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Abstract: Background

Transcriptome annotation is a complex analytical process that requires the integration
of multiple biological databases and several advanced computational tools. The core
components of annotation pipelines published since 2012 are BLAST jobs using
annotated databases of both nucleotide or protein sequences almost exclusively with
networked on premises compute systems. Public cloud compute providers represent
an alternative for the execution of large computational biology experiments like BLAST
alignments, yet little has been published describing cloud computing implementation
best practices and cost estimates.

Findings

We present a comparative study of multiple BLAST sequence alignments using two
public cloud providers: Amazon Web Services (AWS; Seattle, WA, USA) and Google
Cloud Platform (GCP; Mountain View, CA, USA). We have prepared several Jupyter
Notebooks with all the code required to submit BLAST jobs to the batch system on
each cloud provider. We consider the consequence of the number of query transcripts
in an input file and the effect on cost and processing time. We tested compute
instances with 16, 32 and 64 vCPUs on each cloud provider. Four classes of timing
results were collected: the total running time, the time for transferring the BLAST
databases to the instance local solid state disk drive (SSD), the time to execute the
Common Workflow Language (CWL) script and the time for the creation, setup and
release of an instance. This study aims to establish an estimate of the cost and
compute time needed for the execution of multiple BLAST runs in a cloud environment.

Conclusions

We demonstrate that the public cloud providers are a practical alternative for executing
advanced computational biology experiments at quite low cost. Using our cloud
recipes, the BLAST alignments required to annotate a transcriptome with ~500,000
transcripts can be processed in less than 2 hours with a computing cost of about US$
200-250. In our opinion, the choice of cloud platform is not dependent on the workflow
but, rather, on the specific details and requirements of the cloud provider. These
include the accessibility for institutional use of the cloud platforms, the technical
knowledge required for effective use of the platform services, and the availability of
open-source frameworks such as application programming interfaces (APIs) to deploy
the workflow.
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Abstract 

Background 

Transcriptome annotation is a complex analytical process that requires the integration of multiple 

biological databases and several advanced computational tools. The core components of 

annotation pipelines published since 2012 are BLAST jobs using annotated databases of both 

nucleotide or protein sequences almost exclusively with networked on premises compute 

systems. Public cloud compute providers represent an alternative for the execution of large 

computational biology experiments like BLAST alignments, yet little has been published 

describing cloud computing implementation best practices and cost estimates.   

Findings 

We present a comparative study of multiple BLAST sequence alignments using two public cloud 

providers: Amazon Web Services (AWS; Seattle, WA, USA) and Google Cloud Platform (GCP; 

Mountain View, CA, USA). We have prepared several Jupyter Notebooks with all the code 

required to submit BLAST jobs to the batch system on each cloud provider. We consider the 

consequence of the number of query transcripts in an input file and the effect on cost and 

processing time. We tested compute instances with 16, 32 and 64 vCPUs on each cloud provider. 

Four classes of timing  results were collected: the total running time, the time for transferring the 

BLAST databases to the instance local solid state disk drive (SSD), the time to execute the 

Common Workflow Language (CWL) script and the time for the creation, setup and release of 

an instance. This study aims to establish an estimate of the cost and compute time needed for the 

execution of multiple BLAST runs in a cloud environment. 

Conclusions 

We demonstrate that the public cloud providers are a practical alternative for executing advanced 

computational biology experiments at quite low cost. Using our cloud recipes, the BLAST 

alignments required to annotate a transcriptome with ~500,000 transcripts can be processed in 

less than 2 hours with a computing cost of about US$ 200-250. In our opinion, the choice of 

cloud platform is not dependent on the workflow but, rather, on the specific details and 

requirements of the cloud provider. These include the accessibility for institutional use of the 

cloud platforms, the technical knowledge required for effective use of the platform services, and 
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the availability of open-source frameworks such as application programming interfaces (APIs) to 

deploy the workflow. 

Background 

The annotation of RNA transcripts with functional and biological processes is an important step 

in developing an understanding of the biological complexity of an organism. In addition, 

annotation is a challenging process that requires the integration of multiple biological databases 

and several computational tools to accurately assign a function to an RNA product. Available 

public information on a target organism is the main limitation of the annotation of non-model 

organisms. The National Center for Biotechnology Information (NCBI) Genome database, for 

instance, contains 54,049 genome-sequencing projects by organism [1]. This includes 12,204 

eukaryotes genomes for more than 1,000 species or strains at different assembly levels (95 

complete genomes, 1,872 chromosomes, 7,743 scaffolds, and 2,494 contigs 

(https://www.ncbi.nlm.nih.gov/genome/browse/#!/eukaryotes/), accessed on June 30, 2020. 

Although these data include an important group of organisms, there is a lack of annotation of 

several species that have significant public health and economic importance. Significantly, in the 

plant, Viridiplantae, kingdom, only 3 complete genomes, 331 chromosomes, 625 scaffolds, and 

394 contigs are annotated. The advances in next-generation sequencing technologies and the 

decrease in the cost of sequencing a complete transcriptome is driving a new era in which 

annotation will be increasing, important and productive. 

A review of published manuscripts since 2012 [2-10] reveals that many developed pipelines have 

a common core component and use the NCBI BLAST tools [11] to align assembled 

transcriptomes against annotated databases of nucleotides or proteins to identify similarity and 

infer function. After an assembly, these alignments are the initial step to identify close and/or 

distant homologous genes, proteins, and functional domains that could be cross-referenced with 

other public databases, such as Gene Ontology [12], to generate new annotations of the query 

sequences. As the number of transcripts assembled per study increases, the computing power and 

storage required to align these transcripts to the BLAST databases also increases. On premise 

computer infrastructures (including server farms) have been used mainly for the computation of 

sequence alignments using BLAST. Many laboratories, however, are not equipped with the 

compute power required for the analysis of increased transcriptome sequencing results. Although 

a minimum infrastructure could be easy to build, it may be unnecessary with the advent of cloud 

computing and its utilization in computational biology.  

Cloud computing offers an on-demand model where a user can dynamically allocate “unlimited” 

compute resources and then release them as soon as the analysis is complete [13]. There are 

many public cloud providers. Amazon Web Services (AWS; Seattle, WA, USA) and Google 

Cloud Platform (GCP; Mountain View, CA, USA) are popular examples. They offer a reduced 

cost of compute resources and a friendly user interface that makes them accessible for large 

computational biology experiments such as transcriptome annotation. In addition, private 

genomic cloud providers, for instance DNAnexus, Seven Bridges, and BT Cloud Compute, also 

are in the market and offer cloud-based genomics frameworks in line with the regulations that 

govern these field [14]. Although these commercial cloud providers make the execution of 

computational biology experiments easier, they also create additional charges for users. Some of 

these charges, however, can be discounted or avoided using public cloud providers. 

https://www.ncbi.nlm.nih.gov/genome/browse/#!/eukaryotes/
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Modern cloud providers offer “unlimited” compute resources that can be accessed on-demand. 

An instance, as the virtual machines are named in the cloud environment, is deployed using a 

variety of operating systems like GNU/Linux or Microsoft Windows. Users pay only for the time 

that the instance is running plus the cost of other resources such as network egress or the size of 

network storage devices. On a manually created instance, a workflow can be deployed but this is 

not cost efficient as the instance will need to be manually configured with the workflow 

dependencies. It will also remain active once the analysis is completed wasting resources. 

Conveniently, most cloud providers offer a batch system that can do the configuration 

automatically allowing users the submission of several parallel jobs. The batch system makes the 

process of instance creation, setup and termination fully automatic. 

Batch processing is a technique of processing data in one large group instead of individually. It 

reduces user interactivity to process submissions, making all remaining steps automatic. Modern 

cloud providers offer a batch system that can be personalized to process any kind of workflow. 

Figure 1 shows the component of a generic cloud batch system. It is comprised of a batch queue 

to which users submit the tasks. Each task uses a job definition to create a job where all 

computational resources and the workflow steps are outlined. Then, an instance is automatically 

created with the resources requested by the job. Since all the data for the analysis is in the cloud, 

the instance downloads the input data from the cloud storage system and, after successfully 

completing the workflow, uploads the results, releasing all computational resources. 

The utilization of public cloud providers for computational biology experiments and analyses is 

increasing [15-18], however, little has been published describing cloud costs and implementation 

best practices. To address this issue, we present a comparative study of multiple BLAST 

alignments required in a transcriptome annotation project using two public cloud providers, 

AWS and GCP. This study aims to establish a general idea of the cost and time needed for the 

Figure 1: Basic components in a cloud-based batch system 
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execution of multiple BLAST searches. Our recommendation on best practices for deploying 

computational biology workflows in the cloud are presented. 

Methods 

Transcriptome Annotation Workflow 

This study focuses on multiple BLAST alignments which are the most compute-demanding core 

of the transcriptome annotation process. BLAST alignments require considerable compute 

resources and they generate the intermediate results that are used to complete the annotation. The 

remaining part of the annotation pipeline was excluded from our study as it can be executed in a 

workstation and does not require an extensive use of the cloud.  

The workflow uses as input a transcriptome in FASTA format. First, TransDecoder [19] is 

executed to generate all open reading frames (ORFs) from the input file. Then, BLASTP and 

RPS-BLAST are executed generating a list of homologous proteins and conserved domains. 

BLASTP uses the BLAST nr database, and RPS-BLAST uses the NCBI Conserved Domain 

Database (CDD) [20]. On the other side, BLASTN and RPST-BLASTN are executed using the 

BLAST nt database and the NCBI CDD database, respectively. These processes generate a list of 

homologous genes and a list of conserved domains, see Figure 2. The workflow was 

implemented using the Common Workflow Language (CWL) [21] and is freely available at: 

https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-

cbb/workflows/Annotation/transcriptome_annotation.cwl 

The workflow uses as input a FASTA file, which we named query, and includes multiple 

transcripts to be processed. The number of transcripts to be included in a query is another 

parameter that merits an analysis. The size of the query affects the whole workflow processing 

time as a complete transcriptome could be comprised of thousands to hundreds of thousands of 

transcripts assembled from a next-generation sequencing (NGS) experiment [22]. 

Our analysis is based on the execution of the workflow with a batch system provided by each 

cloud platform. This approach keeps the compute time and therefore the cost, to a minimum. It 

also limits the user interaction with the jobs to only the submission step. 

https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl
https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl


5 

 

Containerized workflows 

Containerizing a workflow involves bundling it with all its dependencies and configuration files 

so that it can be executed across different computing environments. The workflow dependencies 

in the container uses the same version and compiled libraries when it is executed in any 

computing infrastructure which would make the process highly reproducible. In this study, we 

use Docker as the container engine. Docker permits the creation of container images that can be 

used on a personal laptop or on a cloud platform. The workflow container image generated is 

freely available from the Google Container registry (https://cloud.google.com/container-registry) 

with name: gcr.io/cbb-research-dl/transannot-cloud-cmp 

All files used to generate this image are available at: https://github.com/ncbi/cloud-

transcriptome-annotation/tree/master/config/gcp/docker 

GCP 

The Google Cloud Platform (GCP) offers a batch system specifically designed for life sciences, 

the Cloud Life Sciences (https://cloud.google.com/life-sciences). This system was initially 

Google Genomics but has evolved to allow the scientific community to process biomedical data 

at scale.  

Figure 2: Schema of the transcriptome annotation workflow 

https://cloud.google.com/container-registry
https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/gcp/docker
https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/gcp/docker
https://cloud.google.com/life-sciences
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Cloud Life Sciences offers an Application Program Interface (API) implemented for users to 

develop their own workflow in JSON format using three main attributes: actions, environments 

and resources. Actions are the list of commands to execute using a defined container image. 

They also include statements to mount local solid-state drives (SSD) or network storage devices, 

defined in resources. Environments define the environment variables available inside the 

container. Finally, resources define the instance type and the local SSD or network storage 

devices. 

The API, using the JSON described in Box 1, automatically creates instances on-demand, 

following the requirements defined in the resources section of the job JSON file. GCP also 

provides a customized container image where the instance interacts with other GCP products like 

Google Storage where data is stored. In addition, GCP creates the instances using a customized 

Linux operating system that formats and mounts the instance local disks making them available 

for the jobs.  

Box 1 also shows a brief extract of the pipeline used in GCP. We show only the main activity 

where the command attribute defines the command line to execute the CWL workflow. ImageUri 

Box 1: Brief extract of the GCP pipeline definition JSON file 
{ 
  "actions": [ 
    ..., 
    { 
      "commands": [ 
        "/bin/bash", 
        "-c", 
        "cwltool --no-container --on-error continue --tmpdir-prefix /data/ --tmp-outdir-prefix /data/ --outdir /data/${SAMPLE} 
https://raw.githubusercontent.com/ncbi/cloud-transcriptome-annotation/master/bin/cwl-ngs-workflows-
cbb/workflows/Annotation/transcriptome_annotation.cwl 
 --blast_db_dir /data --threads ${CPUs} --evalue 1e-5 --blast_nt_db nt --blast_nr_db nr --blast_cdd_db split-cdd --fasta 
/data/${SAMPLE}.fa >> /data/pipeline.log 2>&1" 
      ], 
      "imageUri": "gcr.io/cbb-research-dl/transannot-cloud-cmp", 
      "mounts": [ 
        { 
          "disk": "gcloud-shared", 
          "path": "/data" 
        } 
      ] 
    }, 
    ..., 
  "environment": { 
    "CPUs": "64" 
  }, 
  "resources": { 
    "virtualMachine": { 
      "bootDiskSizeGb": 60, 
      "bootImage": "projects/cos-cloud/global/images/family/cos-stable", 
      "disks": [ 
        { 
          "name": "gcloud-shared", 
          "sizeGb": 600, 
          "type":"local-ssd" 
        } 
      ], 
      "machineType": "n1-standard-64", 
      ..., 
    } 
  } 
} 
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attribute defines the container image used to run the command. In this case, our previously 

created Docker image. Finally, the mounts attribute defines the paths in the container to mount 

the disks created in the resources attribute.  

The VirtualMachine attribute defines the resources used to create the job instance. In this 

attribute, users can define instance boot disk size, operating system, extra disks and the machine 

type.  The complete JSON file is  available at: https://github.com/ncbi/cloud-transcriptome-

annotation/blob/master/config/gcp/pipeline.json 

AWS 

AWS Batch (https://aws.amazon.com/batch/) is the batch system provided by Amazon. It is 

comprised of compute environments, job queues and job definitions. The compute environment 

defines the computational resources to be used by the batch jobs. It is connected to the Amazon 

Elastic Container Service (ECS) which is a fully managed service that creates and manages 

computer clusters inside the Amazon cloud environment. The resources defined by the compute 

environment are used by the ECS to create and setup instances in which the workload is 

distributed. Job queues are used as an intermediate service to associate submitted jobs with the 

compute environments. Lastly, the jobs use a job definition, in JSON format, which defines 

specific information for the job, like container images, commands, number of vCPUs, RAM 

memory, environment variables and local or remote folder to mount on the container.  

Box 2 shows a brief extract of the job definition JSON script used in AWS. The 

containerProperties attribute defines the job properties. Image defines the container image, in 

this case our Docker image. Command defines the command to be executed inside the container. 

In the case of AWS, a single command can be outlined in the job definition, thus, complex 

pipelines with multiple steps can be encapsulated in a BASH script. This script can be stored 

inside the container image or the container can download it at runtime. For simplicity, we have 

included this script inside the Docker image. 

The AWS Batch system automatically creates all infrastructure, network components and 

compute instances, following the requirements of the compute environments. The default 

configuration of the Amazon Machine Image (AMI) used for the instances, however, is not 

configured to use local SSD disks available on certain machine types. This limits the default 

options on the AWS Batch system to certain types of workflows. Workflows that use intensive 

disk IO operations will have improved performance and efficiency if local SSD disks are used. 

Thus, a modified AMI capable of use the instance local disks is required for our study. We create 

a customized AMI for our study that is freely available in the AWS zone us-east1 with ID: ami-

0dac0383cac1dc96e. This AMI creates an array with the local SSD disks in the instance using 

the Linux utility mdadm. The array is formatted with XFS filesystem and mounted in a folder 

named /data.  

https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/config/gcp/pipeline.json
https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/config/gcp/pipeline.json
https://aws.amazon.com/batch/
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In addition, to improve the default AWS Batch options, Amazon offers a Virtual Private Cloud 

(VPC) that allows an extra layer of isolation for the resources used by the AWS Batch system. 

This VPC logically isolate all resources uses in a defined virtual network improving the security 

and it is customizable for the compute problem. 

The templates used in our study to create all components of the AWS Batch system are available 

at: https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/aws but all 

resources are created in the Jupyter notebook: “02 - AWS-Batch”.  

Jupyter Notebooks 

Jupyter notebooks are an open-source web application framework that allows the creation and 

sharing of documents that contain live code [23]. It is a standard way to share scientific code for 

ease of reproducibility and reuse [24]. The implementation of our study was fully developed in 

Jupyter notebooks. Readers can reproduce our results and figures using the notebooks that are 

available at the project GitHub repository. The notebooks create all cloud resources and submit 

the jobs to the batch systems. They also retrieve the job logs in JSON format and create the 

figures automatically from those logs. Each notebook includes a description about its purpose 

and is named using a numeric prefix to highlight the execution order.  

Box 2: Brief extract of the AWS job definition JSON file 

{ 
  ..., 
  "containerProperties": { 
    "image": "gcr.io/cbb-research-dl/transannot-cloud-cmp", 
    "vcpus": 64, 
    "memory": 131072, 
    "command": [ 
      "/usr/envs/transannot/bin/aws-pipeline.sh" 

    ], 
    "volumes": [ 

      { 
        "host": { 
            "sourcePath": "/data" 

        }, 
        "name": "data" 

      } 
    ], 
    "environment": [ 

      { 
        "name": "CPUs", 
        "value": "32" 

      } 
    ], 
    "mountPoints": [ 

      { 
        "containerPath": "/data", 
        "sourceVolume": "data" 

      } 
    ], 
    ..., 

  } 
} 
 

https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/aws
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Results and Discussion 

In this study, we present an analysis of the complexity, cost and best practices for executing the 

core components of a transcriptome annotation workflow in the cloud. We selected two popular 

cloud providers: GCP and AWS for our experiments. For each cloud provider, similar compute 

instances were tested using 16, 32 and 64 vCPUs. The machine types and their resources are 

described in Table 1. 

Table 1: Machine types with resources in each cloud. 

Provider 
Machine 

type 
vCPU 

Memory 
(GB) 

Instance Local 
SSD (GB) 

Network 
Bandwidth (Gbps) 

$/Hour 

AWS m5d 16 64 2 x 300 Up to 10 0.904 

AWS m5d 32 128 2 x 600 10 1.808 

AWS m5d 64 256 4 x 600 20 3.616 

AWS m5dn 16 64 2 x 300 Up to 25 1.088 

AWS m5dn 32 128 2 x 600 25 2.176 

AWS m5dn 64 256 4 x 600 75 4.352 

GCP n1 16 60 24 x 375 32 0.861 

GCP n1 32 120 24 x 375 32 1.393 

GCP n1 64 240 24 x 375 32 2.475 

GCP n2 16 64 24 x 375 32 0.951 

GCP n2 32 128 24 x 375 32 1.572 

GCP n2 64 256 24 x 375 32 2.816 

 

We used the transcriptome assembled from a public BioProject with ID PRJNA320545 for the 

organism Opuntia streptacantha. The transcriptome includes 474,563 transcripts generated with 

Trinity [25], and is available in data/PRJNA320545/transcriptome.fasta.gz. From this pool of 

transcripts, we analyzed three types of query sizes, 2,000, 6,000, and 10,000 transcripts in each 

input query file. For each query size, we created 20 different FASTA files (input files for the 

workflow) (see notebook “01 - Data Partitioning”). Each of these files were submitted 

independently as jobs to the batch systems on each cloud provider. 

Jobs were submitted to each cloud platform using the notebook “02 - Google Cloud Platform” 

and “02 - AWS-Batch”. We should highlight that the notebooks use the command line API 

provided by each cloud system. In the case of GCP, we used Cloud SDK 

(https://cloud.google.com/sdk). For AWS, we used the AWS Command Line Interface 

(https://aws.amazon.com/cli/). In each notebook, the 20 files created for each query size were 

copied to the respective cloud storage system, either Google Storage or S3 followed by job 

submissions submitted for each configuration of machine type/CPU.  

Four times were collected from the jobs: the total running time, the time to transfer the BLAST 

databases to the instance local SSD disk, the time executing the CWL workflow and the time for 

creation, setup and release of the instance. Figure 3 shows the collected times for the 10,000 

https://cloud.google.com/sdk
https://aws.amazon.com/cli/
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query size. Figure 3a shows the total running time for each input file (each containing 10,000 

transcripts) for a total of 200,000 transcripts processed on each cloud provider, machine type and 

number of vCPUs.  

Figure 3: Breakdown of the time and cost for the 10,000 query size files. a) Total time for each input file for each 

configuration (Cloud provider/Machine Type/vCPUs). The total cost of processing the 20 input files (200,000 transcripts in 

total) is at the top of each box and the cost of processing one transcript is at the bottom of each box. b) Time and percent of 

the total cost for instance creation, setup and release. c) Time and percent of the cost for transferring the BLAST databases 

to the instance from the cloud storage bucket (S3 in AWS and Cloud Storage in GCP). d) Time and percent of the cost for 

the CWL workflow execution. 
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In addition, each box in Figure 3a shows the total cost for the 20 files (top) and the cost of 

processing one transcript (bottom). The bottom row with three plots shows the remaining three 

times collected from the jobs.  

The total running time for the 10,000-query sized files are similar for the same number of vCPUs 

notwithstanding the cloud provider. Furthermore, this example shows how the running time can 

be reduced by more than a half by increasing the number of vCPUs. Unfortunately, this time 

reduction does not decrease the total cost of the project as the price per hour for machines with 

more vCPUs increases as well.  

The AWS platform is more efficient than the GCP during the instance creation, setup and 

release, see Figure 3b. This stage takes only 0.1% of the total cost. The GCP cost for this stage 

goes from 1.5% to 4.5% on bigger machines. The differences are due to the AWS ECS which 

allocates new jobs on existing instances as soon as the instance gets free without releasing them, 

whereas GCP creates, sets up and releases an instance for each job.  

Transferring the BLAST databases from each cloud storage (S3 in AWS and Cloud Storage in 

GCP) bucket, Figure 3c, (current size is 342GB), to the instance local SSD disk is a crucial step 

in reducing the cost of the analysis. We tested the default parameters in both cloud providers 

which use network storage devices taking on average 1 hour which is about 30 % of the total cost 

of the analysis and which takes more time than the CWL workflow execution. After customizing 

both batch systems to use the instance local SSD disks, the time was reduced to a range of 4 % to 

11 % of the total cost in the 10,000 query size.  

As expected, the CWL workflow execution time is the most time-consuming part of the job, 

Figure 3d. All configurations show similar times for executing the CWL workflow. The GCP N1 

Figure 4: Total processing time for all configurations and query sizes 
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machine type spent more time on the CWL workflow than the other machine types in all 

configurations because the GCP N1 is the Google first generation machine type with slower 

vCPUs than the other three machine types tested in this study.  

Figure 4 shows all configurations tested with all query sizes. This plot shows that for smaller 

query sizes (2,000 in this case), there is no need to use machines with a large number of vCPUs 

as the difference in processing time is limited to a few minutes. For processing a large number of 

transcripts, it is best to use bigger query sizes and machines with more vCPUs as it reduces the 

cost of the complete annotation process.  

Reducing the number of transcripts per input file will reduce the total running time but will also 

increase the cost of the project as more instances will be in used. For example, our experiment 

with the 10,000 query size processed 200,000 transcripts in 94 minutes with a total cost of 

$88.20 using 20 instances (GCP, N2, 64 CPU). Processing the same number of transcripts with a 

query size of 2,000 will cost $135.00 with all transcripts processed in 29 minutes using 100 

instances (GCP, N2, 64 CPU) at the same time.   

We have determined that a transcriptome with ~500,000 transcripts can be processed in less than 

2 hours with a computing cost from US$200.00 to US$250.00. In our opinion, this is a 

reasonable cost and makes the transcriptome annotation process accessible to any genomic 

laboratory without access to an on-premise computational infrastructure. 

Best practices 

Our recommendation for best practices using public cloud providers for computational biology 

experiments are: 

1. Write the pipeline using a workflow language. (We recommend CWL because the resulting 

product is portable and scalable, and it can be executed across a variety of computational 

environments as dissimilar as personal laptops or the cloud.) 

2. Containerize the CWL workflow with Docker and use Conda/Bioconda to install all 

Bioinformatics tools in the container image. 

3. Use Jupyter Notebooks for coding and documenting each step during experiments.   

4. Use the cloud provider batch system for deploying jobs. 

5. Execute a small test in the cloud to find the best instance type for a workflow.  

6. Use the instance local disks for computing instead the default network devices. 

Conclusion  

Despite the differences in the configuration and setup of batch systems between GCP and AWS, 

the cost and processing time are similar for the type of workflow we designed. In our opinion, 

the choice of a cloud platform is not dependent on the workflow but, rather, on the specific 

details of the cloud provider. These specific details are related to the cloud platform’s 

accessibility for institutional use, the user’s technical knowledge of the specific platform service, 

or the availability of open-source frameworks to deploy the workflow on a specific cloud 

provider. 

We found that GCP is easier to use as it only requires a JSON file for batch processing whereas 

AWS needs a complete setup of all components. GCP is more suitable for daily data analysis 

work in research laboratories. On the other hand, AWS, once properly configured, is more 
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efficient in terms of machine creation, setup and release. The ECS can reuse instances reducing 

the cost for large data analysis projects. AWS is more suitable for large data analysis groups to 

establish a set of queues and compute environments for multiple pipelines.   

Availability of supporting source code and requirements 

Project name: Cloud Transcriptome Annotation  

Project home page: https://github.com/ncbi/cloud-transcriptome-annotation  

Operating system(s): Linux and MacOS  

Programming languages: Python, BASH 

Other requirements: Conda/Bioconda, Jupyter Notebook 

CWL workflow: https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-

ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl 
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