## Genome-wide association study identifies risk loci for progressive chronic lymphocytic leukemia

Wei-Yu Lin<sup>1</sup>, Sarah E. Fordham<sup>1</sup>, Nicola Sunter<sup>1</sup>, Claire Elstob<sup>1</sup>, Thahira Rahman<sup>1</sup>, Elaine
Willmore<sup>1</sup>, Colin Shepherd<sup>1</sup>, Gordon Strathdee<sup>1</sup>, Tryfonia Mainou-Fowler<sup>1</sup>, Rachel Piddock<sup>1</sup>, Hannah Mearns<sup>1</sup>, Timothy Barrow<sup>2</sup>, Richard S. Houlston<sup>3</sup>, Helen Marr<sup>4</sup>, Jonathan Wallis<sup>4</sup>, Geoffrey
Summerfield<sup>5</sup>, Scott Marshall<sup>6</sup>, Andrew Pettitt<sup>7</sup>, Christopher Pepper<sup>8</sup>, Christopher Fegan<sup>9</sup>, Francesco Forconi<sup>10</sup>, Martin J. S. Dyer<sup>11</sup>, Sandrine Jayne<sup>11</sup>, April Sellors<sup>11</sup>, Anna Schuh<sup>12</sup>, Pauline Robbe<sup>12</sup>, David Oscier<sup>13</sup>, James Bailey<sup>14</sup>, Syed Rais<sup>14</sup>, Alison Bentley<sup>15</sup>, Lynn Cawkwell<sup>16</sup>, Paul Evans<sup>17</sup>, Peter Hillmen<sup>18</sup>, Guy Pratt<sup>19</sup>, David J. Allsup<sup>14,15,\*,+</sup>, James M. Allan<sup>1,\*,+</sup>

<sup>1</sup>Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical

Sciences, Newcastle University, Newcastle upon Tyne, UK.

<sup>2</sup>Faculty of Health Sciences & Wellbeing, University of Sunderland, Sunderland, UK.

<sup>3</sup>Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.

<sup>4</sup>Department of Haematology, Freeman Hospital, Newcastle upon Tyne, UK.

<sup>5</sup>Queen Elizabeth Hospital, Gateshead, UK.

<sup>6</sup>City Hospitals Sunderland NHS Trust, Sunderland, UK.

<sup>7</sup>University of Liverpool, Liverpool UK.

<sup>8</sup>Brighton and Sussex Medical School, University of Sussex, Brighton, UK.

<sup>9</sup>Institute of Cancer and Genetics, School of Medicine, Cardiff, UK.

<sup>10</sup>Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton, United Kingdom.

<sup>11</sup> The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre,

University of Leicester, Leicester, UK.

<sup>12</sup>University of Oxford, Oxford, UK.

<sup>13</sup>Royal Bournemouth Hospital, Bournemouth, UK.

<sup>14</sup>Hull University Teaching Hospital NHS Trust, Hull, UK.

<sup>15</sup>Hull York Medical School, Hull, UK.

<sup>16</sup> University of Hull, Hull, UK.

<sup>17</sup>Haematological Malignancy Diagnostic Service Laboratory, St James's Institute of Oncology, Leeds, UK.

<sup>18</sup>Section of Experimental Haematology, Leeds Institute of Medical Research at St James's, University of

Leeds, Leeds, UK.

<sup>19</sup> University of Birmingham, Birmingham, UK.

\* Joint contribution.

+ Corresponding author: James M. Allan. Email: james.allan@newcastle.ac.uk. Telephone: +44 (0) 191

208 4435, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United

Kingdom, NE2 4HH; **David Allsup**. Email hycda1@hyms.ac.uk. Telephone +44(0) 1482 461294, Hull York Medical School, University of Hull, Hull United Kingdom, HU6 7RX.

## List of Figures

| 1  | Kaplan-Meier plot of time to first treatment for CLL patients stratified by Binet stage                  | 1              |
|----|----------------------------------------------------------------------------------------------------------|----------------|
| 0  |                                                                                                          | 1              |
| 2  | Kaplan-Meler plot of time to first treatment for CLL patients stratified by IGHV status                  | 2              |
| 3  | Kapian-Meler plot of time to first treatment for CLL patients stratified by CD38 status                  | 3              |
| 4  | Kaplan-Meier plot of time to first treatment for CLL patients stratified by $\beta 2$ Mi-<br>croglobulin | 4              |
| 5  | Kaplan-Meier plot of time to first treatment for CLL patients stratified by TP53 status                  | 5              |
| 6  | GWAS OC and analysis flowchart                                                                           | 6              |
| 7  | Principal component analysis plot of othnicity structure in CLL CWAS and 1000                            | 0              |
| 1  | senomes population panels                                                                                | 7              |
| 0  | Senser validation geneturing for rg726456 and rg2778076                                                  | 0              |
| 0  | Overtile Overtile plat of fixed effect mate analysis for time to first treatment                         | 0              |
| 9  | Quantile-Quantile plot of fixed-effect fileta-analysis for time to first treatment                       | 9              |
| 10 | Regional association plots for association analysis conditioning on the top variant                      | 10             |
| 11 | Associations between post-treatment survival and risk variants for progressive CLL                       | 11             |
| 12 | Time to first treatment for CLL patients stratified by Binet stage of disease and SNP                    | 10             |
| 10 | genotypes                                                                                                | 12             |
| 13 | Time to first treatment for CLL patients stratified by IGHV status and SNP genotypes                     | 13             |
| 14 | Time to first treatment for CLL patients stratified by CD38 status and SNP genotypes                     | 14             |
| 15 | Time to first treatment for CLL patients stratified by $\beta 2$ Microglobulin and SNP                   |                |
|    | genotypes                                                                                                | 15             |
| 16 | Time to first treatment for CLL patients stratified by TP53 status and SNP genotypes                     | 16             |
| 17 | Survival curves in low-risk CLLs by rs736456 (a) rs3778076 (b) and risk allele groups                    |                |
|    | of rs736456 and rs3778076 (c)                                                                            | 18             |
| 18 | Regional association plot of TTFT for known CLL etiological risk variant rs34676223                      | 19             |
| 19 | Regional association plot of TTFT for known CLL etiological risk variant rs41271473                      | 20             |
| 20 | Regional association plot of TTFT for known CLL etiological risk variant rs $3770745$ .                  | 21             |
| 21 | Regional association plot of TTFT for known CLL etiological risk variant rs13401811                      | 22             |
| 22 | Regional association plot of TTFT for known CLL etiological risk variant rs17483466                      | 23             |
| 23 | Regional association plot of TTFT for known CLL etiological risk variant rs9308731 .                     | 24             |
| 24 | Regional association plot of TTFT for known CLL etiological risk variant rs $3769825$ .                  | 25             |
| 25 | Regional association plot of TTFT for known CLL etiological risk variant rs13397985                      | 26             |
| 26 | Regional association plot of TTFT for known CLL etiological risk variant rs757978                        | 27             |
| 27 | Regional association plot of TTFT for known CLL etiological risk variant rs $9880772$ .                  | 28             |
| 28 | Regional association plot of TTFT for known CLL etiological risk variant rs1274963 .                     | 29             |
| 29 | Regional association plot of TTFT for known CLL etiological risk variant rs10936599                      | 30             |
| 30 | Regional association plot of TTFT for known CLL etiological risk variant rs10028805                      | 31             |
| 31 | Regional association plot of TTFT for known CLL etiological risk variant rs898518.                       | 32             |
| 32 | Regional association plot of TTFT for known CLL etiological risk variant rs57214277                      | 33             |
| 33 | Regional association plot of TTFT for known CLL etiological risk variant rs31490                         | 34             |
| 34 | Regional association plot of TTFT for known CLL etiological risk variant rs872071.                       | 35             |
| 35 | Regional association plot of TTFT for known CLL etiological risk variant rs73718779                      | 36             |
| 36 | Regional association plot of TTFT for known CLL etiological risk variant rs674313.                       | 37             |
| 37 | Regional association plot of TTFT for known CLL etiological risk variant rs210142.                       | 38             |
| 38 | Regional association plot of TTFT for known CLL etiological risk variant rs3800461.                      | 39             |
| 39 | Regional association plot of TTFT for known CLL etiological risk variant rs2236256.                      | 40             |
| 40 | Regional association plot of TTFT for known CLL etiological risk variant rs17246404                      | 41             |
| 41 | Regional association plot of TTFT for known CLL etiological risk variant rs2456449                       | 42             |
| 42 | Regional association plot of TTFT for known CLL etiological risk variant rs1679013                       | $\frac{-}{43}$ |
| 43 | Regional association plot of TTFT for known CLL etiological risk variant rs4406737                       | 44             |
| 44 | Regional association plot of TTFT for known CLL etiological risk variant rs61904987                      | 45             |
|    |                                                                                                          | -              |

| 45 | Regional association plot of TTFT for known CLL etiological risk variant rs735665 .      | 46 |
|----|------------------------------------------------------------------------------------------|----|
| 46 | Regional association plot of TTFT for known CLL etiological risk variant rs10735079      | 47 |
| 47 | Regional association plot of TTFT for known CLL etiological risk variant rs8024033 .     | 48 |
| 48 | Regional association plot of TTFT for known CLL etiological risk variant rs7169431 $\ .$ | 49 |
| 49 | Regional association plot of TTFT for known CLL etiological risk variant rs7176508 .     | 50 |
| 50 | Regional association plot of TTFT for known CLL etiological risk variant rs783540        | 51 |
| 51 | Regional association plot of TTFT for known CLL etiological risk variant rs391525        | 52 |
| 52 | Regional association plot of TTFT for known CLL etiological risk variant rs305065        | 53 |
| 53 | Regional association plot of TTFT for known CLL etiological risk variant rs305061        | 54 |
| 54 | Regional association plot of TTFT for known CLL etiological risk variant rs1036935 $\ .$ | 55 |
| 55 | Regional association plot of TTFT for known CLL etiological risk variant rs4368253 $\ .$ | 56 |
| 56 | Regional association plot of TTFT for known CLL etiological risk variant rs4987855 $\ .$ | 57 |
| 57 | Regional association plot of TTFT for known CLL etiological risk variant rs $7254272$ .  | 58 |
| 58 | Regional association plot of TTFT for known CLL etiological risk variant rs11083846      | 59 |
| 59 | Regional association plot of TTFT for known CLL etiological risk variant rs140522        | 60 |
| 60 | Regional and forest plots of rs4752676                                                   | 61 |
| 61 | Regional and forest plots of rs736457                                                    | 62 |
| 62 | Regional and forest plots of rs11757517                                                  | 63 |
|    |                                                                                          |    |

## List of Tables

| 1 | Demographic and clinical characteristics of chronic lymphocytic leukemia (CLL) cases | 64 |
|---|--------------------------------------------------------------------------------------|----|
| 2 | eQTL results for rs736456                                                            | 65 |
| 3 | eQTL results for rs3778076                                                           | 66 |
| 4 | eQTL results for rs3800461                                                           | 67 |

## Supplementary Figures



Supplementary Figure 1: Kaplan-Meier plot showing time to first treatment (TTFT) for CLL patients stratified by Binet stage of disease. TTFT is defined as the time from diagnosis of CLL to treatment or last follow-up without treatment. Patients censored at last follow-up are indicated by a cross. The number of patients in each group at each timepoint are indicated in the table.



Supplementary Figure 2: Kaplan-Meier plot showing time to first treatment (TTFT) for CLL patients stratified by IGHV status. TTFT is defined as the time from diagnosis of CLL to treatment or last follow-up without treatment. Patients censored at last follow-up are indicated by a cross. The number of patients in each group at each timepoint are indicated in the table.



Supplementary Figure 3: Kaplan-Meier plot showing time to first treatment (TTFT) for CLL patients stratified by CD38 status. TTFT is defined as the time from diagnosis of CLL to treatment or last follow-up without treatment. Patients censored at last follow-up are indicated by a cross. The number of patients in each group at each timepoint are indicated in the table.



+ ≤ 3.5mg/L + >3.5mg/L

Supplementary Figure 4: Kaplan-Meier plot showing time to first treatment (TTFT) for CLL patients stratified by  $\beta$ 2 Microglobulin. TTFT is defined as the time from diagnosis of CLL to treatment or last follow-up without treatment. Patients censored at last follow-up are indicated by a cross. The number of patients in each group at each timepoint are indicated in the table. High serum  $\beta$ 2 microglobulin is defined as > 3.5 mg/L.



Supplementary Figure 5: Kaplan-Meier plot showing time to first treatment (TTFT) for CLL patients stratified by TP53 status. TTFT is defined as the time from diagnosis of CLL to treatment or last follow-up without treatment. Patients censored at last follow-up are indicated by a cross. The number of patients in each group at each timepoint are indicated in the table. Abnormal is defined as a 17p deletion by FISH or a TP53 mutation by Sanger sequencing. It should be noted that TP53 status is not routinely determined in patients with early stage CLL. As such, the cohort tested for TP53 has an over-representation of patients with progressive CLL.



Supplementary Figure 6: Details of quality control filters applied to each CLL GWAS and data analysis workflow. SNPs with a call rate < 95%, significant heterogeneity between studies (batch effect  $P \leq 10^{-3}$ ) or showing significant deviation from Hardy-Weinberg equilibrium ( $P \leq 10^{-3}$ ) were excluded. Samples were excluded due to low call rate (< 95%), ancestry (principle components analysis), relatedness ( $\pi \geq 0.1875$ ) or heterozygosity (mean  $\pm 3 \times$  SD). Imputed SNPs with information score < 0.9 and MAF < 0.025 were excluded. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Study-specific single nucleotide polymorphism (SNP) effects were combined using an inverse-variance-weighted method (fixed effects model) and the DerSimonian-Laird approach (random effects model). SNPs with fixed-effect P values of  $\leq 5 \times 10^{-8}$  were deemed significant at genome-wide level.



Supplementary Figure 7: Principal component analysis (PCA) plot of ethnicity structure in CLL GWAS and 1000 genomes population panels. The first two principal components of the analysis are plotted for CLL cases recruited to this study (crosses). 1000 genomes European (EUR), East Asian (EAS) and African (AFR) individuals (open circles) are plotted in brown, pink and gray, respectively. CLL cases of European ancestry included in subsequent analysis (top-left corner) are shown in the inset together with 1000G EUR sub-populations (closed circles) comprising CEU (Utah Residents (CEPH) with Northern and Western European Ancestry; pink), GBR (British in England and Scotland; dark green), FIN (Finnish in Finland; orange), IBS (Iberian Population in Spain; blue), and TSI (Toscani in Italia; light green). PC1, principal component 1; PC2, principal component 2.

| rs Identifier | Primer sequences              | PCR conditions                                                                                                                                                |  |  |  |
|---------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| mg726456      | F 5' CTGTTTGAGGCAGGCTTCTC 3'  | $25 \mu\text{L}$ reactions included: $9 \mu\text{L}$ H <sub>2</sub> O, $12.5 \mu\text{L}$ Dream-<br>Tag Green PCR Master Mix (2X), $1.25 \mu\text{L}$ of each |  |  |  |
| 18730430      | R 5' GAGCCCTTCCCTGAAAACCTC 3' | forward and reverse primers $(10 \mu\text{M})$ and $50 \text{ng}$ DNA $(1 \mu\text{L})$ .                                                                     |  |  |  |
|               | F 5' CTACTTTCCCCGATGCCTGG 3'  | Cycling conditions: 2 minutes at 95 °C followed b<br>35 cycles (25 seconds at 95 °C, 35 seconds at 60 °C                                                      |  |  |  |
| 189110010     | R 5' ATGTCCTGGGGTTTCAGTGC 3'  | and 45 seconds at 72 °C). Final step of 5 minutes at 72 °C with 4 °C hold.                                                                                    |  |  |  |

 $\mathbf{b}$ 

С

| Patient | GWAS<br>genotype | Sanger sequencing | Patient | GWAS<br>genotype | Sanger sequencing |
|---------|------------------|-------------------|---------|------------------|-------------------|
| 1       | AA               |                   | 3       | сс               |                   |
| 2       | AG               |                   | 1       | AC               |                   |
|         |                  |                   | 4       | AA               |                   |

| rs Identifier | Region   | Successful reads | Concordance                                                       |
|---------------|----------|------------------|-------------------------------------------------------------------|
| rs736456      | 10q26.13 | 89/100           | $\begin{array}{c} 89/89 \ (100\%) \\ 96/96 \ (100\%) \end{array}$ |
| rs3778076     | 6p       | 96/100           |                                                                   |

Supplementary Figure 8: Sanger validation genotyping for rs736456 and rs3778076. Primer sequences and PCR conditions for validation of rs736456 and rs3778076 (a). Representative genotype results for rs736456 and rs3778076 (b). Concordance between GWAS genotyping and Sanger validation genotyping for rs736456 and rs3778076 (c).



Supplementary Figure 9: Quantile-Quantile plot of fixed-effect meta-analysis for time to first treatment (TTFT). For each study, allelic dosage was estimated for the minor allele at each variant position and included in a cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the meta-analysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. Expected (under the null hypothesis of no association) and observed distributions of  $-\log_{10}(P)$  values are shown on the x-axis and y-axis, respectively. The red line corresponds to y = x. Inflation lambda ( $\lambda_{GC} = 1.027$ ) is the observed median  $\chi^2$  test statistic divided by the median expected  $\chi^2$  test statistic under the null hypothesis.





100

80

60

40

20

0

rs144931779

Recombination rate (cM/Mb



Supplementary Figure 10: Regional association and linkage disequilibrium plots for association analysis conditioning on the top variant at each susceptibility locus for progressive CLL. Regional association plots of time to first time treatment (TTFT) survival associations for the chromosome 10 (a) and chromosome 6 (b) loci conditioning on rs736456 and rs3778076, respectively. For each study, Cox proportional hazard models were used to estimate the conditional results for each variant at the region by including the top variant. The resulting effect sizes were combined using an inverse-variance-weighted approach. All statistical tests were two-sided. SNP coordinates based on genomic build b37/hg19 are shown on the x-axis and  $-\log_{10}$  (P values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively. SNPs are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the lead SNP (annotated) based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.

 $\mathbf{b}$ 

а

b



Supplementary Figure 11: Forest plots showing associations between post-treatment survival and risk variants for progressive CLL. Forest plots for rs736456 (a) and rs3778076 (b) and their age-adjusted association with post-treatment survival stratified by GWAS. Post-treatment survival is defined as the time from first treatment for CLL-related symptoms to death or last follow-up. No/events: Number of CLL patients/Number of patients receiving treatment; Eff/Ref: effect/reference allele; EAF: effect allele frequency; HR: hazard ratio; CI: confidence interval; Squares denote the per-allele HR, with size proportional to the weight of the study. Pooled HRs derived from both the fixed and random-effects models are indicated by diamonds with their corresponding meta P values shown in the left parentheses. X-axis label formats include reference sequence (rs) identifier and chromosome:position (b37). P values for Cochran's Q test ( $P_{het}$ ) and  $I^2$  for heterogeneity are shown in parentheses. All statistical tests were two-sided.



Supplementary Figure 12: Kaplan-Meier plot showing time to first treatment (TTFT) for CLL patients stratified by Binet stage of disease and SNP genotype for rs736456 (a) and rs3778076 (b). P values are obtained from pairwise log-rank tests for survival curves, with false discovery rate (FDR) corrections for multiple testing. For simplicity, p values are only shown for the comparisions of SNP genotypes within the same prognostic factor stratum. TTFT is defined as the time from diagnosis of CLL to treatment or last follow-up without treatment. Patients censored at last follow-up are indicated by a cross. The number of patients in each group at each timepoint are indicated in the table. All statistical tests were two-sided.



Supplementary Figure 13: Kaplan-Meier plot showing time to first treatment (TTFT) for CLL patients stratified by IGHV status and SNP genotype for rs736456 (a) and rs3778076 (b). P values are obtained from pairwise log-rank tests for survival curves, with false discovery rate (FDR) corrections for multiple testing. For simplicity, p values are only shown for the comparisions of SNP genotypes within the same prognostic factor stratum. TTFT is defined as the time from diagnosis of CLL to treatment or last follow-up without treatment. Patients censored at last follow-up are indicated by a cross. The number of patients in each group at each timepoint are indicated in the table. All statistical tests were two-sided.



Supplementary Figure 14: Kaplan-Meier plot showing time to first treatment (TTFT) for CLL patients stratified by CD38 status and SNP genotype for rs736456 (a) and rs3778076 (b). P values are obtained from pairwise log-rank tests for survival curves, with false discovery rate (FDR) corrections for multiple testing. For simplicity, p values are only shown for the comparisions of SNP genotypes within the same prognostic factor stratum. TTFT is defined as the time from diagnosis of CLL to treatment or last follow-up without treatment. Patients censored at last follow-up are indicated by a cross. The number of patients in each group at each timepoint are indicated in the table. All statistical tests were two-sided.



Supplementary Figure 15: Kaplan-Meier plot showing time to first treatment (TTFT) for CLL patients stratified by  $\beta$ 2 Microglobulin and SNP genotype for rs736456 (a) and rs3778076 (b). *P* values are obtained from pairwise log-rank tests for survival curves, with false discovery rate (FDR) corrections for multiple testing. For simplicity, *p* values are only shown for the comparisions of SNP genotypes within the same prognostic factor stratum. TTFT is defined as the time from diagnosis of CLL to treatment or last follow-up without treatment. Patients censored at last follow-up are indicated by a cross. The number of patients in each group at each timepoint are indicated in the table. High serum  $\beta$ 2 microglobulin is defined as > 3.5 mg/L. All statistical tests were two-sided.

a

Strata + Normal, rs736456 A/A + Abnormal, rs736456 A/A + Normal, rs736456 G/A or G/G + Abnormal, rs736456 G/A or G/G



Supplementary Figure 16: Kaplan-Meier plot showing time to first treatment (TTFT) for CLL patients stratified by TP53 status and SNP genotype for rs736456 (a) and rs3778076 (b). P values are obtained from pairwise log-rank tests for survival curves, with false discovery rate (FDR) corrections for multiple testing. For simplicity, p values are only shown for the comparisions of SNP genotypes within the same prognostic factor stratum. TTFT is defined as the time from diagnosis of CLL to treatment or last follow-up without treatment. Patients censored at last follow-up are indicated by a cross. The number of patients in each group at each timepoint are indicated in the table. Abnormal is defined as a 17p deletion by FISH or a TP53 mutation by Sanger sequencing. It should be noted that TP53 status is not routinely determined in patients with early stage CLL. All statistical tests were two-sided.

 $\mathbf{b}$ 



 $\mathbf{b}$ 

17



Supplementary Figure 17: Survival curves in low-risk CLLs by rs736456 (a) rs3778076 (b) and risk allele groups of rs736456 and rs3778076 (c). Low-risk CLL is defined as Binet stage A patients with mutated IGHV and CD38 negativity (N=236). Numbers do not match 236 because rs736456 genotypes are missing for 2 patients. Log-rank test is used to examine if survival curves differ by genotypes and risk allele group. All statistical tests were two-sided.



Supplementary Figure 18: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs34676223. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 19: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs41271473. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the meta-analysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 20: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs3770745. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 21: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs13401811. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 22: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs17483466. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 23: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs9308731. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 24: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs3769825. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 25: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs13397985. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the meta-analysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 26: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs757978. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 27: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs9880772. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10} (P \text{ values})$  on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 28: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs1274963. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 29: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs10936599. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 30: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs10028805. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the meta-analysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 31: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs898518. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 32: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs57214277. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the meta-analysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10} (P \text{ values})$  on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 33: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs31490. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the meta-analysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 34: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs872071. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 35: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs73718779. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the meta-analysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 36: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs674313. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the meta-analysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 37: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs210142. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the meta-analysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 38: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs3800461. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 39: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs2236256. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 40: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs17246404. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the meta-analysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 41: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs2456449. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 42: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs1679013. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 43: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs4406737. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 44: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs61904987. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 45: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs735665. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 46: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs10735079. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 47: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs8024033. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 48: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs7169431. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 49: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs7176508. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 50: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs783540. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 51: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs391525. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the meta-analysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 52: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs305065. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 53: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs305061. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 54: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs1036935. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 55: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs4368253. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 56: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs4987855. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 57: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs7254272. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 58: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs11083846. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



Supplementary Figure 59: Regional association plot of TTFT (time to first time treatment) for known CLL etiological risk variant rs140522. For each study, allelic dosage was estimated for the minor allele at each variant position and included in a Cox proportional hazard model to estimate hazard ratio (HR) and 95% confidence interval (CI). Variants were included in the metaanalysis if they had results from all six studies. Study-specific single nucleotide polymorphism (SNP) effects were combined in a fixed effect model using an inverse-variance-weighted method. The upper panel shows SNP coordinates based on genomic build b37/hg19 on the x-axis, and  $-\log_{10}$  (*P* values) on the y-axis. Genotyped and imputed SNPs are represented by diamonds and circles, respectively, and are coloured according to their linkage disequilibrium (pairwise  $r^2$ ) with the CLL etiological risk variant based on the 1000 Genomes European panel. Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks representing exons and horizontal lines representing introns.



a



Supplementary Figure 60: Regional and forest plots of rs4752676. TTFT (time to first time treatment) survival associations in rs4752676 region (a). The upper panel plots SNPs based on genomic build b37/h19 coordinates on the x-axis, and their  $-\log_{10}(p-values)$  on the y-axis. Diamond and circle shapes are used for genotyped and imputed SNPs, respectively, with colours according to their pairwise  $r^2$  with the lead SNP based on 1000 Genomes European panel (Nov 2014). Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks for exons, and lines for introns. Plot was generated using LocusZoom. Forest plot of rs4752676 effect on TTFT by study (b). No/events: No. CLL patients/No. patients receiving treatment (the first time); Eff/Ref: effect/reference allele; EAF: frequencies of the effect allele; HR: hazard ratio; CI: confidence interval; Squares denote the per-allele HR, with their size inversely proportional to the variance of the effect estimates. Pooled HRs derived from both the fixed and random-effect models are shown in diamond shapes, with their corresponding meta p-values indicated in the left parentheses. Format of x-axis label is rsid, chromosome:position(b37), P for Cochran's Q test  $(P_{het})$  and  $I^2$  for heterogeneity in parenethesis. All statistical tests were two-sided.



a

rs736457,10:124012562 (P<sub>het</sub>=0.83; I<sup>2</sup>=0%)

Supplementary Figure 61: Regional and forest plots of rs736457. TTFT (time to first time treatment) survival associations in rs736457 region (a). The upper panel plots SNPs based on genomic build b37/h19 coordinates on the x-axis, and their  $-\log_{10}(p-values)$  on the y-axis. Diamond and circle shapes are used for genotyped and imputed SNPs, respectively, with colours according to their pairwise  $r^2$  with the lead SNP based on 1000 Genomes European panel (Nov 2014). Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks for exons, and lines for introns. Plot was generated using LocusZoom. Forest plot of rs736457 effect on TTFT by study (b). No/events: No. CLL patients/No. patients receiving treatment (the first time); Eff/Ref: effect/reference allele; EAF: frequencies of the effect allele; HR: hazard ratio; CI: confidence interval; Squares denote the per-allele HR, with their size inversely proportional to the variance of the effect estimates. Pooled HRs derived from both the fixed and random-effect models are shown in diamond shapes, with their corresponding meta p-values indicated in the left parentheses. Format of x-axis label is rsid, chromosome:position(b37), P for Cochran's Q test  $(P_{het})$  and  $I^2$  for heterogeneity in parenethesis. All statistical tests were two-sided.





rs11757517,6:34514207 ( $P_{het}=0.732$ ;  $I^2=0\%$ )

Supplementary Figure 62: **Regional and forest plots of rs11757517.** TTFT (time to first time treatment) survival associations in rs11757517 region (a). The upper panel plots SNPs based on genomic build b37/h19 coordinates on the x-axis, and their  $-\log_{10}(p-values)$  on the y-axis. Diamond and circle shapes are used for genotyped and imputed SNPs, respectively, with colours according to their pairwise  $r^2$  with the lead SNP based on 1000 Genomes European panel (Nov 2014). Reference genes in the region are shown in the lower panel, with arrows indicating transcript direction, dense blocks for exons, and lines for introns. Plot was generated using LocusZoom. Forest plot of rs11757517 effect on TTFT by study (b). No/events: No. CLL patients/No. patients receiving treatment (the first time); Eff/Ref: effect/reference allele; EAF: frequencies of the effect allele; HR: hazard ratio; CI: confidence interval; Squares denote the per-allele HR, with their size inversely proportional to the variance of the effect estimates. Pooled HRs derived from both the fixed and random-effect models are shown in diamond shapes, with their corresponding meta p-values indicated in the left parentheses. Format of x-axis label is rsid, chromosome:position(b37), P for Cochran's Q test ( $P_{het}$ ) and  $I^2$  for heterogeneity in parenethesis. All statistical tests were two-sided.

|                         |                             | GWAS 1 | GWAS 2 | GWAS 3 | GWAS 4 | GWAS 5 | GWAS 6 | Study 7 | P value <sup>*</sup>  |
|-------------------------|-----------------------------|--------|--------|--------|--------|--------|--------|---------|-----------------------|
| Sex                     | Male                        | 84     | 86     | 90     | 82     | 31     | 101    | 49      |                       |
|                         | Female                      | 69     | 37     | 62     | 47     | 26     | 55     | 38      | 0.128                 |
|                         | Not available               | 1      | 3      | 0      | 0      | 0      | 0      | 0       |                       |
| Age                     | $\leq 65$                   | 70     | 49     | 87     | 64     | 32     | 56     | 36      |                       |
|                         | >65                         | 83     | 52     | 58     | 65     | 25     | 100    | 51      | 0.002                 |
|                         | Not available               | 1      | 25     | 7      | 0      | 0      | 0      | 0       |                       |
| Binet stage             | А                           | 134    | 107    | 126    | 107    | 48     | 87     | 70      |                       |
| -                       | B/C                         | 18     | 18     | 24     | 21     | 9      | 57     | 9       | $4.39 \times 10^{-8}$ |
|                         | Not available               | 2      | 1      | 2      | 1      | 0      | 12     | 8       |                       |
| IGHV                    | Mutated                     | 110    | 97     | 94     | 31     | 1      | 63     | 0       |                       |
|                         | Unmutated                   | 43     | 26     | 50     | 10     | 0      | 46     | 2       | 0.003                 |
|                         | Not available               | 1      | 3      | 8      | 88     | 56     | 47     | 85      |                       |
| CD38                    | Negative                    | 98     | 74     | 95     | 89     | 33     | 49     | 54      |                       |
|                         | Positive                    | 52     | 50     | 29     | 29     | 23     | 28     | 29      | 0.023                 |
|                         | Not available               | 4      | 2      | 28     | 11     | 1      | 79     | 4       |                       |
| $\beta 2$ Microglobulin | $\leq 3.5 \text{ mgL}^{-1}$ | 0      | 40     | 83     | 75     | 0      | 0      | 2       |                       |
|                         | $>3.5 {\rm mgL}^{-1}$       | 0      | 20     | 37     | 32     | 0      | 0      | 2       | 0.814                 |
|                         | Not available               | 154    | 66     | 32     | 22     | 57     | 156    | 83      |                       |
| TP53 status             | Normal                      | 135    | 14     | 30     | 5      | 1      | 139    | 70      |                       |
|                         | Abnormal                    | 3      | 3      | 6      | 2      | 0      | 17     | 9       | 0.002                 |
|                         | Not available               | 16     | 109    | 116    | 122    | 56     | 0      | 8       |                       |

Supplementary Table 1: Demographic and clinical characteristics of chronic lymphocytic leukemia (CLL) cases

GWAS, genome-wide association study; \*Fishers exact test. All statistical tests were two-sided.

| SNP ID   | SNP position | Assessed<br>Allele | Chromosome | Gene            | Gene<br>Symbol | Gene<br>Position | P value<br>eQTL <sup>a</sup> | $P_{BH}$ eQTL <sup>b</sup> | Z score<br>eQTL |
|----------|--------------|--------------------|------------|-----------------|----------------|------------------|------------------------------|----------------------------|-----------------|
| rs736456 | 124012547    | G                  | 10         | ENSG00000255624 | RP11-564D11.3  | 124648738        | 0.07364703                   | 0.3124953                  | 1.7889          |
|          |              |                    |            | ENSG00000179988 | PSTK           | 124735463        | 0.08726587                   | 0.3124953                  | -1.71           |
|          |              |                    |            | ENSG00000107672 | NSMCE4A        | 123725667        | 0.0961524                    | 0.3124953                  | 1.664           |
|          |              |                    |            | ENSG0000095574  | IKZF5          | 124759327        | 0.13754382                   | 0.320929072                | -1.4849         |
|          |              |                    |            | ENSG00000154473 | BUB3           | 124919339        | 0.14812111                   | 0.320929072                | 1.4463          |
|          |              |                    |            | ENSG0000066468  | FGFR2          | 123297910        | 0.23855749                   | 0.443035339                | -1.1785         |
|          |              |                    |            | ENSG00000107669 | ATE1           | 123594127        | 0.41759542                   | 0.562342092                | 0.8108          |
|          |              |                    |            | ENSG00000166033 | HTRA1          | 124247732        | 0.41771032                   | 0.562342092                | -0.8103         |
|          |              |                    |            | ENSG00000119965 | C10orf88       | 124702169        | 0.43257084                   | 0.562342092                | 0.785           |
|          |              |                    |            | ENSG00000196177 | ACADSB         | 124793161        | 0.72288928                   | 0.854323695                | -0.3546         |
|          |              |                    |            | ENSG00000138161 | CUZD1          | 124615405        | 0.9349648                    | 0.96378848                 | 0.0818          |
|          |              |                    |            | ENSG00000213185 | FAM24B         | 124623875        | 0.96378848                   | 0.96378848                 | 0.0455          |
|          |              |                    |            | ENSG00000107679 | PLEKHA1        | 124163039        | 9.90E-17                     | 1.28677E-15                | 8.3061          |

Supplementary Table 2: eQTL results for rs736456

eQTL data for genes within 1MB of the risk SNP are shown. eQTL, expression quantitative trait loci; SNP, single nucleotide polymorphism.  $^{a}$ Unadjusted P value based on summary-data-based Mendelian randomization (SMR).

<sup>b</sup>Benjamini-Hochberg corrected P value.

| SNP ID    | SNP position | Assessed<br>Allele | Chromosome | Gene            | Gene<br>Symbol | Gene<br>Position | P value eQTL <sup>a</sup> | $P_{BH}$ eQTL <sup>b</sup> | Z score<br>eQTL |
|-----------|--------------|--------------------|------------|-----------------|----------------|------------------|---------------------------|----------------------------|-----------------|
| rs3778076 | 34513266     | А                  | 6          | ENSG00000112039 | FANCE          | 35427509         | 0.00083537                | 0.004646106                | -3.3406         |
|           |              |                    |            | ENSG00000124507 | PACSIN1        | 34468461         | 0.00086039                | 0.004646106                | -3.3326         |
|           |              |                    |            | ENSG00000198755 | RPL10A         | 35437373         | 0.01193704                | 0.05371668                 | -2.5139         |
|           |              |                    |            | ENSG0000023892  | DEF6           | 35277571         | 0.0367798                 | 0.141864943                | 2.0884          |
|           |              |                    |            | ENSG0000064999  | ANKS1A         | 34958110         | 0.12283078                | 0.414553883                | -1.5429         |
|           |              |                    |            | ENSG00000269490 | SBP1           | 33663335         | 0.14700276                | 0.44100828                 | -1.4501         |
|           |              |                    |            | ENSG00000186577 | C6orf1         | 34215702         | 0.22566553                | 0.609296931                | -1.2115         |
|           |              |                    |            | ENSG00000137309 | HMGA1          | 34209329         | 0.25121634                | 0.616621925                | -1.1473         |
|           |              |                    |            | ENSG00000225339 | RP11-513I15.6  | 34251000         | 0.30347967                | 0.667102562                | 1.029           |
|           |              |                    |            | ENSG00000220583 | RPL35P2        | 34231269         | 0.32119753                | 0.667102562                | 0.9922          |
|           |              |                    |            | ENSG0000065029  | ZNF76          | 35245224         | 0.35861887                | 0.691622106                | -0.9179         |
|           |              |                    |            | ENSG00000137288 | MNF1           | 33672424         | 0.42347908                | 0.762262344                | -0.8002         |
|           |              |                    |            | ENSG00000146197 | SCUBE3         | 35201523         | 0.47919369                | 0.779264312                | 0.7078          |
|           |              |                    |            | ENSG00000196114 | RP3-391O22.3   | 34544234         | 0.4981522                 | 0.779264312                | 0.6775          |
|           |              |                    |            | ENSG0000030110  | BAK1           | 33544174         | 0.54664175                | 0.779264312                | 0.6029          |
|           |              |                    |            | ENSG00000161904 | LEMD2          | 33747946         | 0.61918905                | 0.779264312                | -0.497          |
|           |              |                    |            | ENSG00000112033 | PPARD          | 35353151         | 0.65704258                | 0.779264312                | -0.4439         |
|           |              |                    |            | ENSG00000112664 | NUDT3          | 34308224         | 0.663998                  | 0.779264312                | -0.4344         |
|           |              |                    |            | ENSG00000124614 | RPS10          | 34389566         | 0.67404719                | 0.779264312                | -0.4205         |
|           |              |                    |            | ENSG00000266509 | MIR3934        | 33665958         | 0.69535379                | 0.779264312                | 0.3916          |
|           |              |                    |            | ENSG0000096433  | ITPR3          | 33626436         | 0.69683235                | 0.779264312                | 0.3896          |
|           |              |                    |            | ENSG0000007866  | TEAD3          | 35453113         | 0.72154103                | 0.779264312                | -0.3562         |
|           |              |                    |            | ENSG00000204188 | GGNBP1         | 33554159         | 0.8424192                 | 0.86674062                 | 0.199           |
|           |              |                    |            | ENSG0000064995  | TAF11          | 34850710         | 0.86674062                | 0.86674062                 | 0.1679          |
|           |              |                    |            | ENSG0000065060  | UHRF1BP1       | 34805386         | 2.49E-140                 | 6.7281E-139                | 25.2188         |
|           |              |                    |            | ENSG00000196821 | C6orf106       | 34609850         | $2.62 \text{E}{-}65$      | 3.53943E-64                | 17.0668         |
|           |              |                    |            | ENSG00000124562 | SNRPC          | 34733377         | 7.57E-23                  | 6.81399E-22                | -9.8399         |

Supplementary Table 3: eQTL results for rs3778076

eQTL data for genes within 1MB of the risk SNP are shown. eQTL, expression quantitative trait loci; SNP, single nucleotide polymorphism.

 $^{a}$ Unadjusted P value based on summary-data-based Mendelian randomization (SMR).

<sup>b</sup>Benjamini-Hochberg corrected P value.

| SNP ID    | SNP position | Assessed<br>Allele | Chromosome | Gene            | Gene<br>Symbol | Gene<br>Position | P value<br>eQTL <sup>a</sup> | $P_{BH}$ eQTL <sup>b</sup> | Z score<br>eQTL |
|-----------|--------------|--------------------|------------|-----------------|----------------|------------------|------------------------------|----------------------------|-----------------|
| rs3800461 | 34616322     | С                  | 6          | ENSG00000112039 | FANCE          | 35427509         | 0.00100401                   | 0.366527794                | -3.2894         |
|           |              |                    |            | ENSG00000124507 | PACSIN1        | 34468461         | 0.00367018                   | 0.003137531                | -2.9052         |
|           |              |                    |            | ENSG00000225339 | RP11-513I15.6  | 34251000         | 0.00947011                   | 0.010194944                | 2.5947          |
|           |              |                    |            | ENSG0000065029  | ZNF76          | 35245224         | 0.01256734                   | 0.023675275                | 2.4959          |
|           |              |                    |            | ENSG0000007866  | TEAD3          | 35453113         | 0.0168943                    | 0.028562136                | 2.389           |
|           |              |                    |            | ENSG00000112664 | NUDT3          | 34308224         | 0.0313344                    | 0.035196458                | 2.1529          |
|           |              |                    |            | ENSG00000186577 | C6orf1         | 34215702         | 0.08235187                   | 0.060258462                | 1.7372          |
|           |              |                    |            | ENSG00000269490 | SBP1           | 33663335         | 0.13823389                   | 0.147056911                | -1.4822         |
|           |              |                    |            | ENSG0000064995  | TAF11          | 34850710         | 0.21364682                   | 0.230389817                | -1.2436         |
|           |              |                    |            | ENSG00000196114 | RP3-391O22.3   | 34544234         | 0.2492389                    | 0.333823156                | 1.1523          |
|           |              |                    |            | ENSG00000137288 | MNF1           | 33672424         | 0.27827613                   | 0.386494625                | -1.0842         |
|           |              |                    |            | ENSG00000161904 | LEMD2          | 33747946         | 0.33344406                   | 0.438742184                | -0.9672         |
|           |              |                    |            | ENSG00000266509 | MIR3934        | 33665958         | 0.4002359                    | 0.481018595                | 0.8413          |
|           |              |                    |            | ENSG00000146197 | SCUBE3         | 35201523         | 0.40405562                   | 0.481018595                | -0.8342         |
|           |              |                    |            | ENSG00000137309 | HMGA1          | 34209329         | 0.55224461                   | 0.627550693                | -0.5943         |
|           |              |                    |            | ENSG0000096433  | ITPR3          | 33626436         | 0.60376074                   | 0.656261674                | 0.519           |
|           |              |                    |            | ENSG00000112033 | PPARD          | 35353151         | 0.79162581                   | 0.824610219                | 0.2644          |
|           |              |                    |            | ENSG00000220583 | RPL35P2        | 34231269         | 0.98165027                   | 0.98165027                 | -0.0229         |
|           |              |                    |            | ENSG00000124562 | SNRPC          | 34733377         | 1.04E-60                     | 8.66167E-60                | -16.4368        |
|           |              |                    |            | ENSG0000064999  | ANKS1A         | 34958110         | 1.24E-06                     | 0.00000516                 | -4.8493         |
|           |              |                    |            | ENSG00000196821 | C6orf106       | 34609850         | 3.27E-310                    | < 1.00 E-300               | 41.0453         |
|           |              |                    |            | ENSG0000065060  | UHRF1BP1       | 34805386         | 3.27E-310                    | < 1.00 E-300               | 51.2666         |
|           |              |                    |            | ENSG0000023892  | DEF6           | 35277571         | 4.10E-23                     | 2.56556E-22                | 9.9014          |
|           |              |                    |            | ENSG00000124614 | RPS10          | 34389566         | 5.19E-05                     | 0.000185439                | -4.0468         |
|           |              |                    |            | ENSG00000198755 | RPL10A         | 35437373         | 5.31E-07                     | 2.65445 E-06               | -5.0148         |

Supplementary Table 4: eQTL results for rs3800461

eQTL data for genes within 1MB of the risk SNP are shown. eQTL, expression quantitative trait loci; SNP, single nucleotide polymorphism.  $^{a}$ Unadjusted P value based on summary-data-based Mendelian randomization (SMR).

<sup>b</sup>Benjamini-Hochberg corrected P value.