space, which is described by the left part of the curve 𝐷𝑞̅ of the generalized 

dimension spectrum. 

 

According to these characteristics of 𝑓(𝛼) and 𝐷𝑞̅ spectra, the high dimensional regions of phase space 

includes smoother fractal topology than the low dimensional regions, where the fractal character is stronger. 



Low dimensional regions of phase space cause strong fractional acceleration and anomalous diffusion 

processes of the experimental TMS. The estimation of  ∆𝐷𝑞̅ between the low (𝑞̅ → +∞)  and high (𝑞̅ → −∞) 

dimensional regions of the phase space reveals the multifractal behavior of the system. High (Low) values of 

∆𝐷𝑞̅ shows strong (weak) multifractality. 

 

In the following we show the flow chart of the methodology of the 𝑞𝑠𝑒𝑛 index: 

 

 

Figure s2: “The flow chart of the index qsen, Related to Figure 7” 

 
 



 

(c) 𝑞𝑟𝑒𝑙 index 

Thermodynamic fluctuation-dissipation theory is based on the Einstein original diffusion theory (Brownian 

motion theory). Diffusion is a physical mechanism for extremization of entropy. The Einstein-Smoluchowski 

theory of Brownian motion was extended to the general Fokker Planck (FP) diffusion theory of non-

equilibrium processes. The potential of FP equation may include many meta-equilibrium stationary states 

near or far away from thermodynamical equilibrium. Macroscopically, relaxation to the equilibrium 

stationary state of some dynamical observable 𝑂(𝑡) related to system evolution in the phase space can be 

described by the form of general form: 

 
dΩ

dt
= −

1

τ
Ω,      (S13) 

 

where 𝛺(𝑡) ≡ [𝑂(𝑡) − 𝑂(∞)]/[𝑂(0) − 𝑂(∞)] describes the relaxation of the macroscopic observable 𝑂(𝑡) 
towards its stationary state value and τ being the relaxation time (Tsallis, 2004). The non-extensive 

generalization of fluctuation-dissipation theory is related to the general correlated anomalous diffusion 

processes (Tsallis, 2009). The equilibrium relaxation process (S13) is transformed to the meta-equilibrium 

non-extensive relaxation process according to: 

 
𝑑𝛺

𝑑𝑡
= −

1

𝜏𝑞𝑟𝑒𝑙

𝛺𝑞𝑟𝑒𝑙 ,     (S14) 

 

where rel stands for relaxation.  

 

Τhe solution of this equation is given by: 

 

Ω(t) = eqrel

−t/τ𝑞𝑟𝑒𝑙       (S15) 

 

The autocorrelation function 𝐶(𝑡) or the mutual information 𝐼(𝑡) can be used as candidate observables 𝛺(𝑡) 

for estimation of 𝑞𝑟𝑒𝑙. However, in contrast to the linear profile of the correlation function, the mutual 

information includes the nonlinearity of the underlying dynamics and it is proposed as a more faithful index 

of the relaxation process and the estimation of the Tsallis exponent 𝑞𝑟𝑒𝑙. 

 

In the following we show the flow chart of the methodology of the 𝑞𝑟𝑒𝑙 index: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure s3: “The flow chart of the index qrel, Related to Figure 6” 

 

 

3. Correlation Dimension (𝑫𝟐) 
In order to provide information for the dynamical degrees of freedom of the dynamics underlying the 

experimental time series we estimate the correlation dimension (D2) defined as: 

  

     D2 = lim
r→0

d[lnC(r)]

d[ln(r)]
      

 (S16) 

 

where C(r) is the so-called correlation integral for a radius r in the reconstructed phase space. When an 

attracting set exists then C(r) reveals a scaling profile: 

 



     C(r)  rd   for  r → 0.                                                

 (S17) 

 

The correlation integral depends on the embedding dimension m of the reconstructed phase space and is 

given by the following relation: 

    C(r,m) =
2

N(N−1)
∑ ∑ Θ(r − ‖x(i) − x(j)‖)N

j=1+1
N
i=1   

 (S18) 

 

where Θ(a)=1 if a>0 and Θ(a)=0 if a  1, and N is the length of the time series. The low value saturation of 

the slopes of the correlation integrals is related to the number (d) of fundamental degrees of freedom of the 

internal dynamics. For the estimation of the correlation integral we used the method of Theiler (Theiler, 1991) 

in order to exclude time correlated states in the correlation integral estimation, thus discriminating between 

the dynamical character of the correlation integral scaling and the low value saturation of slopes 

characterizing self-affinity (or crinkliness) of trajectories in a Brownian process. When the dynamics 

possesses a finite (small) number of degrees of freedom, we can observe saturation to low values D2 of the 

slopes Dm for a sufficiently large embedding m. The dimension of the attractor of the dynamics is then at 

least the smallest integer D0 larger than D2 or at most 2D0+1, according to Taken’s theorem (Takens, 1981). 

4. Hurst Exponent (𝒉) 
The Hurst exponent (ℎ) related to the fractal dimension (𝐷). The relationship between the fractal dimension 

and the Hurst exponent is: 

 

𝐷 = 2 − ℎ      (S19) 

 

The fractal dimension shows how rough a surface is. A small value of Hurst exponent shows a higher fractal 

dimension and a rougher surface. A larger Hurst exponent shows a smaller fractional dimension and a 

smoother surface. The values of the Hurst exponent range between 0 and 1. A value of 0.5 indicates a true 

random process (a Brownian time series). A Hurst exponent value ℎ, 0.5 < ℎ < 1 indicates "persistent 

behavior". Here an increase (decrease) probably followed by an increase (decrease). A Hurst exponent value 

0 < ℎ < 0.5 indicates "anti-persistent behavior". Here an increase (decrease) probably followed by a 

decrease (increase). For the estimation of the Hurst exponent (ℎ) in this study we use Rescaled Range 

Analysis (R/S) (Weron, 2002). The Hurst exponent (ℎ), is defined in terms of the asymptotic behavior of the 

rescaled range (R/S) as a function of the time span of a time series as follows: 

 

𝐸 [
𝑅(𝑛)

𝑆(𝑛)
] = 𝐶𝑛ℎ , 𝑛 → ∞,     (S20) 

 

where, 𝑅(𝑛) is the range of the first 𝑛 values and 𝑆(𝑛) is their standard deviation, 𝐸(𝑥) is the expected value, 

𝑛 is a number of data points in a time series and 𝐶 is a constant. 

5. Machine Learning Analysis 

(a) Clustering 

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same 

group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). 

It is a main task of exploratory data mining, and a common technique for statistical data analysis, used in 

many fields, including machine learning, pattern recognition, image analysis, information retrieval, 

bioinformatics, data compression, and computer graphics.  

 

(b) k-means model 

k-means clustering is one of the simplest and popular unsupervised machine learning algorithms. Is a method 

of vector quantization, originally from signal processing. k-means clustering aims to partition n observations 

(Examples) into k clusters in which each observation belongs to the cluster with the nearest mean, serving as 

a prototype of the cluster. Clustering can be used on unlabeled data. 

The k-means algorithm determines a set of k clusters and assigns each Examples to exact one cluster. The 

clusters consist of similar Examples. The similarity between Examples is based on a distance measure 

between them. A cluster in the k-means algorithm is determined by the position of the center in the n-



dimensional space of the n Attributes of the Example Set. This position is called centroid. It can, but do not 

have to be the position of an Example of the Example Sets. The k-means algorithm starts with k points which 

are treated as the centroid of k potential clusters. All Examples are assigned to their nearest cluster (nearest 

is defined by the measure type). Next the centroids of the clusters are recalculated by averaging over all 

Examples of one cluster. The previous steps are repeated for the new centroids until the centroids no longer 

move or max optimization steps is reached. The procedure is repeated max runs times with each time a 

different set of start points. The set of clusters is delivered which has the minimal sum of squared distances 

of all examples to their corresponding centroids. The objective function for the k-means clustering algorithm 

is the squared error function: 

 

𝐽 = ∑ ∑ (‖𝑥𝑖 − 𝑢𝑗‖)
2𝑛

𝑗=1 = 1𝑘
𝑖=1 ,     (S21) 

 

where ‖𝑥𝑖 − 𝑢𝑗‖ is the Euclidean distance between a point, 𝑥𝑖 and a centroid, 𝑢𝑗 , iterated over all 𝑘 points 

in the 𝑖𝑡ℎ cluster, for all 𝑛 clusters. In simpler terms, the objective function attempts to pick centroids that 

minimize the distance to all points belonging to its respective cluster so that the centroids are more symbolic 

of the surrounding cluster of data points. K-means clustering is a fast, robust, and simple algorithm that gives 

reliable results when data sets are distinct or well separated from each other in a linear fashion. It is important 

to keep in mind that k-means clustering may not perform well if it contains heavily overlapping data, if the 

Euclidean distance does not measure the underlying factors well, or if the data is noisy or full of outliers. 

In the following we show the flow chart for the clustering method using in this study: 

 

Figure s4: “The flow chart of the clustering process, Related to Figures 10-12” 

 

 



 

(c) Supervised classification (Naive Bayes classifier)  

For this work we used the Naive Bayes classifier for the classification process. Naive Bayes is a high-bias, 

low-variance classifier, and it can build a good model even with a small data set. It is simple to use and 

computationally inexpensive. Typical use cases involve text categorization, including spam detection, 

sentiment analysis, and recommender systems. The Naive Bayes Classifier technique is based on the so-

called Bayesian theorem and is particularly suited when the dimensionality of the inputs is high. Despite its 

simplicity, Naive Bayes can often outperform more sophisticated classification methods. Naive Bayes 

classifiers can handle an arbitrary number of independent variables whether continuous or categorical. Given 

a set of variables, 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑑}, we want to construct the posterior probability for the event Cj among 

a set of possible outcomes 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑑}. In a more familiar language, 𝑋 is the predictors and 𝐶 is the 

set of categorical levels present in the dependent variable. Using Bayes' rule: 

 

𝑝(𝐶𝑗 ∨ 𝑥1, 𝑥2, … , 𝑥𝑑) ∝ 𝑝(𝑥1, 𝑥2, … , 𝑥𝑑 ∨ 𝐶𝑗)𝑝(𝐶𝑗),   (S22) 

 

where 𝑝(𝐶𝑗 ∨ 𝑥1, 𝑥2, … , 𝑥𝑑) is the posterior probability of class membership, i.e., the probability that 𝑋 

belongs to 𝐶𝑗. Since Naive Bayes assumes that the conditional probabilities of the independent variables are 

statistically independent, we can decompose the likelihood to a product of terms: 

 

𝑝(𝑋 ∨ 𝐶𝑗) ∝ ∏ 𝑝(𝑥𝑘 ∨ 𝐶𝑗)
𝑑
𝑘=1      (S23) 

 

and rewrite the posterior as: 

 

𝑝(𝐶𝑗 ∨ 𝑋) ∝ 𝑝(𝐶𝑗)∏ 𝑝(𝑥𝑘 ∨ 𝐶𝑗)
𝑑
𝑘=1     (S24) 

 

Using Bayes' rule above, we label a new case 𝑋 with a class level 𝐶𝑗 that achieves the highest posterior 

probability. 

Although the assumption that the predictor (independent) variables are independent is not always accurate, 

it does simplify the classification task dramatically, since it allows the class conditional densities p(xk ∨ Cj) 

to be calculated separately for each variable, i.e., it reduces a multidimensional task to a number of one-

dimensional ones. In effect, Naive Bayes reduces a high-dimensional density estimation task to a one-

dimensional kernel density estimation. Furthermore, the assumption does not seem to greatly affect the 

posterior probabilities, especially in regions near decision boundaries, thus, leaving the classification task 

unaffected. 

 

In the following we show the flow chart for the classification method using in this study: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure s5: “The flow chart of the classification process, Related to Figures 15-15” 

 

 

6. Evaluation - Split Test 

For the classifier’s evaluation we used a 60/40 train/test set split. The split of the dataset is a simple way to 

use one dataset to both train and estimate the performance of the classifier. We split the dataset into a training 

dataset and a test dataset. Our model randomly selects 60% of the instances for training and use the remaining 

40% as a test dataset.  
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