
GigaScience

Transcriptome annotation in the cloud: complexity, best practices and cost.
--Manuscript Draft--

Manuscript Number: GIGA-D-20-00202

Full Title: Transcriptome annotation in the cloud: complexity, best practices and cost.

Article Type: Technical Note

Funding Information: U.S. National Library of Medicine
(Intramural Research Program of the
National Library of Medicine, National
Center for Biotechnology Information at
the National Institutes of Health.)

Dr. David Landsman

Abstract: Background

Transcriptome annotation is a complex analytical process that requires the integration
of multiple biological databases and several advanced computational tools. The core
components of annotation pipelines published since 2012 are BLAST jobs using
annotated databases of both nucleotide or protein sequences almost exclusively with
networked on premises compute systems. Public cloud compute providers represent
an alternative for the execution of large computational biology experiments like BLAST
alignments, yet little has been published describing cloud computing implementation
best practices and cost estimates.

Findings

We present a comparative study of multiple BLAST sequence alignments using two
public cloud providers: Amazon Web Services (AWS; Seattle, WA, USA) and Google
Cloud Platform (GCP; Mountain View, CA, USA). We have prepared several Jupyter
Notebooks with all the code required to submit BLAST jobs to the batch system on
each cloud provider. We consider the consequence of the number of query transcripts
in an input file and the effect on cost and processing time. We tested compute
instances with 16, 32 and 64 vCPUs on each cloud provider. Four classes of timing
results were collected: the total running time, the time for transferring the BLAST
databases to the instance local solid state disk drive (SSD), the time to execute the
Common Workflow Language (CWL) script and the time for the creation, setup and
release of an instance. This study aims to establish an estimate of the cost and
compute time needed for the execution of multiple BLAST runs in a cloud environment.

Conclusions

We demonstrate that the public cloud providers are a practical alternative for executing
advanced computational biology experiments at quite low cost. Using our cloud
recipes, the BLAST alignments required to annotate a transcriptome with ~500,000
transcripts can be processed in less than 2 hours with a computing cost of about US$
200-250. In our opinion, the choice of cloud platform is not dependent on the workflow
but, rather, on the specific details and requirements of the cloud provider. These
include the accessibility for institutional use of the cloud platforms, the technical
knowledge required for effective use of the platform services, and the availability of
open-source frameworks such as application programming interfaces (APIs) to deploy
the workflow.

Corresponding Author: David Landsman, Ph.D
National Center for Biotechnology Information
Bethesda, Maryland UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution: National Center for Biotechnology Information

Corresponding Author's Secondary
Institution:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

First Author: Roberto Vera Alvarez, Ph.D

First Author Secondary Information:

Order of Authors: Roberto Vera Alvarez, Ph.D

Leonardo Mariño-Ramírez, Ph.D

David Landsman, Ph.D

Order of Authors Secondary Information:

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

1

Transcriptome annotation in the cloud: complexity, best
practices and cost.

Roberto Vera Alvarez1, Leonardo Mariño-Ramírez1,2, and David Landsman1,*

1 Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine,

NIH, Bethesda, MD, USA.

2 Current address: Division of Intramural Research, National Institute on Minority Health and Health Disparities,

NIH, Bethesda, MD, USA.

*To whom correspondence should be addressed.

Abstract

Background

Transcriptome annotation is a complex analytical process that requires the integration of multiple

biological databases and several advanced computational tools. The core components of

annotation pipelines published since 2012 are BLAST jobs using annotated databases of both

nucleotide or protein sequences almost exclusively with networked on premises compute

systems. Public cloud compute providers represent an alternative for the execution of large

computational biology experiments like BLAST alignments, yet little has been published

describing cloud computing implementation best practices and cost estimates.

Findings

We present a comparative study of multiple BLAST sequence alignments using two public cloud

providers: Amazon Web Services (AWS; Seattle, WA, USA) and Google Cloud Platform (GCP;

Mountain View, CA, USA). We have prepared several Jupyter Notebooks with all the code

required to submit BLAST jobs to the batch system on each cloud provider. We consider the

consequence of the number of query transcripts in an input file and the effect on cost and

processing time. We tested compute instances with 16, 32 and 64 vCPUs on each cloud provider.

Four classes of timing results were collected: the total running time, the time for transferring the

BLAST databases to the instance local solid state disk drive (SSD), the time to execute the

Common Workflow Language (CWL) script and the time for the creation, setup and release of

an instance. This study aims to establish an estimate of the cost and compute time needed for the

execution of multiple BLAST runs in a cloud environment.

Conclusions

We demonstrate that the public cloud providers are a practical alternative for executing advanced

computational biology experiments at quite low cost. Using our cloud recipes, the BLAST

alignments required to annotate a transcriptome with ~500,000 transcripts can be processed in

less than 2 hours with a computing cost of about US$ 200-250. In our opinion, the choice of

cloud platform is not dependent on the workflow but, rather, on the specific details and

requirements of the cloud provider. These include the accessibility for institutional use of the

cloud platforms, the technical knowledge required for effective use of the platform services, and

Main Manuscript Click here to access/download;Manuscript;Main manuscript.docx

https://www.editorialmanager.com/giga/download.aspx?id=99237&guid=5dc50f25-9229-4550-bb08-3bcf0fc92dae&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=99237&guid=5dc50f25-9229-4550-bb08-3bcf0fc92dae&scheme=1

2

the availability of open-source frameworks such as application programming interfaces (APIs) to

deploy the workflow.

Background

The annotation of RNA transcripts with functional and biological processes is an important step

in developing an understanding of the biological complexity of an organism. In addition,

annotation is a challenging process that requires the integration of multiple biological databases

and several computational tools to accurately assign a function to an RNA product. Available

public information on a target organism is the main limitation of the annotation of non-model

organisms. The National Center for Biotechnology Information (NCBI) Genome database, for

instance, contains 54,049 genome-sequencing projects by organism [1]. This includes 12,204

eukaryotes genomes for more than 1,000 species or strains at different assembly levels (95

complete genomes, 1,872 chromosomes, 7,743 scaffolds, and 2,494 contigs

(https://www.ncbi.nlm.nih.gov/genome/browse/#!/eukaryotes/), accessed on June 30, 2020.

Although these data include an important group of organisms, there is a lack of annotation of

several species that have significant public health and economic importance. Significantly, in the

plant, Viridiplantae, kingdom, only 3 complete genomes, 331 chromosomes, 625 scaffolds, and

394 contigs are annotated. The advances in next-generation sequencing technologies and the

decrease in the cost of sequencing a complete transcriptome is driving a new era in which

annotation will be increasing, important and productive.

A review of published manuscripts since 2012 [2-10] reveals that many developed pipelines have

a common core component and use the NCBI BLAST tools [11] to align assembled

transcriptomes against annotated databases of nucleotides or proteins to identify similarity and

infer function. After an assembly, these alignments are the initial step to identify close and/or

distant homologous genes, proteins, and functional domains that could be cross-referenced with

other public databases, such as Gene Ontology [12], to generate new annotations of the query

sequences. As the number of transcripts assembled per study increases, the computing power and

storage required to align these transcripts to the BLAST databases also increases. On premise

computer infrastructures (including server farms) have been used mainly for the computation of

sequence alignments using BLAST. Many laboratories, however, are not equipped with the

compute power required for the analysis of increased transcriptome sequencing results. Although

a minimum infrastructure could be easy to build, it may be unnecessary with the advent of cloud

computing and its utilization in computational biology.

Cloud computing offers an on-demand model where a user can dynamically allocate “unlimited”

compute resources and then release them as soon as the analysis is complete [13]. There are

many public cloud providers. Amazon Web Services (AWS; Seattle, WA, USA) and Google

Cloud Platform (GCP; Mountain View, CA, USA) are popular examples. They offer a reduced

cost of compute resources and a friendly user interface that makes them accessible for large

computational biology experiments such as transcriptome annotation. In addition, private

genomic cloud providers, for instance DNAnexus, Seven Bridges, and BT Cloud Compute, also

are in the market and offer cloud-based genomics frameworks in line with the regulations that

govern these field [14]. Although these commercial cloud providers make the execution of

computational biology experiments easier, they also create additional charges for users. Some of

these charges, however, can be discounted or avoided using public cloud providers.

https://www.ncbi.nlm.nih.gov/genome/browse/#!/eukaryotes/

3

Modern cloud providers offer “unlimited” compute resources that can be accessed on-demand.

An instance, as the virtual machines are named in the cloud environment, is deployed using a

variety of operating systems like GNU/Linux or Microsoft Windows. Users pay only for the time

that the instance is running plus the cost of other resources such as network egress or the size of

network storage devices. On a manually created instance, a workflow can be deployed but this is

not cost efficient as the instance will need to be manually configured with the workflow

dependencies. It will also remain active once the analysis is completed wasting resources.

Conveniently, most cloud providers offer a batch system that can do the configuration

automatically allowing users the submission of several parallel jobs. The batch system makes the

process of instance creation, setup and termination fully automatic.

Batch processing is a technique of processing data in one large group instead of individually. It

reduces user interactivity to process submissions, making all remaining steps automatic. Modern

cloud providers offer a batch system that can be personalized to process any kind of workflow.

Figure 1 shows the component of a generic cloud batch system. It is comprised of a batch queue

to which users submit the tasks. Each task uses a job definition to create a job where all

computational resources and the workflow steps are outlined. Then, an instance is automatically

created with the resources requested by the job. Since all the data for the analysis is in the cloud,

the instance downloads the input data from the cloud storage system and, after successfully

completing the workflow, uploads the results, releasing all computational resources.

The utilization of public cloud providers for computational biology experiments and analyses is

increasing [15-18], however, little has been published describing cloud costs and implementation

best practices. To address this issue, we present a comparative study of multiple BLAST

alignments required in a transcriptome annotation project using two public cloud providers,

AWS and GCP. This study aims to establish a general idea of the cost and time needed for the

Figure 1: Basic components in a cloud-based batch system

4

execution of multiple BLAST searches. Our recommendation on best practices for deploying

computational biology workflows in the cloud are presented.

Methods

Transcriptome Annotation Workflow

This study focuses on multiple BLAST alignments which are the most compute-demanding core

of the transcriptome annotation process. BLAST alignments require considerable compute

resources and they generate the intermediate results that are used to complete the annotation. The

remaining part of the annotation pipeline was excluded from our study as it can be executed in a

workstation and does not require an extensive use of the cloud.

The workflow uses as input a transcriptome in FASTA format. First, TransDecoder [19] is

executed to generate all open reading frames (ORFs) from the input file. Then, BLASTP and

RPS-BLAST are executed generating a list of homologous proteins and conserved domains.

BLASTP uses the BLAST nr database, and RPS-BLAST uses the NCBI Conserved Domain

Database (CDD) [20]. On the other side, BLASTN and RPST-BLASTN are executed using the

BLAST nt database and the NCBI CDD database, respectively. These processes generate a list of

homologous genes and a list of conserved domains, see Figure 2. The workflow was

implemented using the Common Workflow Language (CWL) [21] and is freely available at:

https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-

cbb/workflows/Annotation/transcriptome_annotation.cwl

The workflow uses as input a FASTA file, which we named query, and includes multiple

transcripts to be processed. The number of transcripts to be included in a query is another

parameter that merits an analysis. The size of the query affects the whole workflow processing

time as a complete transcriptome could be comprised of thousands to hundreds of thousands of

transcripts assembled from a next-generation sequencing (NGS) experiment [22].

Our analysis is based on the execution of the workflow with a batch system provided by each

cloud platform. This approach keeps the compute time and therefore the cost, to a minimum. It

also limits the user interaction with the jobs to only the submission step.

https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl
https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl

5

Containerized workflows

Containerizing a workflow involves bundling it with all its dependencies and configuration files

so that it can be executed across different computing environments. The workflow dependencies

in the container uses the same version and compiled libraries when it is executed in any

computing infrastructure which would make the process highly reproducible. In this study, we

use Docker as the container engine. Docker permits the creation of container images that can be

used on a personal laptop or on a cloud platform. The workflow container image generated is

freely available from the Google Container registry (https://cloud.google.com/container-registry)

with name: gcr.io/cbb-research-dl/transannot-cloud-cmp

All files used to generate this image are available at: https://github.com/ncbi/cloud-

transcriptome-annotation/tree/master/config/gcp/docker

GCP

The Google Cloud Platform (GCP) offers a batch system specifically designed for life sciences,

the Cloud Life Sciences (https://cloud.google.com/life-sciences). This system was initially

Google Genomics but has evolved to allow the scientific community to process biomedical data

at scale.

Figure 2: Schema of the transcriptome annotation workflow

https://cloud.google.com/container-registry
https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/gcp/docker
https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/gcp/docker
https://cloud.google.com/life-sciences

6

Cloud Life Sciences offers an Application Program Interface (API) implemented for users to

develop their own workflow in JSON format using three main attributes: actions, environments

and resources. Actions are the list of commands to execute using a defined container image.

They also include statements to mount local solid-state drives (SSD) or network storage devices,

defined in resources. Environments define the environment variables available inside the

container. Finally, resources define the instance type and the local SSD or network storage

devices.

The API, using the JSON described in Box 1, automatically creates instances on-demand,

following the requirements defined in the resources section of the job JSON file. GCP also

provides a customized container image where the instance interacts with other GCP products like

Google Storage where data is stored. In addition, GCP creates the instances using a customized

Linux operating system that formats and mounts the instance local disks making them available

for the jobs.

Box 1 also shows a brief extract of the pipeline used in GCP. We show only the main activity

where the command attribute defines the command line to execute the CWL workflow. ImageUri

Box 1: Brief extract of the GCP pipeline definition JSON file
{
 "actions": [
 ...,
 {
 "commands": [
 "/bin/bash",
 "-c",
 "cwltool --no-container --on-error continue --tmpdir-prefix /data/ --tmp-outdir-prefix /data/ --outdir /data/${SAMPLE}
https://raw.githubusercontent.com/ncbi/cloud-transcriptome-annotation/master/bin/cwl-ngs-workflows-
cbb/workflows/Annotation/transcriptome_annotation.cwl
 --blast_db_dir /data --threads ${CPUs} --evalue 1e-5 --blast_nt_db nt --blast_nr_db nr --blast_cdd_db split-cdd --fasta
/data/${SAMPLE}.fa >> /data/pipeline.log 2>&1"
],
 "imageUri": "gcr.io/cbb-research-dl/transannot-cloud-cmp",
 "mounts": [
 {
 "disk": "gcloud-shared",
 "path": "/data"
 }
]
 },
 ...,
 "environment": {
 "CPUs": "64"
 },
 "resources": {
 "virtualMachine": {
 "bootDiskSizeGb": 60,
 "bootImage": "projects/cos-cloud/global/images/family/cos-stable",
 "disks": [
 {
 "name": "gcloud-shared",
 "sizeGb": 600,
 "type":"local-ssd"
 }
],
 "machineType": "n1-standard-64",
 ...,
 }
 }
}

7

attribute defines the container image used to run the command. In this case, our previously

created Docker image. Finally, the mounts attribute defines the paths in the container to mount

the disks created in the resources attribute.

The VirtualMachine attribute defines the resources used to create the job instance. In this

attribute, users can define instance boot disk size, operating system, extra disks and the machine

type. The complete JSON file is available at: https://github.com/ncbi/cloud-transcriptome-

annotation/blob/master/config/gcp/pipeline.json

AWS

AWS Batch (https://aws.amazon.com/batch/) is the batch system provided by Amazon. It is

comprised of compute environments, job queues and job definitions. The compute environment

defines the computational resources to be used by the batch jobs. It is connected to the Amazon

Elastic Container Service (ECS) which is a fully managed service that creates and manages

computer clusters inside the Amazon cloud environment. The resources defined by the compute

environment are used by the ECS to create and setup instances in which the workload is

distributed. Job queues are used as an intermediate service to associate submitted jobs with the

compute environments. Lastly, the jobs use a job definition, in JSON format, which defines

specific information for the job, like container images, commands, number of vCPUs, RAM

memory, environment variables and local or remote folder to mount on the container.

Box 2 shows a brief extract of the job definition JSON script used in AWS. The

containerProperties attribute defines the job properties. Image defines the container image, in

this case our Docker image. Command defines the command to be executed inside the container.

In the case of AWS, a single command can be outlined in the job definition, thus, complex

pipelines with multiple steps can be encapsulated in a BASH script. This script can be stored

inside the container image or the container can download it at runtime. For simplicity, we have

included this script inside the Docker image.

The AWS Batch system automatically creates all infrastructure, network components and

compute instances, following the requirements of the compute environments. The default

configuration of the Amazon Machine Image (AMI) used for the instances, however, is not

configured to use local SSD disks available on certain machine types. This limits the default

options on the AWS Batch system to certain types of workflows. Workflows that use intensive

disk IO operations will have improved performance and efficiency if local SSD disks are used.

Thus, a modified AMI capable of use the instance local disks is required for our study. We create

a customized AMI for our study that is freely available in the AWS zone us-east1 with ID: ami-

0dac0383cac1dc96e. This AMI creates an array with the local SSD disks in the instance using

the Linux utility mdadm. The array is formatted with XFS filesystem and mounted in a folder

named /data.

https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/config/gcp/pipeline.json
https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/config/gcp/pipeline.json
https://aws.amazon.com/batch/

8

In addition, to improve the default AWS Batch options, Amazon offers a Virtual Private Cloud

(VPC) that allows an extra layer of isolation for the resources used by the AWS Batch system.

This VPC logically isolate all resources uses in a defined virtual network improving the security

and it is customizable for the compute problem.

The templates used in our study to create all components of the AWS Batch system are available

at: https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/aws but all

resources are created in the Jupyter notebook: “02 - AWS-Batch”.

Jupyter Notebooks

Jupyter notebooks are an open-source web application framework that allows the creation and

sharing of documents that contain live code [23]. It is a standard way to share scientific code for

ease of reproducibility and reuse [24]. The implementation of our study was fully developed in

Jupyter notebooks. Readers can reproduce our results and figures using the notebooks that are

available at the project GitHub repository. The notebooks create all cloud resources and submit

the jobs to the batch systems. They also retrieve the job logs in JSON format and create the

figures automatically from those logs. Each notebook includes a description about its purpose

and is named using a numeric prefix to highlight the execution order.

Box 2: Brief extract of the AWS job definition JSON file

{
 ...,
 "containerProperties": {
 "image": "gcr.io/cbb-research-dl/transannot-cloud-cmp",
 "vcpus": 64,
 "memory": 131072,
 "command": [
 "/usr/envs/transannot/bin/aws-pipeline.sh"

],
 "volumes": [

 {
 "host": {
 "sourcePath": "/data"

 },
 "name": "data"

 }
],
 "environment": [

 {
 "name": "CPUs",
 "value": "32"

 }
],
 "mountPoints": [

 {
 "containerPath": "/data",
 "sourceVolume": "data"

 }
],
 ...,

 }
}

https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/aws

9

Results and Discussion

In this study, we present an analysis of the complexity, cost and best practices for executing the

core components of a transcriptome annotation workflow in the cloud. We selected two popular

cloud providers: GCP and AWS for our experiments. For each cloud provider, similar compute

instances were tested using 16, 32 and 64 vCPUs. The machine types and their resources are

described in Table 1.

Table 1: Machine types with resources in each cloud.

Provider
Machine

type
vCPU

Memory
(GB)

Instance Local
SSD (GB)

Network
Bandwidth (Gbps)

$/Hour

AWS m5d 16 64 2 x 300 Up to 10 0.904

AWS m5d 32 128 2 x 600 10 1.808

AWS m5d 64 256 4 x 600 20 3.616

AWS m5dn 16 64 2 x 300 Up to 25 1.088

AWS m5dn 32 128 2 x 600 25 2.176

AWS m5dn 64 256 4 x 600 75 4.352

GCP n1 16 60 24 x 375 32 0.861

GCP n1 32 120 24 x 375 32 1.393

GCP n1 64 240 24 x 375 32 2.475

GCP n2 16 64 24 x 375 32 0.951

GCP n2 32 128 24 x 375 32 1.572

GCP n2 64 256 24 x 375 32 2.816

We used the transcriptome assembled from a public BioProject with ID PRJNA320545 for the

organism Opuntia streptacantha. The transcriptome includes 474,563 transcripts generated with

Trinity [25], and is available in data/PRJNA320545/transcriptome.fasta.gz. From this pool of

transcripts, we analyzed three types of query sizes, 2,000, 6,000, and 10,000 transcripts in each

input query file. For each query size, we created 20 different FASTA files (input files for the

workflow) (see notebook “01 - Data Partitioning”). Each of these files were submitted

independently as jobs to the batch systems on each cloud provider.

Jobs were submitted to each cloud platform using the notebook “02 - Google Cloud Platform”

and “02 - AWS-Batch”. We should highlight that the notebooks use the command line API

provided by each cloud system. In the case of GCP, we used Cloud SDK

(https://cloud.google.com/sdk). For AWS, we used the AWS Command Line Interface

(https://aws.amazon.com/cli/). In each notebook, the 20 files created for each query size were

copied to the respective cloud storage system, either Google Storage or S3 followed by job

submissions submitted for each configuration of machine type/CPU.

Four times were collected from the jobs: the total running time, the time to transfer the BLAST

databases to the instance local SSD disk, the time executing the CWL workflow and the time for

creation, setup and release of the instance. Figure 3 shows the collected times for the 10,000

https://cloud.google.com/sdk
https://aws.amazon.com/cli/

10

query size. Figure 3a shows the total running time for each input file (each containing 10,000

transcripts) for a total of 200,000 transcripts processed on each cloud provider, machine type and

number of vCPUs.

Figure 3: Breakdown of the time and cost for the 10,000 query size files. a) Total time for each input file for each

configuration (Cloud provider/Machine Type/vCPUs). The total cost of processing the 20 input files (200,000 transcripts in

total) is at the top of each box and the cost of processing one transcript is at the bottom of each box. b) Time and percent of

the total cost for instance creation, setup and release. c) Time and percent of the cost for transferring the BLAST databases

to the instance from the cloud storage bucket (S3 in AWS and Cloud Storage in GCP). d) Time and percent of the cost for

the CWL workflow execution.

11

In addition, each box in Figure 3a shows the total cost for the 20 files (top) and the cost of

processing one transcript (bottom). The bottom row with three plots shows the remaining three

times collected from the jobs.

The total running time for the 10,000-query sized files are similar for the same number of vCPUs

notwithstanding the cloud provider. Furthermore, this example shows how the running time can

be reduced by more than a half by increasing the number of vCPUs. Unfortunately, this time

reduction does not decrease the total cost of the project as the price per hour for machines with

more vCPUs increases as well.

The AWS platform is more efficient than the GCP during the instance creation, setup and

release, see Figure 3b. This stage takes only 0.1% of the total cost. The GCP cost for this stage

goes from 1.5% to 4.5% on bigger machines. The differences are due to the AWS ECS which

allocates new jobs on existing instances as soon as the instance gets free without releasing them,

whereas GCP creates, sets up and releases an instance for each job.

Transferring the BLAST databases from each cloud storage (S3 in AWS and Cloud Storage in

GCP) bucket, Figure 3c, (current size is 342GB), to the instance local SSD disk is a crucial step

in reducing the cost of the analysis. We tested the default parameters in both cloud providers

which use network storage devices taking on average 1 hour which is about 30 % of the total cost

of the analysis and which takes more time than the CWL workflow execution. After customizing

both batch systems to use the instance local SSD disks, the time was reduced to a range of 4 % to

11 % of the total cost in the 10,000 query size.

As expected, the CWL workflow execution time is the most time-consuming part of the job,

Figure 3d. All configurations show similar times for executing the CWL workflow. The GCP N1

Figure 4: Total processing time for all configurations and query sizes

12

machine type spent more time on the CWL workflow than the other machine types in all

configurations because the GCP N1 is the Google first generation machine type with slower

vCPUs than the other three machine types tested in this study.

Figure 4 shows all configurations tested with all query sizes. This plot shows that for smaller

query sizes (2,000 in this case), there is no need to use machines with a large number of vCPUs

as the difference in processing time is limited to a few minutes. For processing a large number of

transcripts, it is best to use bigger query sizes and machines with more vCPUs as it reduces the

cost of the complete annotation process.

Reducing the number of transcripts per input file will reduce the total running time but will also

increase the cost of the project as more instances will be in used. For example, our experiment

with the 10,000 query size processed 200,000 transcripts in 94 minutes with a total cost of

$88.20 using 20 instances (GCP, N2, 64 CPU). Processing the same number of transcripts with a

query size of 2,000 will cost $135.00 with all transcripts processed in 29 minutes using 100

instances (GCP, N2, 64 CPU) at the same time.

We have determined that a transcriptome with ~500,000 transcripts can be processed in less than

2 hours with a computing cost from US$200.00 to US$250.00. In our opinion, this is a

reasonable cost and makes the transcriptome annotation process accessible to any genomic

laboratory without access to an on-premise computational infrastructure.

Best practices

Our recommendation for best practices using public cloud providers for computational biology

experiments are:

1. Write the pipeline using a workflow language. (We recommend CWL because the resulting

product is portable and scalable, and it can be executed across a variety of computational

environments as dissimilar as personal laptops or the cloud.)

2. Containerize the CWL workflow with Docker and use Conda/Bioconda to install all

Bioinformatics tools in the container image.

3. Use Jupyter Notebooks for coding and documenting each step during experiments.

4. Use the cloud provider batch system for deploying jobs.

5. Execute a small test in the cloud to find the best instance type for a workflow.

6. Use the instance local disks for computing instead the default network devices.

Conclusion

Despite the differences in the configuration and setup of batch systems between GCP and AWS,

the cost and processing time are similar for the type of workflow we designed. In our opinion,

the choice of a cloud platform is not dependent on the workflow but, rather, on the specific

details of the cloud provider. These specific details are related to the cloud platform’s

accessibility for institutional use, the user’s technical knowledge of the specific platform service,

or the availability of open-source frameworks to deploy the workflow on a specific cloud

provider.

We found that GCP is easier to use as it only requires a JSON file for batch processing whereas

AWS needs a complete setup of all components. GCP is more suitable for daily data analysis

work in research laboratories. On the other hand, AWS, once properly configured, is more

13

efficient in terms of machine creation, setup and release. The ECS can reuse instances reducing

the cost for large data analysis projects. AWS is more suitable for large data analysis groups to

establish a set of queues and compute environments for multiple pipelines.

Availability of supporting source code and requirements

Project name: Cloud Transcriptome Annotation

Project home page: https://github.com/ncbi/cloud-transcriptome-annotation

Operating system(s): Linux and MacOS

Programming languages: Python, BASH

Other requirements: Conda/Bioconda, Jupyter Notebook

CWL workflow: https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-

ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl

Abbreviations

AMI: Amazon Machine Images (AMI)

API: Application Program Interface

AWS: Amazon Web Services

CDD: Conserved Domain Database

CWL: Common Workflow Language

ECS: Amazon Elastic Container Service

GCP: Google Cloud Platform

NCBI: National Center for Biotechnology Information

ORFs: Open Reading Frames

SSD: Solid State Disk

VPC: Virtual Private Cloud

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

RVA, LMR and DL contributed to the design of the annotation workflow and manuscript

preparation. RVA designed, implemented and executed all cloud environments, configurations

and experiments. All authors read and approved all versions of the manuscript.

Funding

This work was supported by the Intramural Research Program of the National Library of

Medicine, National Center for Biotechnology Information at the National Institutes of Health.

https://github.com/ncbi/cloud-transcriptome-annotation
https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl
https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl

14

Acknowledgements

We would like to thank:

NCBI BLAST Group: Christiam Camacho, Vadim Zalunin, Greg Boratyn, Ryan Connor and

Tom Madden for their support with BLAST.

NCBI Cloud and System Group: Al Graeff, Brian Koser, Andrew Arensburger, Brad Plecs, Ron

Patterson and Dima Beloslyudtsev for their support with the cloud platforms.

References

1. Sayers, E.W., et al., Database resources of the National Center for Biotechnology
Information. Nucleic Acids Res, 2020. 48(D1): p. D9-D16.

2. Al-Qurainy, F., et al., Comprehensive Stress-Based De Novo Transcriptome Assembly and
Annotation of Guar (Cyamopsis tetragonoloba (L.) Taub.): An Important Industrial and
Forage Crop. Int J Genomics, 2019. 2019: p. 7295859.

3. Chabikwa, T.G., et al., De novo transcriptome assembly and annotation for gene
discovery in avocado, macadamia and mango. Sci Data, 2020. 7(1): p. 9.

4. Ji, P., et al., Characterization of common carp transcriptome: sequencing, de novo
assembly, annotation and comparative genomics. PLoS One, 2012. 7(4): p. e35152.

5. Torre, S., et al., RNA-seq analysis of Quercus pubescens Leaves: de novo transcriptome
assembly, annotation and functional markers development. PLoS One, 2014. 9(11): p.
e112487.

6. Carruthers, M., et al., De novo transcriptome assembly, annotation and comparison of
four ecological and evolutionary model salmonid fish species. BMC Genomics, 2018.
19(1): p. 32.

7. Haas, B.J., et al., De novo transcript sequence reconstruction from RNA-seq using the
Trinity platform for reference generation and analysis. Nat Protoc, 2013. 8(8): p. 1494-
512.

8. Bryant, D.M., et al., A Tissue-Mapped Axolotl De Novo Transcriptome Enables
Identification of Limb Regeneration Factors. Cell Rep, 2017. 18(3): p. 762-776.

9. Vera Alvarez, R., et al., Workflow and web application for annotating NCBI BioProject
transcriptome data. Database (Oxford), 2017. 2017.

10. Gamez, R.M., et al., Banana (Musa acuminata) transcriptome profiling in response to
rhizobacteria: Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006.
BMC Genomics, 2019. 20(1): p. 378.

11. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-10.
12. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene

Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9.
13. Langmead, B. and A. Nellore, Cloud computing for genomic data analysis and

collaboration. Nature Reviews Genetics, 2018. 19(4): p. 208-219.
14. Marx, V., Genomics in the clouds. Nature Methods, 2013. 10(10): p. 941-945.
15. Peters, K., et al., PhenoMeNal: processing and analysis of metabolomics data in the

cloud. Gigascience, 2019. 8(2).

15

16. Belyeu, J.R., et al., SV-plaudit: A cloud-based framework for manually curating
thousands of structural variants. Gigascience, 2018. 7(7).

17. Kiar, G., et al., Science in the cloud (SIC): A use case in MRI connectomics. Gigascience,
2017. 6(5): p. 1-10.

18. Hiltemann, S., et al., CGtag: complete genomics toolkit and annotation in a cloud-based
Galaxy. Gigascience, 2014. 3(1): p. 1.

19. Haas, B. and A. Papanicolaou. TransDecoder (Find Coding Regions Within Transcripts).
2020; Available from: https://github.com/TransDecoder/TransDecoder/wiki.

20. Yang, M., et al., NCBI's Conserved Domain Database and Tools for Protein Domain
Analysis. Curr Protoc Bioinformatics, 2020. 69(1): p. e90.

21. Peter, A., et al., Common Workflow Language, v1.0. 2016.
22. Pertea, M., The human transcriptome: an unfinished story. Genes (Basel), 2012. 3(3): p.

344-60.
23. Shen, H., Interactive notebooks: Sharing the code. Nature, 2014. 515(7525): p. 151-2.
24. Perkel, J.M., Why Jupyter is data scientists' computational notebook of choice. Nature,

2018. 563(7729): p. 145-146.
25. Grabherr, M.G., et al., Full-length transcriptome assembly from RNA-Seq data without a

reference genome. Nat Biotechnol, 2011. 29(7): p. 644-52.

https://github.com/TransDecoder/TransDecoder/wiki

Figure 1 Click here to access/download;Figure;Figure 1.png

https://www.editorialmanager.com/giga/download.aspx?id=99238&guid=255b75b8-6fda-4511-8ac4-4834d99058ab&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=99238&guid=255b75b8-6fda-4511-8ac4-4834d99058ab&scheme=1

Figure 2 Click here to access/download;Figure;Figure 2.png

https://www.editorialmanager.com/giga/download.aspx?id=99239&guid=e5bcb7b5-3d74-4c88-911f-c2234052dd14&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=99239&guid=e5bcb7b5-3d74-4c88-911f-c2234052dd14&scheme=1

Figure 3 Click here to access/download;Figure;Figure 3.png

https://www.editorialmanager.com/giga/download.aspx?id=99240&guid=7e0c5e0d-1319-43bc-99d8-1ee4a0e49379&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=99240&guid=7e0c5e0d-1319-43bc-99d8-1ee4a0e49379&scheme=1

Figure 4 Click here to access/download;Figure;Figure 4.png

https://www.editorialmanager.com/giga/download.aspx?id=99241&guid=12d4593d-f531-4a19-8e3b-bbdf67247c69&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=99241&guid=12d4593d-f531-4a19-8e3b-bbdf67247c69&scheme=1

July 2, 2020

Dear Editors,

We would like to submit our manuscript entitled “Transcriptome annotation in the cloud: complexity, best

practices and cost” for your consideration for publication in GigaScience as a Technical Note.

Transcriptome annotation with functional and biological processes is a complex analytical procedure that

requires the integration of multiple databases and several advanced computational tools. This annotation is

an important step in developing an understanding of the biological complexity of an organism. The

advances in next-generation sequencing technologies and the decrease in the cost of sequencing a complete

transcriptome is driving a new era in which annotation will be increasing, important and productive.

A review of published manuscripts since 2012 [1-9] reveals that many developed pipelines have a common

core component and use the NCBI BLAST tools [10] to align assembled transcriptomes against annotated

databases of nucleotides or proteins to identify similarity and infer function. However, BLAST alignments

are computing workloads that demands computer power only available in High Performance Computing

(HPC) infrastructures. Many laboratories, however, are not equipped with the compute infrastructure

required for the analysis of increased transcriptome sequencing results. Although a minimum infrastructure

could be easy to build, it may be unnecessary with the advent of cloud computing and its utilization in

computational biology.

In this manuscript, we present a comparative study of multiple BLAST alignments using two public cloud

providers: Amazon Web Services (AWS; Seattle, WA, USA) and Google Cloud Platform (GCP; Mountain

View, CA, USA). We have prepared several Jupyter Notebooks with all the code required to submit

BLAST jobs to the batch system on each cloud provider in order to reproduce or extend our results. We

demonstrate that the public cloud providers are a practical alternative for executing advanced

computational biology experiments at quite low cost. Using our cloud recipes, the BLAST alignments

required to annotate a transcriptome with ~500,000 transcripts can be processed in less than 2 hours with a

computing cost of about US$ 200-250.

All code used during this study is freely available at: https://github.com/ncbi/cloud-transcriptome-

annotation

Thank you very much for your consideration of our manuscript. We look forward to your reply on this

submission.

Sincerely,

Roberto Vera Alvarez 1,a, Leonardo Mariño-Ramírez 1,2,b and David Landsman 1,c

1 Computational Biology Branch, National Center for Biotechnology Information, National Library of

Medicine, Natioanl Insitutes of Health, Bethesda, MD, USA.
2 Current address: Division of Intramural Research, National Institute on Minority Health and Health

Disparities, NIH, Bethesda, MD, USA.

a. veraalva@ncbi.nlm.nih.gov

b. marino@nih.gov

c. landsman@ncbi.nlm.nih.gov

Personal Cover Click here to access/download;Personal Cover;Cover_letter.docx

https://github.com/ncbi/cloud-transcriptome-annotation
https://github.com/ncbi/cloud-transcriptome-annotation
mailto:landsman@ncbi.nlm.nih.gov
https://www.editorialmanager.com/giga/download.aspx?id=99242&guid=91d05374-2b6f-4cca-8233-62aab0e6f0c5&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=99242&guid=91d05374-2b6f-4cca-8233-62aab0e6f0c5&scheme=1

References

1. Al-Qurainy F, Alshameri A, Gaafar AR, Khan S, Nadeem M, Alameri AA, et al. Comprehensive

Stress-Based De Novo Transcriptome Assembly and Annotation of Guar (Cyamopsis tetragonoloba (L.)

Taub.): An Important Industrial and Forage Crop. Int J Genomics. 2019;2019:7295859.

doi:10.1155/2019/7295859.

2. Chabikwa TG, Barbier FF, Tanurdzic M and Beveridge CA. De novo transcriptome assembly and

annotation for gene discovery in avocado, macadamia and mango. Sci Data. 2020;7 1:9.

doi:10.1038/s41597-019-0350-9.

3. Ji P, Liu G, Xu J, Wang X, Li J, Zhao Z, et al. Characterization of common carp transcriptome:

sequencing, de novo assembly, annotation and comparative genomics. PLoS One. 2012;7 4:e35152.

doi:10.1371/journal.pone.0035152.

4. Torre S, Tattini M, Brunetti C, Fineschi S, Fini A, Ferrini F, et al. RNA-seq analysis of Quercus

pubescens Leaves: de novo transcriptome assembly, annotation and functional markers development. PLoS

One. 2014;9 11:e112487. doi:10.1371/journal.pone.0112487.

5. Carruthers M, Yurchenko AA, Augley JJ, Adams CE, Herzyk P and Elmer KR. De novo

transcriptome assembly, annotation and comparison of four ecological and evolutionary model salmonid

fish species. BMC Genomics. 2018;19 1:32. doi:10.1186/s12864-017-4379-x.

6. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript

sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis.

Nat Protoc. 2013;8 8:1494-512. doi:10.1038/nprot.2013.084.

7. Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, et al. A Tissue-

Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors. Cell Rep.

2017;18 3:762-76. doi:10.1016/j.celrep.2016.12.063.

8. Vera Alvarez R, Medeiros Vidal N, Garzon-Martinez GA, Barrero LS, Landsman D and Marino-

Ramirez L. Workflow and web application for annotating NCBI BioProject transcriptome data. Database

(Oxford). 2017;2017 doi:10.1093/database/bax008.

9. Gamez RM, Rodriguez F, Vidal NM, Ramirez S, Vera Alvarez R, Landsman D, et al. Banana

(Musa acuminata) transcriptome profiling in response to rhizobacteria: Bacillus amyloliquefaciens Bs006

and Pseudomonas fluorescens Ps006. BMC Genomics. 2019;20 1:378. doi:10.1186/s12864-019-5763-5.

10. Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ. Basic local alignment search tool. J

Mol Biol. 1990;215 3:403-10. doi:10.1016/S0022-2836(05)80360-2.

NIH OGC August 2008

NIH Publishing Agreement & Manuscript Cover Sheet

By signing this Cover Sheet, the Author, on behalf of NIH, agrees to the provisions set out below, which modify and supersede,
solely with respect to NIH, any conflicting provisions that are in the Publisher’s standard copyright agreement (the “Publisher’s
Agreement”). If a Publisher’s Agreement is attached, execution of this Cover Sheet constitutes an execution of the Publisher’s
Agreement, subject to the provisions and conditions of this Cover Sheet.

1. Indemnification. No Indemnification or “hold harmless” obligation is provided by either party.

2. Governing Law. This agreement will be governed by the law of the court in which a claim is brought.

3. Copyright. Author’s contribution to the Work was done as part of the Author’s official duties as a NIH employee and

is a Work of the United States Government. Therefore, copyright may not be established in the United States. 17
U.S.C. § 105. If Publisher intends to disseminate the Work outside of the U.S., Publisher may secure copyright to the
extent authorized under the domestic laws of the relevant country, subject to a paid-up, nonexclusive, irrevocable
worldwide license to the United States in such copyrighted work to reproduce, prepare derivative works, distribute
copies to the public and perform publicly and display publicly the work, and to permit others to do so.

4. No Compensation. No royalty income or other compensation may be accepted for work done as part of official duties.

The author may accept for the agency a limited number of reprints or copies of the publication.

5. NIH Representations. NIH represents to the Publisher that the Author is the sole author of the Author’s contribution

to the Work and that NIH is the owner of the rights that are the subject of this agreement; that the Work is an original
work and has not previously been published in any form anywhere in the world; that to the best of NIH’s knowledge
the Work is not a violation of any existing copyright, moral right, database right, or of any right of privacy or other
intellectual property, personal, proprietary or statutory right; that where the Author is responsible for obtaining
permissions or assisting the Publishers in obtaining permissions for the use of third party material, all relevant
permissions and information have been secured; and that the Work contains nothing misleading, obscene, libelous or
defamatory or otherwise unlawful. NIH agrees to reasonable instructions or requirements regarding submission
procedures or author communications, and reasonable ethics or conflict of interest disclosure requirements unless they
conflict with the provisions of this Cover Sheet.

6. Disclaimer. NIH and the Author expressly disclaim any obligation in Publisher’s Agreement that is not consistent with

the Author’s official duties or the NIH mission, described at http://www.nih.gov/about/. NIH and the Author do not
disclaim obligations to comply with a Publisher's conflict of interest policy so long as, and to the extent that, such
policy is consistent with NIH's own conflict of interest policies.

7. For Peer-Reviewed Papers to be Submitted to PubMed Central. The Author is a US government employee who

must comply with the NIH Public Access Policy, and the Author or NIH will deposit, or have deposited, in NIH’s
PubMed Central archive, an electronic version of the final, peer-reviewed manuscript upon acceptance for publication,
to be made publicly available no later than 12 months after the official date of publication. The Author and NIH agree
(notwithstanding Paragraph 3 above) to follow the manuscript deposition procedures (including the relevant embargo
period, if any) of the publisher so long as they are consistent with the NIH Public Access Policy.

8. Modifications. PubMed Central may tag or modify the work consistent with its customary practices and with the

meaning and integrity of the underlying work.

The NIH Deputy Director for Intramural Research, Michael Gottesman, M.D., approves this publishing agreement and
maintains a single, signed copy of this text for all works published by NIH employees, and contractors and trainees who
are working at the NIH. No additional signature from Dr. Gottesman is needed.

Author’s name:

Author’s Institute or Center: Check if Publisher’ Agreement is attached

Name of manuscript/work:

Name of publication:

__ __________________
Author’s signature Date

NIH Publishing Agreement and Manuscript Cover Sheet

Roberto Vera Alvarez, Leonardo Mariño-Ramírez, and David Landsman

NCBI/NLM/NIH

Transcriptome annotation in the cloud: complexity, best practices and cost

GigaScience

07/02/2020

Click here to access/download;Personal Cover;NIH Publishing
Agreement and Manuscript Cover Sheet.pdf

https://www.editorialmanager.com/giga/download.aspx?id=99243&guid=a80139cb-54af-4931-8b7e-b1ce71941aa4&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=99243&guid=a80139cb-54af-4931-8b7e-b1ce71941aa4&scheme=1

