Supplementary information

Mass spectrometry guided discovery and design of novel Asperphenamate analogues from *Penicilium astrolabium*

Karolina Subko¹, Xinhui Wang¹, Frederik H. Nielsen¹, Charlotte H. Gotfredsen², Francisca Vicente³, Jens C. Frisvad¹, and Thomas O. Larsen^{1*}

¹Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark;

²Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark; ³Fundación MEDINA, Avda del Conocimiento, 34, 18100 Armilla, Granada, Spain;

* Correspondence: Thomas O. Larsen, tol@bio.dtu.dk

Table of contents

Supplementary Table S1: m/z values of protonated adduct of potential Asperphenamate analogues.

Supplementary Table S2: NMR data for Asperphenamate Y (4).

Supplementary Table S3: NMR data for Asperphenamate W (12).

Supplementary Table S4: NMR data for Asperphenamate L (13).

Supplementary Table S5: NMR data for Asperphenamate F (3) and Asperphenidine F1 (3a).

Supplementary Figure S1: NMR spectra for Asperphenamate F (3).

Supplementary Figure S2: NMR spectra for Asperphenamate Y (4).

Supplementary Figure S3: NMR spectra for Asperphenamate W (12).

Supplementary Figure S4: NMR spectra for Asperphenamate L (13).

Supplementary Figure S5: ¹H NMR spectrum for Asperphenidine F1 (3a).

Supplementary Figure S6: MS/MS spectra and assignment of natural Asperphenamate analogues.

Supplementary Figure S7: MS/MS spectra and assignment of Asperphenidines Y1-Y2, W1-W2.

Supplementary Figure S8: MS/MS spectra and assignment of chloro- and bromophenylalanine asperphenamate derivatives

Supplementary Figure S9: MS/MS spectra and assignment of amino- and nitro -phenylalanine asperphenamate and asperphenidine derivatives.

Supplementary Figure S10: BPCs of selected fungi from *Brevicompacta* section.

		O NH	O NH					$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		R ₂ OH	R ₄ OH	 (C) R₂ = AA R₄ = Phe (D) R₂ = Phe R₄ = AA (E) R₂ = R₄ = AA 		 (F) R₂ = AA R₄ = Phe (G) R₂ = Phe R₄ = AA (H) R₂ = R₄ = AA 		(I) $R_2 = AA R_4 = Phe$ (J) $R_2 = Phe R_4 = AA$ (M) $R_2 = R_4 = AA$		 (O) R₁ = N R₂ = AA R₃ = CH R₄ = Phe (P) R₁ = N R₂ = Phe R₃ = CH R₄ = AA (Q) R₁ = CH R₂ = AA R₃ = N R₄ = Phe 	
		(A) R ₂ = AA	(B) R ₄ = AA						R4 V	(K) $R_1 = CH R_2 = PHE R_3 =$ (S) $R_1 = R_3 = N R_2 = AA, F$ (T) $R_1 = R_3 = N R_2 = Phe,$: N R4 = AA R4 = Phe R4 = AA
								(K) R ₂ = AA R ₄ = Phe (L) R ₂ = Phe R ₄ = AA (N) R ₂ = R ₄ = AA			
No.	AA	(A)	(B)	(C)/(D)	(E)	(F)/(G)	(H)	(I)/(J)/(K)/(L)	(M)/(N)	(O)/(P)/(Q)/(R)	(S)/(T)
1	Phe	270.1125	256.1332	507.	2278	403.	2016	445.21	22	508.2231	509.2183
2	Tyr	285.1001	272.1281	523.2227	539.2177	419.1965	435.1914	461.2071	477.2020	524.2180	525.2132
3	Trp	309.1234	295.1441	546.2387	585.2496	442.2125	481.2234	484.2231	523.2340	547.2340	548.2292
4	Leu/Ile	236.1281	222.1489	473.2435	439.2591	369.2173	335.2329	411.2278	377.2435	474.2387	475.2340
5	Ala	194.0812	180.1019	431.1965	355.1652	327.1703	251.1390	369.1809	293.1496	432.1918	433.1870
6	Gly	180.0655	166.0863	417.1809	327.1339	313.1547	223.1077	355.1652	265.1183	-	-
7	His	260.1030	246.1237	497.2183	487.2088	393.1921	383.1826	435.2027	425.1932	498.2136	499.2088
8	Val	222.1125	208.1332	459.2278	411.2278	355.2016	307.2016	397.2122	349.2122	460.2231	461.2183
9	Met	254.0845	240.1053	491.1999	475.1720	387.1737	371.1458	429.1843	413.1563	492.1952	493.1904
11	Cys	226.0532	212.0740	463.1686	419.1094	359.1424	315.0832	401.1530	357.0937	-	-
12	Ser	210.0761	196.0968	447.1914	387.1551	343.1652	283.1288	385.1758	325.1394	-	-
13	Thr	224.0917	210.1125	461.2071	415.1864	357.1809	311.1601	399.0914	353.1707	-	-
14	Asn	237.0870	223.1077	4/4.2023	411.1769	370.1761	337.1506	412.1867	379.1612	-	_
15	GIN	251.1026	237.1234	488.2180	469.2082	384.1918	365.1819	426.2023	407.1925	-	-
16	Lys	251.1390	237.1598	488.2544	469.2809	384.2282	365.2547	426.2387	407.2653	-	
1/	Arg	279.1452	265.1659	516.2605	525.2932	412.2343	421.2670	454.2449	463.2776	-	
18	Pro	220.0968	206.0968	457.2122	407.1965	353.1860	277.1547	395.1965	345.1809	-	_
19	Giù	252.0800	238.1074	489.2020	4/1.1/62	385.1/58	337.1500	427.1804	409.1605	_	
20	ASP	238.0710	224.091/	4/5.1804	443.1449	3/1.1601	339.118/	413.1/0/	581.1292	- E 4 2 1 9 4 1	- E 4 2 1 7 0 4
21	p-Ci-Flie	2/8 0220	290.0942	595 1292	662 0499	437.1020	4/1.123/	4/5.1/32	601 0222	596 1226	545.1794
22		295 1224	271 1//1	577 7297	527 2406	401.1121 /10 2125	122 2224	460 2221	101.0332	522 2240	52/ 2202
23	n-NO ₂ -Phe	315 0978	301 1183	552 2129	597 1980	448 1867	463 1976	400.2231	535 1823	553 2082	554 2034

Supplementary Table 1: m/z values of protonated adduct of potential asperphenamate analogues.

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
No	S mult (lin Ha)	HO ^{8'} 7			LIMPC		
1		0 _C	COST	парс	нивс		
2		107.7					
2	765 m	107.0	1	C 4			
5	7.03, III 7.20 m	127.2	2 5	C-4			
5	7.53, 11	120.0	3, 5	C-3, C-3	C-2, C-4		
J 1'	7.5, ((7.4, 1.2)	172.2	4	C-4	0-5		
2'	4 87 d (6 7)	54.8	3' 1'	C-4'	C-1 C-1' C-4' C-5'		
3'	6 59 d (6 6)	54.0	2'	C-2'	C-1 C-1' C-4'		
-	3 20 dd (14 0 6 5)			02			
4'	3.14. dd (14.0. 6.9)	36.9	2'	C-2'	C-1', C-2', C-5', C-6'		
5'		127.6					
6'	7.05, m	130.5	7'	C-7'	C-4', C-6', C-7', C-8'		
7'	6.76, m	116.0	6'	C-6'	C-5', C-7', C-8'		
8'	, ,	155.3					
1''	4.50, dd (11.4, 3.6) 4.04, dd (11.4, 4.5)	65.5	2''	C-2''	C-1', C-4'', C-2''		
2"	4.60, m	50.6	1", 3", 4"	<u>C-1"</u> , C-4"			
3"	6.71, d (8.4)		2''	C-2''	C-1'''		
4''	3.01, dd(13.9, 6.5) 2.91, dd (13.9, 8.2)	37.4	2''	C-2''	C-1" , C-2", C-5", C-6"		
5"	· · · ·	137.1					
6''	7.22, m	129.5	7''	C-7''	C-4",C- 8"		
7"	7.31, m	128.9	6", 8"	C-6" , C-8"	C-5", C-7", C-6"		
8"	7.24, m	127.0	7''	C-7''	C-6''		
1'''		167.8					
2'''		134.1					
3'''	7.68, m	127.3	4'''	C-4'''	C-1''', C-3''', C-5'''		
4'''	7.31, m	128.6	3''', 5'''	C-3''', C-5'''	C-2''', C-4'''		

Supplementary Table S2: NMR data for Asperphenamate Y (4) in chloroform (CDCl₃).

Weak correlations are <u>underlined</u>.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
No.	δ _H , mult. (<i>J</i> in Hz)	δc	COSY	H2BC	НМВС	
1		167.6				
2		133.5				
3	7.63, m	127.3	4	C-4	C-1, C-3, C-5	
4	7.29, m	128.6	3, 5	C-3, C-5	C-2, <u>C-3</u> , <i>C</i> -4	
5	7.48, t (7.4)	132.1	4	C-4	C-3, <u>C-4</u>	
1'		172.5				
2'	5.04, q (6.5)	54.3	3' <i>,</i> 4'	C-4'	C-1, C-1', C-4', C-5'	
3'	6.69 <i>,</i> d (6.4)		2'		C-1 , <u>C-1'</u> , C- <u>2'</u> , C- <u>4'</u>	
4'	3.43, d (6.0)	27.7	2'	C-2'	C-1', C-2', C-5', C- 6', C-13'	
5'		110.1				
6'		127.5				
7'	7.64, m	118.7	8'	C-8'	<u>C-5'</u> , C-9', C-11'	
8'	7.12, t (7.4)	120.1	7', 9'	C-7', C-9'	C-6', C-10'	
9'	7.20, m	122.7	8', 10'	C-8', C-10'	C-7', C-11'	
10'	7.33, d (7.9)	111.6	9'	C-9'	C-6', C-8'	
11'		136.4				
12'	8.06, s		13'		<u>C-5'</u> , <u>C-6'</u> , <u>C-13'</u>	
13'	7.06, d (2.2)	123.1	12'		<u>C-4</u> , C-5', C-6', C-11'	
1"	4.46, dd (11.6, 3.6) 4.06, dd (11.6, 4.6)	65.4	1", 2"	C-2''*	C-1', <u>C-2''</u> , <u>C-4''</u>	
2"	4.55, m	50.6	1",3",4"	C-1", C-4"	<u>C-1''</u>	
3"	6.59 d (8.4)		2''		<u>C-1"</u> , <u>C-2"</u> , C-1"'	
4''	2.94, dd (13.6, 6.7) 2.81, dd (13.6, 8.4)	37.3	2", 4"	C-2''	C-1", C-2", C-5", C-6"	
5"		137.4				
6"	7.18, s (7.6)	129.5	7"	C-7"	C-4", C-6", <u>C-7"</u> , C-8"	
7"	7.36, t (7.8)	128.7	6" <i>,</i> 8"	C-6", C-8"	5", 6", 7"	
8"	7.23, m	126.9	7''	C-7''	C-6", C-7"	
1'''		167.4				
2'''		134.4				
3'''	7.63, m	127.2	4''	C-4''	C-1 ^{'''} , C-3 ^{'''} , C-5 ^{'''}	
4'''	7.29, m	128.8	3''', 5'''	C-3''', C-5'''	C-2 ^{'''} , C-4''	
5'''	7.43, t (7.4)	131.5	4''	C-4''	C-3''', <u>C-4''</u>	

Supplementary Table S3: NMR data for Asperphenamate W (12) in chloroform (CDCl₃).

Weak correlations are underlined.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
No.	δ _H , mult. (<i>J</i> in Hz)	δ _c	COSY	НМВС		
1		167.8				
2		133.3				
3	7.72, m	127.1	C-4	C-1, C-3, C-5		
4	7.41, m	128.6	C-3, C-5	C-2, C-4		
5	7.52, m	132.2	C-4	C-3, <u>C-4</u>		
1'		173.2				
2'	4.71, m	52.1	C-3', C-4'	C-1', C-4'		
3'	6.46, d (6.8)		C-2'	<u>C-1</u>		
4'	1.79, m 1.69, m	40.8	C-2', C-4', C-5'	C-1', C-2', C-5', C-6', C-7'		
5'	1.75, m	25.1	C-4', C-6', C-7'	C-4', C-6'		
6'	0.99, d (6.5)	22.2	C-5'	C-4', C-5', C-7'		
7'	1.02, d(6.5)	22.8	C-5'	C-4', C-5', C-6'		
1"	4.59, dd (11.5, 3.3) 4.08, dd (11.5, 4.6)	65.1	C-1", C-2"	C-1'		
2"	4.69, m	50.5	C-1", C-3", C-4"			
3"	6.73, d (8.2)		C-2''	<u>C-1'''</u>		
4''	3.10, dd (13.6, 6.5) 3.01, dd (13.8, 8.2)	37.3	C-2'' , C-4''	C-1", C-2", C-5", C-6"		
5"		137.3				
6"	7.29, m	129.3	C-7''	C-4", C-6", C-8"		
7"	7.32, m	128.7	C-6", C-8"	C-5", C-7"		
8"	7.25, m	126.8	C-7''			
1'''		167.3				
2'''		134.3				
3'''	7.70, m	127.1	C-4'''	C-1''', C-3''', C-5'''		
4'''	7.28, m	128.4	C-3''', C-5'''	C-2''', C-4'''		
5'''	7.42, m	131.3	C-4'''	C-3'''		

Supplementary Table S4: NMR data for Asperphenamate L (13) in chloroform (CDCl₃).

Weak correlations are underlined.

5	3 2 1 0 3 1 0 HN 2' 1' 0 4' 4' 5' 6' 8'' 7''	5''' 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
No.	δ _H , mult. (<i>J</i> in Hz)	δ _c	No.	δ _H , mult. (J in Hz)	
1			1		
2			2		
3	7.7, dd (8.3, 1.1)	126.9	3	7.94 <i>,</i> m	
4	7.39, m	128.6	4	7.18-7.35, m	
5	7.50, tt (7.5, 1.1)	131.9	5	8.72, dd (4.8, 1.5)	
7				8.87, d (2.0)	
1'	(2.2)		1'		
2'	4.92, q (6.6)	54.4	2'	4.96, q (6.7)	
3'	6.58, d (6.6)		3'	6.48, d	
4'	3.29, dd (14.0, 6.6)	37.5	4'	3.30, dd (14.1, 6.5)	
	3.21, dd (14.0, 7.0)			3.21, dd (14.0, 7.0)	
5	7.01	120.1	5	7 10 7 25	
ט יד	7.21, m	129.1	ט יד	7.18-7.35, m	
/	7.29, m	128.8	/	7.18-7.35, m	
8	7.24, [f]	126.7	8	7.18-7.35, m	
1"	4.54, 00 (11.4, 3.4)	65.3	1"	4.51, uu (11.4, 3.5)	
2 ''	4.04, uu (11.4, 4.4)	50.2	2"	4.03, dd (11.4, 4.1)	
2"	4.02, III	50.2	2"	4.05, m	
5	3.00 dd (13.7 6.4)		5	3 00 dd (13 8 6 5)	
4''	2.89. dd (13.8.8.5)	37.2	4"	2 90. dd (13.8, 8.1)	
5"			5"		
6"	7.23. m	129.2	6"	7.18-7.35. m	
7"	7.32, m	128.3	7"	7.18-7.35, m	
8"	7.25, m	127.3	8''	7.18-7.35, m	
1'''			1'''		
2'''			2'''		
3'''	7.65, dd (8.3, 1.1)	127.0	3'''	7.66, dd (8.3, 1.0)	
4'''	7.31, m	128.6	4'''	7.18-7.35, m	
5'''	7.43, tt (7.5, 1.1)	131.3	5'''	7.45, m	

Supplementary Table S5: NMR data for Asperphenamate F (**3**) and Asperphenidine F1 (**3a**) in chloroform (CDCl₃).

Supplementary Figure S3: NMR spectra for Asperphenamate W (12).

Supplementary Figure S4: NMR spectra for Asperphenamate L (13).

Supplementary Figure S5: ¹H NMR spectrum for Asperphenidine F1 (3a).

Supplementary Figure S6: MS/MS spectra and assignment of natural Asperphenamate analogues. (A) valine, (B) methionine, (C) histidine, and (D) double leucine exchange analogues.

Supplementary Figure S7: MS/MS spectra and assignment of Asperphenidines Y1-Y2 (A) and W1-W2 (B). Fragment values highlighted in green correspond to nicotinic acid incorporation in the non-reduced amino acid moiety, whereas fragment values highlighted in blue correspond to nicotinic acid incorporation in the reduced amino acid moiety.

Supplementary Figure S8: MS/MS spectra and assignment of chloro- and bromo- phenylalanine asperphenamate derivatives, with single (A) and double (B) p-chloro-phenylalanine, and single (C) and double (D) p-bromo-phenylalanine incorporation. Fragment values highlighted in green correspond to substituted amino acid incorporation in the non-reduced amino acid moiety, whereas fragment values highlighted in blue correspond to substituted amino acid incorporation in the reduced amino acid moiety.

Supplementary Figure S9: MS/MS spectra and assignment of amino- and nitro- phenylalanine asperphenamate derivatives, with single substituted amino acid incorporation as well as corresponding asperphenidine analogues for p-amino-phenylalanine (AB/C) and p-nitro-phenylalanine (D/E). Fragment values highlighted in green correspond to nicotinic acid incorporation in the non-reduced amino acid moiety, whereas fragment values highlighted in blue correspond to nicotinic acid incorporation in the reduced amino acid moiety.

Supplementary Figure S10: BPCs of selected fungi from *Brevicompacta* section grown on YES media. Shaded peaks are EIC of [M+H]⁺ adducts of most abundant asperphenamate analogues: m/z 508.2231 (red), m/z 523.2227 (green), m/z 546.2387 (yellow), m/z 473.2435 (blue) and m/z 507.2278 (grey). The numbers correspond to characterized asperphenamate analogues.

