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Abstract: Background
The   NIH Science and Technology Research Infrastructure for Discovery,
Experimentation, and Sustainability (STRIDES)     initiative   provides NIH-funded
researchers cost-effective access to industry-leading commercial cloud providers, such
as Amazon Web Services (AWS; Seattle, WA, USA) and Google Cloud Platform (GCP;
Mountain View, CA, USA). These cloud providers represent an alternative for the
execution of large computational biology experiments like transcriptome annotation
which is a complex analytical process that requires the integration of multiple biological
databases and several advanced computational tools. The core components of
annotation pipelines published since 2012 are BLAST sequence alignments using
annotated databases of both nucleotide or protein sequences almost exclusively with
networked on premises compute systems.
Findings
We present a comparative study of multiple BLAST sequence alignments using two
public cloud providers: AWS and GCP. We have prepared several Jupyter Notebooks
with all the code required to submit computing jobs to the batch system on each cloud
provider. We consider the consequence of the number of query transcripts in input files
and the effect on cost and processing time. We tested compute instances with 16, 32
and 64 vCPUs on each cloud provider. Four classes of timing results were collected:
the total run time, the time for transferring the BLAST databases to the instance local
solid state disk drive (SSD), the time to execute the Common Workflow Language
(CWL) script and the time for the creation, setup and release of an instance. This study
aims to establish an estimate of the cost and compute time needed for the execution of
multiple BLAST runs in a cloud environment.
Conclusions
We demonstrate that the public cloud providers are a practical alternative for the
execution of advanced computational biology experiments at low cost. Using our cloud
recipes, the BLAST alignments required to annotate a transcriptome with ~500,000
transcripts can be processed in less than 2 hours with a compute cost of about 200-
250 USD. In our opinion, for BLAST based workflows, the choice of cloud platform is
not dependent on the workflow but, rather, on the specific details and requirements of
the cloud provider (e.g. NCBI maintains updated copies of the very large genetic
sequence databases, such as nr, RefSeq and SRA, on both GCP and AWS). These
choices include the accessibility for institutional use, the technical knowledge required
for effective use of the platform services, and the availability of open-source
frameworks such as application programming interfaces (APIs) to deploy the workflow.
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Response to Reviewers: Reviewer reports:

Response: We thank the referee for the comments and for their time dedicated to this
manuscript.

Reviewer #1: In this manuscript, the authors describe the usability and the
performance of public cloud computing services and their batch job execution services
for the transcriptome annotation pipeline. The authors also compare the services of two
major public cloud vendors, Google Cloud Platform (GCP), and Amazon Web Service
(AWS). The results show that the two cloud providers can provide a similar experience
on its operation, workflow execution time, and payment for execution. The performed
experiments follow the modern best practice  of data analysis using tools and
frameworks for better reproducibility, including Docker container, the Common
Workflow Language (CWL), and Jupyter Notebook. This article can be a good example
of a reproducible study with open data and open-source software.

This report is very significant with the practical statistics, which can be a helpful
reference for all the cloud use cases in biomedical data analysis. The title states that
this study focuses on the transcriptome annotation, but the output provides insight for
all the cloud use cases. I suggest the authors change the title because the current one
looks the best practice valid only for the transcriptome annotation in the wide variety of
genomic data analysis.

Response: We thank the referee for their comment and suggestions. It is true that the
results of this study provide insight for many computational biology workflows but our
experiments were limited to the transcriptome annotation process, specifically to the
BLAST searches that are the core of the annotation. We think that the best practices
and conclusions of this study should remain limited to the cloud transcriptome
annotation process.

Below are minor comments for the manuscript.

Page 3, the last paragraph:
The authors claim as "little has been published describing cloud costs and
implementation best practices". However, there is a study implemented software to
monitor the runtime metrics of a given workflow, and support the cost estimation for the
executions on the cloud (https://doi.org/10.1093/gigascience/giz052). This article
describes the cost for the normal EC2 instance and does not mention the batch
execution services, yet it provides additional information to the readers. Please
consider introducing this in the background section as a related study. (Disclaimer: I
am the first author of this article)

Response: We agree with the referee that this study provides additional information
about the use and cost of computational biology workflows in the cloud. A new
paragraph was added to the Background section: “The utilization of cloud
environments for computational biology experiments is increasing [14-17], however,
little has been published estimating cloud costs and implementation best practices. A
recent work published by Ohta at al. [18] presents a tool named CWL-metrics that
collects runtime metrics of Docker containers and workflow metadata to analyze
workflow resource requirements. This study presents a cost estimation for the
execution on the cloud for AWS EC2 instances, but does not mention the cloud batch
system for users to submit thousands of jobs to the cloud.”

Page 12, Best practices
The authors describe here that they recommend CWL as a workflow language. I think
the authors should introduce the reason they chose CWL at the Method section where
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they first mention CWL (Page 4, Transcriptome Annotation Workflow). The authors
also should provide a more practical reason to choose CWL because CWL is not only
one framework that has portability and scalability. For example, having multiple
workflow runners or its syntax easily parsed and connected to the resources such as
runtime metrics can be a reason to choose CWL in this use case.

Response: We agree with the referee about the inclusion of more information about
CWL and the reason why it was selected for our study. We added a new section to the
manuscript named: Common Workflow Language

Workflow dependencies
Both AWS batch and Google LifeScience allow users to specify only one container per
one batch job. This means the user needs to install the workflow runner (in this article
cwltool) and the tools to process the data (e.g., BLAST) in a single container. However,
the current best practice for bioinformatics is to separate the containers for each tool.
Thus, in most cases, users cannot reuse the containers they use for a normal
computing environment to the cloud batch system. The authors need to mention the
limitation that one needs to create a container for cloud batch systems. Another
possible solution would be to run sibling containers from the main batch job container,
though I do not know if it is feasible with AWS and GCP.

Response: The referee’s comment is correct. Docker-in-Docker, the process to
execute docker containers inside of another Docker container is not allowed in both
GCP and AWS. We add a new section to the manuscript named GCP and AWS batch
system limitations to address these limitations.

Software and framework related to the cloud batch services Many workflow languages
and runners are supporting AWS batch and GCP. For example, Nextflow
(https://www.nextflow.io/docs/latest/awscloud.html), Cromwell
(https://cromwell.readthedocs.io/en/stable/backends/Google/), or Snakemake
(https://snakemake.readthedocs.io/en/stable/executing/cloud.html#executing-a-
snakemake-workflow-via-tibanna-on-amazon-web-services) can run the workflows via
AWS batch or GCP. Task Execution Service (TES) of the Global Alliance for Genomics
and Health (GA4GH) Cloud working group is also a framework to utilize the cloud
batch system (https://github.com/ga4gh/task-execution-schemas). Some tools that run
workflows on the cloud using the ETL framework (https://doi.org/10.21105/joss.01069)
or cloud batch services (https://github.com/DataBiosphere/dsub) are also available.
These may not be directly relevant to this study, but it would be helpful for readers to
understand how the cloud batch services are being used by the researchers.

Response: We agree with the referee about the inclusion of more information about
workflow managers. We added a new section to the manuscript named: Common
Workflow Language.

Reviewer #2: Reviewer's report
Title: Transcriptome annotation in the cloud: complexity, best practices and cost.
transcriptome data
Reviewers: Qiao Xuanyuan and Lucas B. Carey

Response: We thank the referees for their comments and time dedicated to this
manuscript.

Reviewer's report:
The authors provide a perspective on transcriptome annotation in the cloud by
presenting a comparative study of the two main public cloud providers, aiming to help
the reader determine the proper cloud platform and its utilization in their research. The
main strength of this paper is that it addresses a question that little has been studied
before—the cloud cost estimates and implementation best practices. This is useful not
only for labs doing transcriptome annotation, but, because all code is provided and
very well commented, it might be of use for labs dealing with big data & distributed
computation problems in general.
The manuscript is well written, and I have only a few minor concerns on presentation
and the information that is provided.
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1. The tested transcriptome data need to be clarified. I read the Data partitioning code
for the creation of 20 FASTA files of the different query sizes (Fig 3). The variation in
processing time among these files is consistent across clusters, and is therefore
presumably due to differences in query sets in each file. This is surprising, as 10,000 is
a large number. Are the differences because the sequence records were created
sequentially from the input fasta file, with some genes having large numbers of hits?
Would subsetting transcripts randomly result in more uniform processing times? There
is almost two-fold variation in processing time between query files.

Response: The referee’s comment is correct. The variation in processing time for
queries with the same number of transcripts was due to the sequentially subsampling
approach. We have modified the Data Partitioning notebook to create a random
sampling of the transcriptome file. The notebook now shows the statistics for each file
created. All measured parameters, mean, standard deviation, minimum length, 25%,
50% and 75% quarters show similar values for all files. Modified text was added in the
beginning of the Results and Discussion section “From the Opuntia pool of transcripts,
we analyzed three sizes of query files: 2,000, 6,000, and 10,000 transcripts in each
input query file. Two experiments were executed. First 20 FASTA files (input files for
the workflow) for each query size were randomly created, see notebook “01 - Data
Partitioning”. Each of these files were submitted independently as jobs to the batch
systems on each cloud provider. For the second experiment, 120,000 transcripts were
randomly selected and then partitioned in files with 2,000, 6,000, and 10,000
transcripts to analyze the relationship between query size, runtime and cost.”

2. Please include a figure showing the distribution of transcript lengths for Opuntia
streptacantha, and write that it is the prickly pear cactus. Presumably timing depends
on the transcript lengths and on the number of BLAST hits.

Response: The referee’s comment about that the timing certainly depends on the
transcript length and the number of BLAST hits. We added a cell to the 01 - Data
Partitioning notebook that shows the transcriptome length distribution and its statistic
metrics.

3. It is difficult to draw the conclusions from the way the data are plotted in Figure 4.
The author concluded that "Reducing the number of transcripts per input file will reduce
the total running time but will also increase the cost of the project as more instances
will be in used."
In addition to the raw data boxplot, it is better to show how the time and cost scale with
query size, or with the number of instances. (The number of instances equals query
size divided by total transcripts). Controlling the total transcripts and making instances
as variable may be helpful in balancing the interpretation and data.
The plot below shows the relationship between the number of CPUs and time, and
query size and time. (data collected using https://automeris.io/WebPlotDigitizer/). It
also provides direct-viewing evidence to support the author's conclusion "AWS is more
suitable for large data analysis groups to establish a set of queues and compute
environments for multiple pipelines." Unlike the boxplot in the current manuscript, this
figure also shows the differences in scaling between 16, 32 & 64 vCPU nodes.

Please add graphs showing query file sizes vs time (as below) and query file sizes vs
cost. As well as cost vs time. These are the important take-home messages from the
manuscript, but it is difficult to extract this information from the current figures.

Response: We agree with the referee’s comment that the relationship between query
size, time and cost was not well described in the way that the results were presented in
Figure 4. We add a new experiment where we processed 120,000 transcripts using the
three query sizes. The new Figure 4 shows the relationship between the time, cost and
query size for processing a fixed number of transcripts. Additional text describing this
experiment was added to the Result and Discussion section: “Figure 4 shows the time
and cost of processing 120,000 transcripts using second generation 64 vCPUs
instances on each cloud provider. Reducing the number of transcripts per input file
reduces the total run time but will also increase the cost of the analysis as more
instances will be used. BLAST databases are transferred to more instances spending,
on average, 10 minutes for each instance. For example, our experiment with the
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10,000-query size processes all transcripts in about 105 minutes with a total cost of
59.37USD using 12 instances (GCP, N2, 64 CPU). Processing the same number of
transcripts with a query size of 2,000 costs122.36USD with all transcripts processed in
43 minutes using 60 instances (GCP, N2, 64 CPU). “

Optional (not necessary) suggestions:
The figures could be improved to give a clearer visualization of the data. For Figure 3a,
will adding a secondary Y-axis regarding money and draw a line plot be better to show
the relationship between total time and cost? For Figure 3b&c&d, drawing a component
bar chart could allow the readers to compare the job-dependent time among various
configurations and demonstrates the proportionality at the same time.

Response: We thank the referee for this suggestion. In our opinion, as the data we are
plotting here is not continuous data, drawing a line between points in Figure 3a could
imply the idea of continuity. For Figures 3b, 3c, and 3d drawing bars could hide the
variability of the runtime for each input file that is associated with instance and network
performance. We prefer to keep the figure as it is now.

Reviewer #3: The authors provide a comparison of two cloud-based solutions for
running BLAST-based transcriptomics analysis.
With cloud-based solutions becoming more popular in science, I think this comparison,
along with the practical recommendations provided in this manuscript will be interesting
to readers.

Response: We thank the referee for their comments and time dedicated to this
manuscript.

Some suggestions for enhancements below:

1) The authors mention that there are numerous genomics companies in the space of
cloud based biocomputations, citing reference 14 which discusses some of the legal
responsibilities of groups doing such cloud based analyses. However, the authors do
not connect this discussion back to the use of GCP or AWS, where users would need
to obtain similar gaurantees of data security which may not be possible to obtain. Thus
a comparison of pricing against the private firms which provide similar services would
be interesting to see if they provide specific guarantees that affect researchers with
data that requires specific legal requirements.

Response: We thanks the referee for the comment. This study was executed under the
NIH’s STRIDES initiative using the currently available cloud provider partners: AWS
and GCP. We do not consider that a comparison between public and private cloud
providers and their legal responsibilities is within the scope of this study. However, we
think that mentioning some of the most important private cloud providers is necessary.
Accordingly, we rephrased the paragraph as:

In addition, private genomic cloud providers, for instance DNAnexus
(www.dnanexus.com), DNAstar (www.dnastar.com), Seven Bridges
(www.sevenbridges.com) and SciDAP (scidap.com), also are in the market and offer
cloud-based genomics frameworks. These commercial cloud providers make the
execution of computational biology experiments easier offering command line and
web-based interfaces designed for genomic data analysis.

2) I really like the inclusion of a best practices section with practical recommendations,
and would love to see this section expanded:
  a) In the first point the authors state: "We recommend CWL because the resulting
product is portable and scalable,and it can be executed across a variety of
computational environments as dissimilar as personal laptops or the cloud". However,
these features are not exclusive to CWL, and solutions such as NextFlow and
SnakeMake (and probably others) would also fit this description (and both of these also
offer point 2 Conda and containerization). Please elaborate on your recommendation
to include discussion of other workflow management systems, and explain in more
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detail why you would recommend CWL over these other solutions.

Response: We agree with the referee about the inclusion of more information about
CWL and workflow managers. We added a new section to the manuscript named:
Common Workflow Language.

  b) In point 5, you recommend that users "Execute a small test in the cloud to find the
best instance type for a workflow". Do you have any further practical recommendations
about how users can best go about this? E.g. how does one define a "small test run"
from a full datasets, and how can they predict how this will scale up to the full analysis
and determine the most suitable machine types?

Response: We agree with the referee that defining a “small test run” may be difficult
and it is intrinsically determined by the data and the workflow to be used. Our intention
with this recommendation was to alert users that the cloud is a completely different
environment than local workstations or on premise clusters. Users should test different
cloud services and configurations before submitting a huge number of jobs. We edited
that recommendation to:

5.Cloud computing behaves differently than local workstations or on premise clusters.
Users should define and execute small tests with their data and workflow before
submitting large jobs. Testing different cloud services and configurations could help to
reduce the runtime and cost for the whole analysis.

3) It could be nice to expand the section about the Jupyter notebooks, and how these
are being used, perhaps with some screenshots of results, and/or a small schematic
showing that (if I understand correctly): the user interacts with the Jupyter notebook on
their local machine, which in turn configures the cloud resources and starts the CWL
workflow on the cloud, and then fetches the relevant results back and analyses them
and displays results to the user. I think a schematic to this effect would be helpful for
less technical readers and this in combination with some screenshots of the analysis
results in Jupyter will increase the appeal of your work to research scientists.

Response: We agree with the referee about expanding the Jupyter notebook section.
We added more description to it. The notebooks are available on Github for reading
and browsing. Adding more figures to the manuscript would increase its size and
complexity. Jupyter notebooks are very popular and we think that less technical
readers could easily find documentation about Jupyter notebooks without any problem.

4) In the conclusion the authors state “In our opinion, the choice of a cloud platform is
not dependent on the workflow but, rather, on the specific details of the cloud provider”.
However, I don’t believe the authors can make this statement having tested only a
singe workflow. So please rephrase the conclusion, or compare performance of
different workflows covering a range of different characteristics (e.g. one that is
memory-intensive, one that is CPU-intensive, and one that requires a lot of data
transfer) and showing whether this conclusion holds, or whether some of the “specific
details of the cloud provider” may make it more or less suitable for certain types of
workflows.

Response: We agree with the referee that the phrase was general. We rephrased to
this:

In our opinion, for BLAST based workflows, the choice of cloud platform is not
dependent on the workflow but, rather, on the specific details and requirements of the
cloud provider (e.g. NCBI maintains updated copies of the very large genetic sequence
databases, such as nr, RefSeq and SRA, on both GCP and AWS). These choices
include the accessibility for institutional use, the technical knowledge required for
effective use of the platform services, and the availability of open-source frameworks
such as application programming interfaces (APIs) to deploy the workflow.

5) AWS, Google, and Azure are probably the "big 3" providers that most readers will l
know about, and they might wonder why Azure was not included here and how it would
compare. I understand that the authors cannot compare all providers, but it may be
useful to at least mention Azure in the introduction where different providers are
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mentioned, and briefly explain if there were any specific reasons why you chose to
compare AWS and GCP, and whether the same methodology could also be applied to
Azure.

Response: We thank the referee for the comment. This study was executed under the
NIH’s STRIDES initiative using the current available cloud provider partners: AWS and
GCP. We don’t have access to Azure, therefore, we cannot extrapolate the conclusions
of this study to Azure or any other cloud provider.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or

Yes
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deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?
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Abstract 

Background 

The NIH Science and Technology Research Infrastructure for Discovery, Experimentation, 

and Sustainability (STRIDES) initiative provides NIH-funded researchers cost-effective 

access to industry-leading commercial cloud providers, such as Amazon Web Services (AWS; 

Seattle, WA, USA) and Google Cloud Platform (GCP; Mountain View, CA, USA). These cloud 

providers represent an alternative for the execution of large computational biology experiments 

like transcriptome annotation which is a complex analytical process that requires the integration 

of multiple biological databases and several advanced computational tools. The core components 

of annotation pipelines published since 2012 are BLAST sequence alignments using annotated 

databases of both nucleotide or protein sequences almost exclusively with networked on 

premises compute systems. 

Findings 

We present a comparative study of multiple BLAST sequence alignments using two public cloud 

providers: AWS and GCP. We have prepared several Jupyter Notebooks with all the code 

required to submit computing jobs to the batch system on each cloud provider. We consider the 

consequence of the number of query transcripts in input files and the effect on cost and 

processing time. We tested compute instances with 16, 32 and 64 vCPUs on each cloud provider. 

Four classes of timing results were collected: the total run time, the time for transferring the 

BLAST databases to the instance local solid state disk drive (SSD), the time to execute the 

Common Workflow Language (CWL) script and the time for the creation, setup and release of 

an instance. This study aims to establish an estimate of the cost and compute time needed for the 

execution of multiple BLAST runs in a cloud environment. 

Conclusions 

We demonstrate that the public cloud providers are a practical alternative for the execution of 

advanced computational biology experiments at low cost. Using our cloud recipes, the BLAST 

alignments required to annotate a transcriptome with ~500,000 transcripts can be processed in 

less than 2 hours with a compute cost of about 200-250 USD. In our opinion, for BLAST based 
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workflows, the choice of cloud platform is not dependent on the workflow but, rather, on the 

specific details and requirements of the cloud provider (e.g. NCBI maintains updated copies of 

the very large genetic sequence databases, such as nr, RefSeq and SRA, on both GCP and AWS). 

These choices include the accessibility for institutional use, the technical knowledge required for 

effective use of the platform services, and the availability of open-source frameworks such as 

application programming interfaces (APIs) to deploy the workflow. 

Background 

The NIH Science and Technology Research Infrastructure for Discovery, Experimentation, 

and Sustainability (STRIDES) initiative (https://cloud.cit.nih.gov/) permits NIH supported 

scientists to explore the use of cloud environments and provides cost-effective access to 

industry-leading commercial cloud providers. The NIH’s STRIDES cloud provider partners, at 

the time of this study, were Amazon Web Services (AWS; Seattle, WA, USA) and Google Cloud 

Platform (GCP; Mountain View, CA, USA). Cloud computing offers an on-demand model 

where a user can dynamically allocate “unlimited” compute resources and then release them as 

soon as the analysis is complete [1]. They offer a reduced cost of compute resources and a 

friendly user interface that makes cloud computing accessible for large computational biology 

experiments. 

As part of the STRIDES initiative, NIH-funded institutions began to upload and compute data in 

the cloud. Public biological databases like the Sequence Read Archive (SRA, 

https://www.ncbi.nlm.nih.gov/sra/docs/sra-cloud/) and computational tools like BLAST 

(https://github.com/ncbi/blast_plus_docs), from the National Center for Biotechnology 

Information (NCBI), were migrated and are available for public use on AWS and GCP. In 

addition, NIH-funded researchers are contributing to the NIH’s STRIDE initiative not only 

migrating data analysis workflows to the cloud but also disseminating the suitability of the cloud 

computing for computational biology experiments.  

The annotation of RNA transcripts with functional and biological processes is an important step 

in developing an understanding of the biological complexity of an organism. Annotation is a 

challenging process that requires the integration of multiple biological databases and several 

computational tools to accurately assign a function to an RNA product. Available public 

information on a target organism is the main limitation of the annotation of non-model 

organisms. The NCBI Genome database, for instance, contains 54,049 genome-sequencing 

projects by organism [2]. This includes 12,204 eukaryotes genomes for more than 1,000 species 

or strains at different assembly levels (95 complete genomes, 1,872 chromosomes, 7,743 

scaffolds, and 2,494 contigs (https://www.ncbi.nlm.nih.gov/genome/browse/#!/eukaryotes/), 

accessed on June 30, 2020. Although these data include an important group of organisms, there 

is a lack of annotation of several species that have significant public health and economic 

importance. Significantly, in the plant kingdom, Viridiplantae, only 3 complete genomes, 331 

chromosomes, 625 scaffolds, and 394 contigs are annotated. The advances in next-generation 

sequencing technologies and the decrease in the cost of sequencing a complete transcriptome is 

driving a new era in which annotation will be increasing, important and productive. 

A review of published manuscripts since 2012 [3-11] reveals that many developed pipelines have 

a common core component and use the NCBI BLAST tools [12] to align assembled 

transcriptomes against annotated databases of nucleotides or proteins to identify similarity and 
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infer function. After an assembly, these alignments are the initial step to identify close and/or 

distant homologous genes, proteins, and functional domains that could be cross-referenced with 

other public databases, such as Gene Ontology [13], to generate new annotations of query 

sequences. As the number of transcripts assembled per study increases, the computing power and 

storage required to align these transcripts to the BLAST databases also increases. On premises 

computer infrastructures (including server farms) have been used mainly for the computation of 

sequence alignments using BLAST. Many laboratories, however, are not equipped with the 

compute power required for the analysis of increased transcriptome sequencing results. Although 

a minimum infrastructure could be easy to build and maintain, it may be unnecessary and less 

financially burdensome with the advent of cloud computing and its utilization in computational 

biology. 

The utilization of cloud environments for computational biology experiments is increasing [14-

17]. However, little has been published estimating cloud costs and implementation best practices. 

A recent work published by Ohta at al. [18] presents a tool named CWL-metrics that collects 

runtime metrics of Docker containers and workflow metadata to analyze workflow resource 

requirements. This study presents a cost estimation for the execution on the cloud for AWS EC2 

instances but does not mention the cloud batch system for users to submit thousands of jobs to 

the cloud.  

Modern cloud providers offer “unlimited” compute resources that can be accessed on-demand. 

An instance, as the virtual machines are named in the cloud environment, is deployed using a 

variety of operating systems like GNU/Linux or Microsoft Windows. Users pay only for the time 

that the instance is running plus the cost of other resources such as network egress and/or the size 

of network storage devices. A workflow can be deployed on a manually created instance but this 

is not cost efficient as the instance will need to be manually reconfigured with workflow 

dependencies. It will also remain active once the analysis is completed which wastes resources. 

Private genomic cloud providers, for instance DNAnexus (www.dnanexus.com), DNAstar 

(www.dnastar.com), Seven Bridges (www.sevenbridges.com) and SciDAP (scidap.com), and 

others, also offer cloud-based genomics frameworks. These commercial cloud providers make 

the execution of computational biology experiments easier by offering command line and web-

based interfaces designed for genomic data analysis. 

Most cloud providers offer a batch system that can do the configuration automatically for users 

to submit several parallel jobs. The batch system makes the process of instance creation, setup 

and termination fully automatic.  

Batch processing is a technique for processing data as a single large collection of iterative steps 

instead of individually. It reduces user interactivity to process submissions by automating the 

remaining steps. Modern cloud providers offer a batch system that can be personalized to process 

many different workflows. Figure 1 shows the component of a generic cloud batch system. It is 

comprised of a batch queue to which users submit the tasks. Each task uses a job definition to 

create a job where all computational resources and the workflow steps are outlined. Then, an 

instance is automatically created with the resources requested by the job. Since all the data for 

the analysis is in the cloud, the instance downloads the input data from the cloud storage system 

and, after successfully completing the workflow, uploads the results, releasing all computational 

resources. 
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In this manuscript, we present a comparative study of multiple BLAST searches and alignments 

required to annotate transcriptome data. This study aims to establish an estimation of the cost and 

time needed for the execution of multiple BLAST searches on the cloud. Our recommendation 

on best practices for deploying computational biology workflows in the cloud are also presented. 

Methods 

Transcriptome Annotation Workflow 

This study focuses only on the many BLAST alignments which are the most compute-

demanding core of a transcriptome annotation process. BLAST alignments require considerable 

compute resources which generate intermediate results that are used to complete the annotation 

process. The remaining part of the annotation pipeline is excluded from our study as it can be 

executed on a workstation and does not require an extensive use of the cloud.  

The input for the workflow is a transcriptome in FASTA format. First, TransDecoder [19] is 

executed to generate all open reading frames (ORFs) from the input file. Then, BLASTP and 

RPS-BLAST are executed on the TransDecoder output files generating a list of homologous 

proteins and conserved protein domains (BLASTP uses the BLAST nr database, and RPS-

BLAST uses the NCBI Conserved Domain Database (CDD) [20]). The transcriptome files are 

also used as inputs for BLASTN and RPST-BLASTN which are executed using the BLAST nt 

database and the NCBI CDD database, respectively. These processes generate a list of 

homologous genes and a list of conserved domains, see Figure 2. The workflow was 

implemented using the Common Workflow Language (CWL) [21] and is freely available at: 

Figure 1: Basic components in a cloud-based batch system 
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https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-

cbb/workflows/Annotation/transcriptome_annotation.cwl 

The workflow uses as input a FASTA file, which we named query, and includes multiple 

transcripts to be processed. The number of transcripts to be included in a query is another 

parameter that merits an analysis. The size of the query affects the workflow processing time as a 

complete transcriptome could be comprised of thousands to hundreds of thousands of transcripts 

assembled from a next-generation sequencing (NGS) experiment [22]. 

Our analysis is based on the execution of the workflow with a batch system provided by each 

cloud platform. This approach keeps the compute time, and therefore the cost, to a minimum. It 

also limits the user interaction with the jobs to only the submission step. 

Containerized workflows 

Containerizing a workflow involves bundling it with all its dependencies and configuration files 

so that it can be executed across different computing environments. The workflow dependencies 

in the container uses the same version and compiled libraries when it is executed in any 

computing infrastructure which would make the process highly reproducible. In this study, we 

use Docker as the container engine. Docker permits the creation of container images that can be 

used on a personal laptop or on a cloud platform. The workflow container image generated is 

freely available from the Google Container registry (https://cloud.google.com/container-registry) 

with name: gcr.io/cbb-research-dl/transannot-cloud-cmp 

Figure 2: Schema of the transcriptome annotation workflow 

https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl
https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl
https://cloud.google.com/container-registry
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All files used to generate this image are available at: https://github.com/ncbi/cloud-

transcriptome-annotation/tree/master/config/gcp/docker 

Common Workflow Language 

Common Workflow Language (CWL) [21] is an open standard workflow language used to 

describe and implement complex pipelines which uses interchangeable blocks. The resulting 

product is portable and scalable. It can be executed across a variety of hardware environments as 

dissimilar as personal laptops or the cloud.  

Workflow managers are tools that simplify the execution of workflows in multiple computational 

environments. Some have been developed to manage and execute CWL workflows like Toil[23], 

CWL-Airflow [24], Arvados (https://arvados.org/) and REANA (http://reanahub.io/). Others, 

however, use their own workflow languages like Nextflow [25], and SnakePipes [26]. All 

provide a unified interface to users to choose the compute environment to process jobs. Users 

can configure the workflow manager to submit jobs to a high-performance compute cluster or to 

a cloud provider. Nevertheless, all these workflow managers use the cloud batch system to 

submit jobs for computing in the cloud.  

In this study, we aim to estimate the minimum cost of executing a transcriptome annotation 

pipeline in the cloud. We selected CWL because it is the workflow language with many available 

workflow managers. Also, CWL provides a reference implementation runner: cwltool 

(https://github.com/common-workflow-language/cwltool). This runner can be executed on the 

command line inside a GCP or AWS job definition minimizing all dependencies for processing a 

workflow. We intentionally avoided the use of workflow managers to be able to quantify runtime 

for the workflow steps as precise as possible. 

GCP 

The Google Cloud Platform (GCP) offers a batch system specifically designed for life sciences, 

the Cloud Life Sciences (https://cloud.google.com/life-sciences). This system was initially 

Google Genomics but has evolved to allow the scientific community to process biomedical data 

at scale.  

Cloud Life Sciences offers an Application Program Interface (API) implemented for users to 

develop their own workflow in JSON format using three main attributes: actions, environments 

and resources. Actions are the list of commands to execute using a defined container image. 

They also include statements to mount local solid-state drives (SSD) or network storage devices, 

defined in resources. Environments define the environment variables available inside the 

container. Finally, resources define the instance type and the local SSD or network storage 

devices. 

The API, using the JSON described in Box 1, automatically creates instances on-demand, 

following the requirements defined in the resources section of the job JSON file. GCP also 

provides a customized container image where the instance interacts with other GCP products like 

Google Storage where data is stored. In addition, GCP creates the instances using a customized 

Linux operating system that formats and mounts the instance local disks making them available 

for the jobs.  

https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/gcp/docker
https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/gcp/docker
https://arvados.org/
https://github.com/common-workflow-language/cwltool
https://cloud.google.com/life-sciences
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Box 1 shows a brief extract of the pipeline used in GCP. We show only the main activity where 

the command attribute defines the command line to execute the CWL workflow. ImageUri 

attribute defines the container image used to run the command. In this case, our previously 

created Docker image. Finally, the mounts attribute defines the paths in the container to mount 

the disks created in the resources attribute.  

The VirtualMachine attribute defines the resources used to create the job instance. In this 

attribute, users can define instance boot disk size, operating system, extra disks and the machine 

type.  The complete JSON file is  available at: https://github.com/ncbi/cloud-transcriptome-

annotation/blob/master/config/gcp/pipeline.json 

Box 1: Brief extract of the GCP pipeline definition JSON file 

{ 
  "actions": [ 

    ..., 

    { 
      "commands": [ 
        "/bin/bash", 
        "-c", 
        "cwltool --no-container --on-error continue --tmpdir-prefix /data/ --tmp-outdir-prefix /data/ --outdir /data/${SAMPLE} 
https://raw.githubusercontent.com/ncbi/cloud-transcriptome-annotation/master/bin/cwl-ngs-workflows-
cbb/workflows/Annotation/transcriptome_annotation.cwl 

 --blast_db_dir /data --threads ${CPUs} --evalue 1e-5 --blast_nt_db nt --blast_nr_db nr --blast_cdd_db split-cdd --fasta 
/data/${SAMPLE}.fa >> /data/pipeline.log 2>&1" 
      ], 
      "imageUri": "gcr.io/cbb-research-dl/transannot-cloud-cmp", 
      "mounts": [ 
        { 
          "disk": "gcloud-shared", 
          "path": "/data" 
        } 
      ] 
    }, 

    ..., 

  "environment": { 

    "CPUs": "64" 
  }, 

  "resources": { 
    "virtualMachine": { 
      "bootDiskSizeGb": 60, 
      "bootImage": "projects/cos-cloud/global/images/family/cos-stable", 
      "disks": [ 
        { 
          "name": "gcloud-shared", 
          "sizeGb": 600, 
          "type":"local-ssd" 
        } 
      ], 
      "machineType": "n1-standard-64", 

      ..., 

    } 
  } 

} 

https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/config/gcp/pipeline.json
https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/config/gcp/pipeline.json
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AWS 

AWS Batch (https://aws.amazon.com/batch/) is the batch system provided by Amazon Web 

Services. It is comprised of compute environments, job queues and job definitions. The compute 

environment defines the computational resources to be used by the batch jobs. It is connected to 

the Amazon Elastic Container Service (ECS) which is a fully managed service that creates and 

manages computer clusters inside the Amazon cloud environment. The resources defined by the 

compute environment are used by the ECS to create and setup instances in which the workload is 

distributed. Job queues are used as an intermediate service to associate submitted jobs with the 

compute environments. Lastly, the jobs use a job definition, in JSON format, which defines 

specific information for the job, like container images, commands, number of vCPUs, RAM 

memory, environment variables and local or remote folder to mount on the container.  

Box 2 shows a brief extract of the job definition JSON script used in AWS. The 

containerProperties attribute defines the job properties. Image defines the container image, in 

this case our Docker image. Command defines the command to be executed inside the container. 

In the case of AWS, a single command can be outlined in the job definition, thus, complex 

pipelines with multiple steps can be encapsulated in a BASH script. This script can be stored 

inside the container image or the container can download it at runtime. For simplicity, we have 

included this script inside the Docker image. 

Box 2: Brief extract of the AWS job definition JSON file 

{ 
  ..., 
  "containerProperties": { 
    "image": "gcr.io/cbb-research-dl/transannot-cloud-cmp", 
    "vcpus": 64, 
    "memory": 131072, 
    "command": [ 
      "/usr/envs/transannot/bin/aws-pipeline.sh" 

    ], 
    "volumes": [ 

      { 
        "host": { 
            "sourcePath": "/data" 

        }, 
        "name": "data" 

      } 
    ], 
    "environment": [ 

      { 
        "name": "CPUs", 
        "value": "32" 

      } 
    ], 
    "mountPoints": [ 

      { 
        "containerPath": "/data", 
        "sourceVolume": "data" 

      } 
    ], 
    ..., 

  } 
} 

https://aws.amazon.com/batch/
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The AWS Batch system automatically creates all infrastructure, network components and 

compute instances, following the requirements of the compute environments. The default 

configuration of the Amazon Machine Image (AMI) used for the instances, however, is not 

configured to use local SSD disks available on certain machine types. This limits the default 

options on the AWS Batch system to certain types of workflows. Workflows that use intensive 

disk IO operations will have improved performance and efficiency if local SSD disks are used. 

Thus, a modified AMI capable of use the instance local disks is required for our study. We create 

a customized AMI for our study that is freely available in the AWS zone us-east1 with ID: ami-

0dac0383cac1dc96e. This AMI creates an array with the local SSD disks in the instance using 

the Linux utility mdadm. The array is formatted with XFS filesystem and mounted in a folder 

named /data.  

To improve the default AWS Batch options, Amazon offers a Virtual Private Cloud (VPC) that 

provides an extra layer of isolation for the resources used by the AWS Batch system. This VPC 

logically isolates all resources used in a defined virtual network improving the security. It is 

customizable for each compute problem. 

The templates used in our study to create all the components of the AWS Batch system are 

available at: https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/aws. All 

resources are created in the Jupyter notebook in: “02 - AWS-Batch”.  

GCP and AWS batch system limitations 

Bioinformatics best practices for pipeline execution require the containerization of each tool 

included in the analysis. Projects such as Bioconda [27] and Biocontainers [28] provide standard 

containerized images for thousands of bioinformatics tools. However, the batch system for both 

tested cloud providers requires that all tools used in the workflow to be included in a single 

container. Each action in the cloud job definition has associated a single Docker image that is 

used to execute the action task. Docker-in-Docker, the process to execute docker containers 

inside another Docker container is not permitted in both GCP and AWS. This limitation 

constrains users to containerize all tools involved in a workflow, into a single Docker image. 

Hence, knowledge on how to create Docker images is a requirement for the migration of 

workflows to the cloud. 

GCP and AWS transitory instances 

Both GCP and AWS offer access to transitory instances which are spare compute capacity at a 

reduced cost. These instances are called SPOT in AWS and Preemptible in GCP. The transitory 

instances at reduced cost results from the fact that the cloud provider might terminate the 

instance at any time. Preemptible prices in GCP are fixed but not in AWS. The cost of the SPOT 

instances has a minimum but can be increased to the normal EC2 price if the demand for 

resources increases.  

Transitory instances for workflow execution require extra processing steps to identify terminated 

jobs for resubmission. This is a reasonable option to reduce the cost of the analysis but requires a 

flexible timeframe to complete all analyses. Users need to be aware of this caveat. 

Jupyter Notebooks 

https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/aws
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Jupyter notebooks are an open-source web application framework for the creation and sharing of 

documents that contain live code [29]. It is a standard way to share scientific code for ease of 

reproducibility and reuse [30]. The implementation of our study was fully developed in Jupyter 

notebooks. Readers can reproduce our results and figures using the notebooks that are available 

at the project GitHub repository. The notebooks create all cloud resources and submit the jobs to 

the batch systems. They also retrieve the job logs in JSON format and create the figures 

automatically from those logs. Each notebook includes a description about its purpose and is 

named using a numeric prefix to highlight the execution order. 

The notebooks implemented in this study are designed to be executed on a local laptop or a 

workstation. Both interact asynchronously with the cloud providers using the command line 

APIs provided. In the case of GCP, we used the Google Cloud SDK 

(https://cloud.google.com/sdk). For AWS, we used the AWS Command Line Interface 

(https://aws.amazon.com/cli/). In these notebooks, the workflow input files are created, these are 

uploaded to each cloud provider storage space, the cloud batch systems are configured, the jobs 

are submitted and the results are retrieved. The notebooks interact with the cloud batch system to 

process jobs and retrieve results and logs stored in the results/PRJNA320545 folder.  

Table 1:Machine types with resources in each cloud 

 Results and Discussion 

In this study, we present an analysis of the complexity, cost and best practices for executing the 

core components of a transcriptome annotation workflow in the cloud. For our experiments, we 

used the two cloud provider partners of the NIH’s STRIDES Initiative: GCP and AWS. For each 

cloud provider, similar compute instances were tested using 16, 32 and 64 vCPUs. The machine 

types and their resources are described in Table 1. We used the transcriptome assembled from a 

public BioProject with ID PRJNA320545 for the organism Opuntia streptacantha (prickly pear 

Provider 
Machine 

type 
vCPU 

Memory 
(GB) 

Instance 

Local SSD 

(GB) 

Network 

Bandwidth 

(Gbps) 

USD/Hour 

AWS m5d 16 64 2 x 300 Up to 10 0.904 

AWS m5d 32 128 2 x 600 10 1.808 

AWS m5d 64 256 4 x 600 20 3.616 

AWS m5dn 16 64 2 x 300 Up to 25 1.088 

AWS m5dn 32 128 2 x 600 25 2.176 

AWS m5dn 64 256 4 x 600 75 4.352 

GCP n1 16 60 24 x 375 32 0.861 

GCP n1 32 120 24 x 375 32 1.393 

GCP n1 64 240 24 x 375 32 2.475 

GCP n2 16 64 24 x 375 32 0.951 

GCP n2 32 128 24 x 375 32 1.572 

GCP n2 64 256 24 x 375 32 2.816 

https://cloud.google.com/sdk
https://aws.amazon.com/cli/
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cactus). The transcriptome includes 474,563 transcripts generated with Trinity [31], and is 

available in data/PRJNA320545/transcriptome.fasta.gz. The transcriptome length distribution 

and statistical metrics are available in the 01 - Data Partitioning notebook.  

Figure 3: Time and cost for the 10,000 query size files. a) Total time for each input file for each configuration (Cloud 

provider/Machine Type/vCPUs). The total cost of processing the 20 input files (200,000 transcripts in total) is at the top of 

each box using normal and transitory instances. The cost of processing one transcript is at the bottom of each box. b) Time 

and percent of the total cost for instance creation, setup and release. c) Time and percent of the cost for transferring the 

BLAST databases to the instance from the cloud storage bucket (S3 in AWS and Cloud Storage in GCP). d) Time and 

percent of the cost for the CWL workflow execution. 



12 

 

From the Opuntia pool of transcripts, we analyzed three sizes of query files: 2,000, 6,000, and 

10,000 transcripts in each input query file. Two experiments were executed. First 20 FASTA 

files (input files for the workflow) for each query size were randomly created, see notebook “01 - 

Data Partitioning”. Each of these files were submitted independently as jobs to the batch systems 

on each cloud provider. For the second experiment, 120,000 transcripts were randomly selected 

and then partitioned in files with 2,000, 6,000, and 10,000 transcripts to analyze the relationship 

between query size, runtime and cost. 

Jobs were submitted to each cloud platform using the notebook “02 - Google Cloud Platform” 

and “02 - AWS-Batch”. In each notebook, the input files created for each experiment were 

copied to the respective cloud storage system, followed by job submissions for each 

configuration of machine type/CPU.  

Four times were collected from the jobs:  

1. the total run time  

2. the time to transfer the BLAST databases to the instance local SSD disk  

3. the time executing the CWL workflow 

4. the time for creation, setup and release of the instance 

Figure 3 shows the collected times for the 10,000-query size. In Figure 3a the total run time for 

each input file (each containing 10,000 transcripts) for a total of 200,000 transcripts processed 

for each cloud provider, machine type and the number of vCPUs.  

In addition, each box in Figure 3a shows the total cost for the 20 files using normal and 

transitory instances (top) and the cost of processing one transcript (bottom). The bottom row 

with three plots shows the remaining three times collected from the jobs.  

The total running time for the 10,000-query sized files are similar for the same number of vCPUs 

notwithstanding the cloud provider. Furthermore, this example shows how the running time can 

be reduced by more than a half by increasing the number of vCPUs. Unfortunately, this time 

reduction does not decrease the total cost of the project as the price per hour for machines with 

more vCPUs increases as well.  

The AWS platform is more efficient than the GCP during the instance creation, setup and 

release, see Figure 3b. This stage takes only 0.1% of the total cost. The GCP cost for this stage 

goes from 1.5% to 4.5% on bigger machines. The differences are due to the Amazon Elastic 

Container Service (ECS) which allocates new jobs on existing instances as soon as the instance 

gets free without releasing them, whereas GCP creates, sets up, and releases an instance for each 

job.  

Transferring the BLAST databases from each cloud storage (S3 in AWS and Cloud Storage in 

GCP) bucket, Figure 3c, (current size is 342GB), to the instance local SSD disk is a crucial step 

in reducing the cost of the analysis. Initially, we tested the default parameters in both cloud 

providers which use network storage devices taking an average of 1 hour which is about 30 % of 

the total cost of the analysis and takes more time than the CWL workflow execution. After 

customizing both batch systems to use the instance local SSD disks, the time was reduced to a 

range of 4 % to 11 % of the total cost in the 10,000 query size.  

As expected, the CWL workflow execution time is the most time-consuming part of the job, 

Figure 3d. All configurations show similar times for executing the CWL workflow. The GCP N1 
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machine type spent more time on the CWL workflow than the other machine types in all 

configurations because the GCP N1 is the Google first generation machine type with slower 

vCPUs.  

Figure 4 shows the time and cost of processing 120,000 transcripts using second generation 64 

vCPUs instances on each cloud provider. Reducing the number of transcripts per input file 

reduces the total run time but will also increase the cost of the analysis as more instances will be 

used. BLAST databases are transferred to more instances spending, on average, 10 minutes for 

each instance. For example, our experiment with the 10,000-query size processes all transcripts 

in about 105 minutes with a total cost of 59.37USD using 12 instances (GCP, N2, 64 CPU). 

Processing the same number of transcripts with a query size of 2,000 costs122.36USD with all 

transcripts processed in 43 minutes using 60 instances (GCP, N2, 64 CPU).  

We have determined that a transcriptome with ~500,000 transcripts can be processed in less than 

2 hours with a compute cost ranging from 200USD to 250USD using normal instances. For 

transitory instances (SPOT in AWS and preemptible in GCP) the total cost could be reduced to  

50USD for the complete analysis. However, the processing of all transcripts requires a flexible 

timeframe due to the availability of the transitory instances and the number of terminated jobs 

that require resubmission. In our opinion, these are reasonable costs that make the transcriptome 

annotation process in the cloud accessible to any genomic laboratory without access to an on-

premise computational infrastructure. 

Figure 4: Left plot shows the total processing time for 120,000 transcripts using different query sizes. Right plot shows the 

total cost using normal compared to transitory instances.  
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Best practices 

Our recommendation for best practices using public cloud providers for computational biology 

experiments are: 

1. For reproducibility, write the pipeline using a workflow language. 

We recommend CWL because the resulting product is portable and scalable, and it can be 

executed across a variety of computational environments as dissimilar as personal laptops 

or the cloud. As mentioned above, CWL is the workflow language with many workflow 

managers available and they can be directly executed in a container using the cwltool 

runner. 

2. Containerize the CWL workflow with Docker.  

Use Conda/Bioconda to install all Bioinformatics tools in the container image. 

3. Use Jupyter Notebooks for coding and documenting each step during experiments.   

4. Use the cloud provider batch system for deploying jobs. 

5. Cloud computing behaves differently than local workstations or on-premise clusters.  

Users should define and execute small tests with their data and workflow before 

submitting large jobs. Testing different cloud services and configurations could help to 

reduce the runtime and cost for the whole analysis.  

6. Use the instance local disks for computing instead the default network devices. 

7. Use transitory instances to reduce the cost ONLY if there are no timeframe restrictions for 

completing the analysis. 

Conclusion  

Despite differences in the configuration and setup of batch systems between GCP and AWS, the 

cost and processing time are similar for the type of workflow we designed for our experiment. In 

our opinion, for BLAST-based workflows, the choice of a cloud platform is not dependent on the 

workflow but, rather, on the specific details of the cloud provider. These specific details are 

related to the accessibility of each cloud platform for institutional use, the technical knowledge 

of the specific platform services, and/or the availability of open-source frameworks to deploy the 

workflows on a specific cloud provider. 

We found that GCP is easier to use as it only requires a JSON file for batch processing whereas 

AWS needs a complete setup of all batch system components. GCP is more suitable for daily 

data analysis work in research laboratories. On the other hand, AWS, once properly configured, 

is more efficient in terms of machine creation, setup and release. The ECS can reuse instances 

reducing the cost for large data analysis projects. AWS is more suitable for large data analysis 

groups to establish a set of queues and compute environments for multiple pipelines.   

Availability of supporting source code and requirements 

Project name: Cloud Transcriptome Annotation  

Project home page: https://github.com/ncbi/cloud-transcriptome-annotation  

Operating system(s): Linux and MacOS  

Programming languages: Python, BASH 

Other requirements: Conda/Bioconda, Jupyter Notebook 

https://github.com/ncbi/cloud-transcriptome-annotation
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CWL workflow: 

https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-

cbb/workflows/Annotation/transcriptome_annotation.cwl 

CWL Viewer: 

https://w3id.org/cwl/view/git/0d8650062673c8af2c1139c557afc4c3d6a1b53c/bin/cwl-ngs-

workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl 
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Reviewer reports: 
 
Response: We thank the referee for the comments and for their time dedicated to this 
manuscript. 

 
Reviewer #1: In this manuscript, the authors describe the usability and the performance of 
public cloud computing services and their batch job execution services for the transcriptome 
annotation pipeline. The authors also compare the services of two major public cloud 
vendors, Google Cloud Platform (GCP), and Amazon Web Service (AWS). The results show 
that the two cloud providers can provide a similar experience on its operation, workflow 
execution time, and payment for execution. The performed experiments follow the modern 
best practice  of data analysis using tools and frameworks for better reproducibility, including 
Docker container, the Common Workflow Language (CWL), and Jupyter Notebook. This article 
can be a good example of a reproducible study with open data and open-source software. 
 
This report is very significant with the practical statistics, which can be a helpful reference for 
all the cloud use cases in biomedical data analysis. The title states that this study focuses on 
the transcriptome annotation, but the output provides insight for all the cloud use cases. I 
suggest the authors change the title because the current one looks the best practice valid 
only for the transcriptome annotation in the wide variety of genomic data analysis. 
 
Response: We thank the referee for their comment and suggestions. It is true that the results of 
this study provide insight for many computational biology workflows but our experiments were 
limited to the transcriptome annotation process, specifically to the BLAST searches that are the 
core of the annotation. We think that the best practices and conclusions of this study should 
remain limited to the cloud transcriptome annotation process. 
 
Below are minor comments for the manuscript. 
 
Page 3, the last paragraph: 
The authors claim as "little has been published describing cloud costs and implementation 
best practices". However, there is a study implemented software to monitor the runtime 
metrics of a given workflow, and support the cost estimation for the executions on the cloud 
(https://doi.org/10.1093/gigascience/giz052). This article describes the cost for the normal 
EC2 instance and does not mention the batch execution services, yet it provides additional 
information to the readers. Please consider introducing this in the background section as a 
related study. (Disclaimer: I am the first author of this article) 
 
Response: We agree with the referee that this study provides additional information about the 
use and cost of computational biology workflows in the cloud. A new paragraph was added to 
the Background section: “The utilization of cloud environments for computational biology 
experiments is increasing [14-17], however, little has been published estimating cloud costs and 
implementation best practices. A recent work published by Ohta at al. [18] presents a tool 
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named CWL-metrics that collects runtime metrics of Docker containers and workflow metadata 
to analyze workflow resource requirements. This study presents a cost estimation for the 
execution on the cloud for AWS EC2 instances, but does not mention the cloud batch system 
for users to submit thousands of jobs to the cloud.” 
 
Page 12, Best practices 
The authors describe here that they recommend CWL as a workflow language. I think the 
authors should introduce the reason they chose CWL at the Method section where they first 
mention CWL (Page 4, Transcriptome Annotation Workflow). The authors also should provide 
a more practical reason to choose CWL because CWL is not only one framework that has 
portability and scalability. For example, having multiple workflow runners or its syntax easily 
parsed and connected to the resources such as runtime metrics can be a reason to choose 
CWL in this use case. 
 
Response: We agree with the referee about the inclusion of more information about CWL and 
the reason why it was selected for our study. We added a new section to the manuscript 
named: Common Workflow Language   
 
Workflow dependencies 
Both AWS batch and Google LifeScience allow users to specify only one container per one 
batch job. This means the user needs to install the workflow runner (in this article cwltool) 
and the tools to process the data (e.g., BLAST) in a single container. However, the current 
best practice for bioinformatics is to separate the containers for each tool. Thus, in most 
cases, users cannot reuse the containers they use for a normal computing environment to the 
cloud batch system. The authors need to mention the limitation that one needs to create a 
container for cloud batch systems. Another possible solution would be to run sibling 
containers from the main batch job container, though I do not know if it is feasible with AWS 
and GCP. 
 
Response: The referee’s comment is correct. Docker-in-Docker, the process to execute docker 
containers inside of another Docker container is not allowed in both GCP and AWS. We add a 
new section to the manuscript named GCP and AWS batch system limitations to address these 
limitations. 
 
Software and framework related to the cloud batch services Many workflow languages and 
runners are supporting AWS batch and GCP. For example, Nextflow 
(https://www.nextflow.io/docs/latest/awscloud.html), Cromwell 
(https://cromwell.readthedocs.io/en/stable/backends/Google/), or Snakemake 
(https://snakemake.readthedocs.io/en/stable/executing/cloud.html#executing-a-
snakemake-workflow-via-tibanna-on-amazon-web-services) can run the workflows via AWS 
batch or GCP. Task Execution Service (TES) of the Global Alliance for Genomics and Health 
(GA4GH) Cloud working group is also a framework to utilize the cloud batch system 
(https://github.com/ga4gh/task-execution-schemas). Some tools that run workflows on the 
cloud using the ETL framework (https://doi.org/10.21105/joss.01069) or cloud batch services 
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(https://github.com/DataBiosphere/dsub) are also available. These may not be directly 
relevant to this study, but it would be helpful for readers to understand how the cloud batch 
services are being used by the researchers.  
 
Response: We agree with the referee about the inclusion of more information about workflow 
managers. We added a new section to the manuscript named: Common Workflow Language.   
 
Reviewer #2: Reviewer's report 
Title: Transcriptome annotation in the cloud: complexity, best practices and cost. 
transcriptome data 
Reviewers: Qiao Xuanyuan and Lucas B. Carey 
 
Response: We thank the referees for their comments and time dedicated to this manuscript. 

 
Reviewer's report: 
The authors provide a perspective on transcriptome annotation in the cloud by presenting a 
comparative study of the two main public cloud providers, aiming to help the reader 
determine the proper cloud platform and its utilization in their research. The main strength of 
this paper is that it addresses a question that little has been studied before—the cloud cost 
estimates and implementation best practices. This is useful not only for labs doing 
transcriptome annotation, but, because all code is provided and very well commented, it 
might be of use for labs dealing with big data & distributed computation problems in 
general.  
The manuscript is well written, and I have only a few minor concerns on presentation and the 
information that is provided.  
 
1. The tested transcriptome data need to be clarified. I read the Data partitioning code for the 
creation of 20 FASTA files of the different query sizes (Fig 3). The variation in processing time 
among these files is consistent across clusters, and is therefore presumably due to differences 
in query sets in each file. This is surprising, as 10,000 is a large number. Are the differences 
because the sequence records were created sequentially from the input fasta file, with some 
genes having large numbers of hits? Would subsetting transcripts randomly result in more 
uniform processing times? There is almost two-fold variation in processing time between 
query files.  
 
Response: The referee’s comment is correct. The variation in processing time for queries with 
the same number of transcripts was due to the sequentially subsampling approach. We have 
modified the Data Partitioning notebook to create a random sampling of the transcriptome file. 
The notebook now shows the statistics for each file created. All measured parameters, mean, 
standard deviation, minimum length, 25%, 50% and 75% quarters show similar values for all 
files. Modified text was added in the beginning of the Results and Discussion section “From the 
Opuntia pool of transcripts, we analyzed three sizes of query files: 2,000, 6,000, and 10,000 
transcripts in each input query file. Two experiments were executed. First 20 FASTA files (input 
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files for the workflow) for each query size were randomly created, see notebook “01 - Data 
Partitioning”. Each of these files were submitted independently as jobs to the batch systems on 
each cloud provider. For the second experiment, 120,000 transcripts were randomly selected 
and then partitioned in files with 2,000, 6,000, and 10,000 transcripts to analyze the 
relationship between query size, runtime and cost.” 
 
2. Please include a figure showing the distribution of transcript lengths for Opuntia 
streptacantha, and write that it is the prickly pear cactus. Presumably timing depends on the 
transcript lengths and on the number of BLAST hits.  
 
Response: The referee’s comment about that the timing certainly depends on the transcript 
length and the number of BLAST hits. We added a cell to the 01 - Data Partitioning notebook 
that shows the transcriptome length distribution and its statistic metrics. 
 
3. It is difficult to draw the conclusions from the way the data are plotted in Figure 4. The 
author concluded that "Reducing the number of transcripts per input file will reduce the total 
running time but will also increase the cost of the project as more instances will be in used." 
In addition to the raw data boxplot, it is better to show how the time and cost scale with 
query size, or with the number of instances. (The number of instances equals query size 
divided by total transcripts). Controlling the total transcripts and making instances as variable 
may be helpful in balancing the interpretation and data.  
The plot below shows the relationship between the number of CPUs and time, and query size 
and time. (data collected using https://automeris.io/WebPlotDigitizer/). It also provides 
direct-viewing evidence to support the author's conclusion "AWS is more suitable for large 
data analysis groups to establish a set of queues and compute environments for multiple 
pipelines." Unlike the boxplot in the current manuscript, this figure also shows the 
differences in scaling between 16, 32 & 64 vCPU nodes.  
 
Please add graphs showing query file sizes vs time (as below) and query file sizes vs cost. As 
well as cost vs time. These are the important take-home messages from the manuscript, but 
it is difficult to extract this information from the current figures.  
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Response: We agree with the referee’s comment that the relationship between query size, time 
and cost was not well described in the way that the results were presented in Figure 4. We add 
a new experiment where we processed 120,000 transcripts using the three query sizes. The 
new Figure 4 shows the relationship between the time, cost and query size for processing a 
fixed number of transcripts. Additional text describing this experiment was added to the Result 
and Discussion section: “Figure 4 shows the time and cost of processing 120,000 transcripts 
using second generation 64 vCPUs instances on each cloud provider. Reducing the number of 
transcripts per input file reduces the total run time but will also increase the cost of the analysis 
as more instances will be used. BLAST databases are transferred to more instances spending, on 
average, 10 minutes for each instance. For example, our experiment with the 10,000-query size 
processes all transcripts in about 105 minutes with a total cost of 59.37USD using 12 instances 
(GCP, N2, 64 CPU). Processing the same number of transcripts with a query size of 2,000 
costs122.36USD with all transcripts processed in 43 minutes using 60 instances (GCP, N2, 64 
CPU). “ 
 
 

 
 
Optional (not necessary) suggestions: 
The figures could be improved to give a clearer visualization of the data. For Figure 3a, will 
adding a secondary Y-axis regarding money and draw a line plot be better to show the 
relationship between total time and cost? For Figure 3b&c&d, drawing a component bar chart 



could allow the readers to compare the job-dependent time among various configurations 
and demonstrates the proportionality at the same time.  
 
Response: We thank the referee for this suggestion. In our opinion, as the data we are plotting 
here is not continuous data, drawing a line between points in Figure 3a could imply the idea of 
continuity. For Figures 3b, 3c, and 3d drawing bars could hide the variability of the runtime for 
each input file that is associated with instance and network performance. We prefer to keep 
the figure as it is now. 
 
Reviewer #3: The authors provide a comparison of two cloud-based solutions for running 
BLAST-based transcriptomics analysis.  
With cloud-based solutions becoming more popular in science, I think this comparison, along 
with the practical recommendations provided in this manuscript will be interesting to 
readers.  
 
Response: We thank the referee for their comments and time dedicated to this manuscript. 

 
Some suggestions for enhancements below: 
 
1) The authors mention that there are numerous genomics companies in the space of cloud 
based biocomputations, citing reference 14 which discusses some of the legal responsibilities 
of groups doing such cloud based analyses. However, the authors do not connect this 
discussion back to the use of GCP or AWS, where users would need to obtain similar 
gaurantees of data security which may not be possible to obtain. Thus a comparison of 
pricing against the private firms which provide similar services would be interesting to see if 
they provide specific guarantees that affect researchers with data that requires specific legal 
requirements. 
 
Response: We thanks the referee for the comment. This study was executed under the NIH’s 
STRIDES initiative using the currently available cloud provider partners: AWS and GCP. We do 
not consider that a comparison between public and private cloud providers and their legal 
responsibilities is within the scope of this study. However, we think that mentioning some of 
the most important private cloud providers is necessary. Accordingly, we rephrased the 
paragraph as: 
 
In addition, private genomic cloud providers, for instance DNAnexus (www.dnanexus.com), 
DNAstar (www.dnastar.com), Seven Bridges (www.sevenbridges.com) and SciDAP (scidap.com), 
also are in the market and offer cloud-based genomics frameworks. These commercial cloud 
providers make the execution of computational biology experiments easier offering command 
line and web-based interfaces designed for genomic data analysis. 
 
2) I really like the inclusion of a best practices section with practical recommendations, and 
would love to see this section expanded: 



  a) In the first point the authors state: "We recommend CWL because the resulting product is 
portable and scalable,and it can be executed across a variety of computational environments 
as dissimilar as personal laptops or the cloud". However, these features are not exclusive to 
CWL, and solutions such as NextFlow and SnakeMake (and probably others) would also fit 
this description (and both of these also offer point 2 Conda and containerization). Please 
elaborate on your recommendation to include discussion of other workflow management 
systems, and explain in more detail why you would recommend CWL over these other 
solutions. 
 
Response: We agree with the referee about the inclusion of more information about CWL and 
workflow managers. We added a new section to the manuscript named: Common Workflow 
Language. 
 
  b) In point 5, you recommend that users "Execute a small test in the cloud to find the best 
instance type for a workflow". Do you have any further practical recommendations about 
how users can best go about this? E.g. how does one define a "small test run" from a full 
datasets, and how can they predict how this will scale up to the full analysis and determine 
the most suitable machine types?  
 
Response: We agree with the referee that defining a “small test run” may be difficult and it is 
intrinsically determined by the data and the workflow to be used. Our intention with this 
recommendation was to alert users that the cloud is a completely different environment than 
local workstations or on premise clusters. Users should test different cloud services and 
configurations before submitting a huge number of jobs. We edited that recommendation to: 
 
5. Cloud computing behaves differently than local workstations or on premise clusters. Users 

should define and execute small tests with their data and workflow before submitting large 
jobs. Testing different cloud services and configurations could help to reduce the runtime 
and cost for the whole analysis.  

 
3) It could be nice to expand the section about the Jupyter notebooks, and how these are 
being used, perhaps with some screenshots of results, and/or a small schematic showing that 
(if I understand correctly): the user interacts with the Jupyter notebook on their local 
machine, which in turn configures the cloud resources and starts the CWL workflow on the 
cloud, and then fetches the relevant results back and analyses them and displays results to 
the user. I think a schematic to this effect would be helpful for less technical readers and this 
in combination with some screenshots of the analysis results in Jupyter will increase the 
appeal of your work to research scientists. 
 
Response: We agree with the referee about expanding the Jupyter notebook section. We added 
more description to it. The notebooks are available on Github for reading and browsing. Adding 
more figures to the manuscript would increase its size and complexity. Jupyter notebooks are 



very popular and we think that less technical readers could easily find documentation about 
Jupyter notebooks without any problem.   
 
4) In the conclusion the authors state “In our opinion, the choice of a cloud platform is not 
dependent on the workflow but, rather, on the specific details of the cloud provider”. 
However, I don’t believe the authors can make this statement having tested only a singe 
workflow. So please rephrase the conclusion, or compare performance of different workflows 
covering a range of different characteristics (e.g. one that is memory-intensive, one that is 
CPU-intensive, and one that requires a lot of data transfer) and showing whether this 
conclusion holds, or whether some of the “specific details of the cloud provider” may make it 
more or less suitable for certain types of workflows.  
 
Response: We agree with the referee that the phrase was general. We rephrased to this: 
 
In our opinion, for BLAST based workflows, the choice of cloud platform is not dependent on the 
workflow but, rather, on the specific details and requirements of the cloud provider (e.g. NCBI 
maintains updated copies of the very large genetic sequence databases, such as nr, RefSeq and 
SRA, on both GCP and AWS). These choices include the accessibility for institutional use, the 
technical knowledge required for effective use of the platform services, and the availability of 
open-source frameworks such as application programming interfaces (APIs) to deploy the 
workflow. 
 
5) AWS, Google, and Azure are probably the "big 3" providers that most readers will l know 
about, and they might wonder why Azure was not included here and how it would compare. I 
understand that the authors cannot compare all providers, but it may be useful to at least 
mention Azure in the introduction where different providers are mentioned, and briefly 
explain if there were any specific reasons why you chose to compare AWS and GCP, and 
whether the same methodology could also be applied to Azure. 
 
Response: We thank the referee for the comment. This study was executed under the NIH’s 
STRIDES initiative using the current available cloud provider partners: AWS and GCP. We don’t 
have access to Azure, therefore, we cannot extrapolate the conclusions of this study to Azure or 
any other cloud provider.  
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