
GigaScience

Transcriptome annotation in the cloud: complexity, best practices and cost.
--Manuscript Draft--

Manuscript Number: GIGA-D-20-00202R1

Full Title: Transcriptome annotation in the cloud: complexity, best practices and cost.

Article Type: Technical Note

Funding Information: U.S. National Library of Medicine
(Intramural Research Program of the
National Library of Medicine, National
Center for Biotechnology Information at
the National Institutes of Health.)

Dr. David Landsman

Abstract: Background
The NIH Science and Technology Research Infrastructure for Discovery,
Experimentation, and Sustainability (STRIDES) initiative provides NIH-funded
researchers cost-effective access to industry-leading commercial cloud providers, such
as Amazon Web Services (AWS; Seattle, WA, USA) and Google Cloud Platform (GCP;
Mountain View, CA, USA). These cloud providers represent an alternative for the
execution of large computational biology experiments like transcriptome annotation
which is a complex analytical process that requires the integration of multiple biological
databases and several advanced computational tools. The core components of
annotation pipelines published since 2012 are BLAST sequence alignments using
annotated databases of both nucleotide or protein sequences almost exclusively with
networked on premises compute systems.
Findings
We present a comparative study of multiple BLAST sequence alignments using two
public cloud providers: AWS and GCP. We have prepared several Jupyter Notebooks
with all the code required to submit computing jobs to the batch system on each cloud
provider. We consider the consequence of the number of query transcripts in input files
and the effect on cost and processing time. We tested compute instances with 16, 32
and 64 vCPUs on each cloud provider. Four classes of timing results were collected:
the total run time, the time for transferring the BLAST databases to the instance local
solid state disk drive (SSD), the time to execute the Common Workflow Language
(CWL) script and the time for the creation, setup and release of an instance. This study
aims to establish an estimate of the cost and compute time needed for the execution of
multiple BLAST runs in a cloud environment.
Conclusions
We demonstrate that the public cloud providers are a practical alternative for the
execution of advanced computational biology experiments at low cost. Using our cloud
recipes, the BLAST alignments required to annotate a transcriptome with ~500,000
transcripts can be processed in less than 2 hours with a compute cost of about 200-
250 USD. In our opinion, for BLAST based workflows, the choice of cloud platform is
not dependent on the workflow but, rather, on the specific details and requirements of
the cloud provider (e.g. NCBI maintains updated copies of the very large genetic
sequence databases, such as nr, RefSeq and SRA, on both GCP and AWS). These
choices include the accessibility for institutional use, the technical knowledge required
for effective use of the platform services, and the availability of open-source
frameworks such as application programming interfaces (APIs) to deploy the workflow.

Corresponding Author: David Landsman, Ph.D
National Center for Biotechnology Information
Bethesda, Maryland UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution: National Center for Biotechnology Information

Corresponding Author's Secondary
Institution:

First Author: Roberto Vera Alvarez, Ph.D

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

First Author Secondary Information:

Order of Authors: Roberto Vera Alvarez, Ph.D

Leonardo Mariño-Ramírez, Ph.D

David Landsman, Ph.D

Order of Authors Secondary Information:

Response to Reviewers: Reviewer reports:

Response: We thank the referee for the comments and for their time dedicated to this
manuscript.

Reviewer #1: In this manuscript, the authors describe the usability and the
performance of public cloud computing services and their batch job execution services
for the transcriptome annotation pipeline. The authors also compare the services of two
major public cloud vendors, Google Cloud Platform (GCP), and Amazon Web Service
(AWS). The results show that the two cloud providers can provide a similar experience
on its operation, workflow execution time, and payment for execution. The performed
experiments follow the modern best practice of data analysis using tools and
frameworks for better reproducibility, including Docker container, the Common
Workflow Language (CWL), and Jupyter Notebook. This article can be a good example
of a reproducible study with open data and open-source software.

This report is very significant with the practical statistics, which can be a helpful
reference for all the cloud use cases in biomedical data analysis. The title states that
this study focuses on the transcriptome annotation, but the output provides insight for
all the cloud use cases. I suggest the authors change the title because the current one
looks the best practice valid only for the transcriptome annotation in the wide variety of
genomic data analysis.

Response: We thank the referee for their comment and suggestions. It is true that the
results of this study provide insight for many computational biology workflows but our
experiments were limited to the transcriptome annotation process, specifically to the
BLAST searches that are the core of the annotation. We think that the best practices
and conclusions of this study should remain limited to the cloud transcriptome
annotation process.

Below are minor comments for the manuscript.

Page 3, the last paragraph:
The authors claim as "little has been published describing cloud costs and
implementation best practices". However, there is a study implemented software to
monitor the runtime metrics of a given workflow, and support the cost estimation for the
executions on the cloud (https://doi.org/10.1093/gigascience/giz052). This article
describes the cost for the normal EC2 instance and does not mention the batch
execution services, yet it provides additional information to the readers. Please
consider introducing this in the background section as a related study. (Disclaimer: I
am the first author of this article)

Response: We agree with the referee that this study provides additional information
about the use and cost of computational biology workflows in the cloud. A new
paragraph was added to the Background section: “The utilization of cloud
environments for computational biology experiments is increasing [14-17], however,
little has been published estimating cloud costs and implementation best practices. A
recent work published by Ohta at al. [18] presents a tool named CWL-metrics that
collects runtime metrics of Docker containers and workflow metadata to analyze
workflow resource requirements. This study presents a cost estimation for the
execution on the cloud for AWS EC2 instances, but does not mention the cloud batch
system for users to submit thousands of jobs to the cloud.”

Page 12, Best practices
The authors describe here that they recommend CWL as a workflow language. I think
the authors should introduce the reason they chose CWL at the Method section where

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

they first mention CWL (Page 4, Transcriptome Annotation Workflow). The authors
also should provide a more practical reason to choose CWL because CWL is not only
one framework that has portability and scalability. For example, having multiple
workflow runners or its syntax easily parsed and connected to the resources such as
runtime metrics can be a reason to choose CWL in this use case.

Response: We agree with the referee about the inclusion of more information about
CWL and the reason why it was selected for our study. We added a new section to the
manuscript named: Common Workflow Language

Workflow dependencies
Both AWS batch and Google LifeScience allow users to specify only one container per
one batch job. This means the user needs to install the workflow runner (in this article
cwltool) and the tools to process the data (e.g., BLAST) in a single container. However,
the current best practice for bioinformatics is to separate the containers for each tool.
Thus, in most cases, users cannot reuse the containers they use for a normal
computing environment to the cloud batch system. The authors need to mention the
limitation that one needs to create a container for cloud batch systems. Another
possible solution would be to run sibling containers from the main batch job container,
though I do not know if it is feasible with AWS and GCP.

Response: The referee’s comment is correct. Docker-in-Docker, the process to
execute docker containers inside of another Docker container is not allowed in both
GCP and AWS. We add a new section to the manuscript named GCP and AWS batch
system limitations to address these limitations.

Software and framework related to the cloud batch services Many workflow languages
and runners are supporting AWS batch and GCP. For example, Nextflow
(https://www.nextflow.io/docs/latest/awscloud.html), Cromwell
(https://cromwell.readthedocs.io/en/stable/backends/Google/), or Snakemake
(https://snakemake.readthedocs.io/en/stable/executing/cloud.html#executing-a-
snakemake-workflow-via-tibanna-on-amazon-web-services) can run the workflows via
AWS batch or GCP. Task Execution Service (TES) of the Global Alliance for Genomics
and Health (GA4GH) Cloud working group is also a framework to utilize the cloud
batch system (https://github.com/ga4gh/task-execution-schemas). Some tools that run
workflows on the cloud using the ETL framework (https://doi.org/10.21105/joss.01069)
or cloud batch services (https://github.com/DataBiosphere/dsub) are also available.
These may not be directly relevant to this study, but it would be helpful for readers to
understand how the cloud batch services are being used by the researchers.

Response: We agree with the referee about the inclusion of more information about
workflow managers. We added a new section to the manuscript named: Common
Workflow Language.

Reviewer #2: Reviewer's report
Title: Transcriptome annotation in the cloud: complexity, best practices and cost.
transcriptome data
Reviewers: Qiao Xuanyuan and Lucas B. Carey

Response: We thank the referees for their comments and time dedicated to this
manuscript.

Reviewer's report:
The authors provide a perspective on transcriptome annotation in the cloud by
presenting a comparative study of the two main public cloud providers, aiming to help
the reader determine the proper cloud platform and its utilization in their research. The
main strength of this paper is that it addresses a question that little has been studied
before—the cloud cost estimates and implementation best practices. This is useful not
only for labs doing transcriptome annotation, but, because all code is provided and
very well commented, it might be of use for labs dealing with big data & distributed
computation problems in general.
The manuscript is well written, and I have only a few minor concerns on presentation
and the information that is provided.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

1. The tested transcriptome data need to be clarified. I read the Data partitioning code
for the creation of 20 FASTA files of the different query sizes (Fig 3). The variation in
processing time among these files is consistent across clusters, and is therefore
presumably due to differences in query sets in each file. This is surprising, as 10,000 is
a large number. Are the differences because the sequence records were created
sequentially from the input fasta file, with some genes having large numbers of hits?
Would subsetting transcripts randomly result in more uniform processing times? There
is almost two-fold variation in processing time between query files.

Response: The referee’s comment is correct. The variation in processing time for
queries with the same number of transcripts was due to the sequentially subsampling
approach. We have modified the Data Partitioning notebook to create a random
sampling of the transcriptome file. The notebook now shows the statistics for each file
created. All measured parameters, mean, standard deviation, minimum length, 25%,
50% and 75% quarters show similar values for all files. Modified text was added in the
beginning of the Results and Discussion section “From the Opuntia pool of transcripts,
we analyzed three sizes of query files: 2,000, 6,000, and 10,000 transcripts in each
input query file. Two experiments were executed. First 20 FASTA files (input files for
the workflow) for each query size were randomly created, see notebook “01 - Data
Partitioning”. Each of these files were submitted independently as jobs to the batch
systems on each cloud provider. For the second experiment, 120,000 transcripts were
randomly selected and then partitioned in files with 2,000, 6,000, and 10,000
transcripts to analyze the relationship between query size, runtime and cost.”

2. Please include a figure showing the distribution of transcript lengths for Opuntia
streptacantha, and write that it is the prickly pear cactus. Presumably timing depends
on the transcript lengths and on the number of BLAST hits.

Response: The referee’s comment about that the timing certainly depends on the
transcript length and the number of BLAST hits. We added a cell to the 01 - Data
Partitioning notebook that shows the transcriptome length distribution and its statistic
metrics.

3. It is difficult to draw the conclusions from the way the data are plotted in Figure 4.
The author concluded that "Reducing the number of transcripts per input file will reduce
the total running time but will also increase the cost of the project as more instances
will be in used."
In addition to the raw data boxplot, it is better to show how the time and cost scale with
query size, or with the number of instances. (The number of instances equals query
size divided by total transcripts). Controlling the total transcripts and making instances
as variable may be helpful in balancing the interpretation and data.
The plot below shows the relationship between the number of CPUs and time, and
query size and time. (data collected using https://automeris.io/WebPlotDigitizer/). It
also provides direct-viewing evidence to support the author's conclusion "AWS is more
suitable for large data analysis groups to establish a set of queues and compute
environments for multiple pipelines." Unlike the boxplot in the current manuscript, this
figure also shows the differences in scaling between 16, 32 & 64 vCPU nodes.

Please add graphs showing query file sizes vs time (as below) and query file sizes vs
cost. As well as cost vs time. These are the important take-home messages from the
manuscript, but it is difficult to extract this information from the current figures.

Response: We agree with the referee’s comment that the relationship between query
size, time and cost was not well described in the way that the results were presented in
Figure 4. We add a new experiment where we processed 120,000 transcripts using the
three query sizes. The new Figure 4 shows the relationship between the time, cost and
query size for processing a fixed number of transcripts. Additional text describing this
experiment was added to the Result and Discussion section: “Figure 4 shows the time
and cost of processing 120,000 transcripts using second generation 64 vCPUs
instances on each cloud provider. Reducing the number of transcripts per input file
reduces the total run time but will also increase the cost of the analysis as more
instances will be used. BLAST databases are transferred to more instances spending,
on average, 10 minutes for each instance. For example, our experiment with the

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

10,000-query size processes all transcripts in about 105 minutes with a total cost of
59.37USD using 12 instances (GCP, N2, 64 CPU). Processing the same number of
transcripts with a query size of 2,000 costs122.36USD with all transcripts processed in
43 minutes using 60 instances (GCP, N2, 64 CPU). “

Optional (not necessary) suggestions:
The figures could be improved to give a clearer visualization of the data. For Figure 3a,
will adding a secondary Y-axis regarding money and draw a line plot be better to show
the relationship between total time and cost? For Figure 3b&c&d, drawing a component
bar chart could allow the readers to compare the job-dependent time among various
configurations and demonstrates the proportionality at the same time.

Response: We thank the referee for this suggestion. In our opinion, as the data we are
plotting here is not continuous data, drawing a line between points in Figure 3a could
imply the idea of continuity. For Figures 3b, 3c, and 3d drawing bars could hide the
variability of the runtime for each input file that is associated with instance and network
performance. We prefer to keep the figure as it is now.

Reviewer #3: The authors provide a comparison of two cloud-based solutions for
running BLAST-based transcriptomics analysis.
With cloud-based solutions becoming more popular in science, I think this comparison,
along with the practical recommendations provided in this manuscript will be interesting
to readers.

Response: We thank the referee for their comments and time dedicated to this
manuscript.

Some suggestions for enhancements below:

1) The authors mention that there are numerous genomics companies in the space of
cloud based biocomputations, citing reference 14 which discusses some of the legal
responsibilities of groups doing such cloud based analyses. However, the authors do
not connect this discussion back to the use of GCP or AWS, where users would need
to obtain similar gaurantees of data security which may not be possible to obtain. Thus
a comparison of pricing against the private firms which provide similar services would
be interesting to see if they provide specific guarantees that affect researchers with
data that requires specific legal requirements.

Response: We thanks the referee for the comment. This study was executed under the
NIH’s STRIDES initiative using the currently available cloud provider partners: AWS
and GCP. We do not consider that a comparison between public and private cloud
providers and their legal responsibilities is within the scope of this study. However, we
think that mentioning some of the most important private cloud providers is necessary.
Accordingly, we rephrased the paragraph as:

In addition, private genomic cloud providers, for instance DNAnexus
(www.dnanexus.com), DNAstar (www.dnastar.com), Seven Bridges
(www.sevenbridges.com) and SciDAP (scidap.com), also are in the market and offer
cloud-based genomics frameworks. These commercial cloud providers make the
execution of computational biology experiments easier offering command line and
web-based interfaces designed for genomic data analysis.

2) I really like the inclusion of a best practices section with practical recommendations,
and would love to see this section expanded:
 a) In the first point the authors state: "We recommend CWL because the resulting
product is portable and scalable,and it can be executed across a variety of
computational environments as dissimilar as personal laptops or the cloud". However,
these features are not exclusive to CWL, and solutions such as NextFlow and
SnakeMake (and probably others) would also fit this description (and both of these also
offer point 2 Conda and containerization). Please elaborate on your recommendation
to include discussion of other workflow management systems, and explain in more

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

detail why you would recommend CWL over these other solutions.

Response: We agree with the referee about the inclusion of more information about
CWL and workflow managers. We added a new section to the manuscript named:
Common Workflow Language.

 b) In point 5, you recommend that users "Execute a small test in the cloud to find the
best instance type for a workflow". Do you have any further practical recommendations
about how users can best go about this? E.g. how does one define a "small test run"
from a full datasets, and how can they predict how this will scale up to the full analysis
and determine the most suitable machine types?

Response: We agree with the referee that defining a “small test run” may be difficult
and it is intrinsically determined by the data and the workflow to be used. Our intention
with this recommendation was to alert users that the cloud is a completely different
environment than local workstations or on premise clusters. Users should test different
cloud services and configurations before submitting a huge number of jobs. We edited
that recommendation to:

5.Cloud computing behaves differently than local workstations or on premise clusters.
Users should define and execute small tests with their data and workflow before
submitting large jobs. Testing different cloud services and configurations could help to
reduce the runtime and cost for the whole analysis.

3) It could be nice to expand the section about the Jupyter notebooks, and how these
are being used, perhaps with some screenshots of results, and/or a small schematic
showing that (if I understand correctly): the user interacts with the Jupyter notebook on
their local machine, which in turn configures the cloud resources and starts the CWL
workflow on the cloud, and then fetches the relevant results back and analyses them
and displays results to the user. I think a schematic to this effect would be helpful for
less technical readers and this in combination with some screenshots of the analysis
results in Jupyter will increase the appeal of your work to research scientists.

Response: We agree with the referee about expanding the Jupyter notebook section.
We added more description to it. The notebooks are available on Github for reading
and browsing. Adding more figures to the manuscript would increase its size and
complexity. Jupyter notebooks are very popular and we think that less technical
readers could easily find documentation about Jupyter notebooks without any problem.

4) In the conclusion the authors state “In our opinion, the choice of a cloud platform is
not dependent on the workflow but, rather, on the specific details of the cloud provider”.
However, I don’t believe the authors can make this statement having tested only a
singe workflow. So please rephrase the conclusion, or compare performance of
different workflows covering a range of different characteristics (e.g. one that is
memory-intensive, one that is CPU-intensive, and one that requires a lot of data
transfer) and showing whether this conclusion holds, or whether some of the “specific
details of the cloud provider” may make it more or less suitable for certain types of
workflows.

Response: We agree with the referee that the phrase was general. We rephrased to
this:

In our opinion, for BLAST based workflows, the choice of cloud platform is not
dependent on the workflow but, rather, on the specific details and requirements of the
cloud provider (e.g. NCBI maintains updated copies of the very large genetic sequence
databases, such as nr, RefSeq and SRA, on both GCP and AWS). These choices
include the accessibility for institutional use, the technical knowledge required for
effective use of the platform services, and the availability of open-source frameworks
such as application programming interfaces (APIs) to deploy the workflow.

5) AWS, Google, and Azure are probably the "big 3" providers that most readers will l
know about, and they might wonder why Azure was not included here and how it would
compare. I understand that the authors cannot compare all providers, but it may be
useful to at least mention Azure in the introduction where different providers are

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

mentioned, and briefly explain if there were any specific reasons why you chose to
compare AWS and GCP, and whether the same methodology could also be applied to
Azure.

Response: We thank the referee for the comment. This study was executed under the
NIH’s STRIDES initiative using the current available cloud provider partners: AWS and
GCP. We don’t have access to Azure, therefore, we cannot extrapolate the conclusions
of this study to Azure or any other cloud provider.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

1

Transcriptome annotation in the cloud: complexity, best
practices and cost.

Roberto Vera Alvarez1, Leonardo Mariño-Ramírez1,2, and David Landsman1,*

1 Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine,

NIH, Bethesda, MD, USA.

2 Current address: Division of Intramural Research, National Institute on Minority Health and Health Disparities,

NIH, Bethesda, MD, USA.

*To whom correspondence should be addressed.

Abstract

Background

The NIH Science and Technology Research Infrastructure for Discovery, Experimentation,

and Sustainability (STRIDES) initiative provides NIH-funded researchers cost-effective

access to industry-leading commercial cloud providers, such as Amazon Web Services (AWS;

Seattle, WA, USA) and Google Cloud Platform (GCP; Mountain View, CA, USA). These cloud

providers represent an alternative for the execution of large computational biology experiments

like transcriptome annotation which is a complex analytical process that requires the integration

of multiple biological databases and several advanced computational tools. The core components

of annotation pipelines published since 2012 are BLAST sequence alignments using annotated

databases of both nucleotide or protein sequences almost exclusively with networked on

premises compute systems.

Findings

We present a comparative study of multiple BLAST sequence alignments using two public cloud

providers: AWS and GCP. We have prepared several Jupyter Notebooks with all the code

required to submit computing jobs to the batch system on each cloud provider. We consider the

consequence of the number of query transcripts in input files and the effect on cost and

processing time. We tested compute instances with 16, 32 and 64 vCPUs on each cloud provider.

Four classes of timing results were collected: the total run time, the time for transferring the

BLAST databases to the instance local solid state disk drive (SSD), the time to execute the

Common Workflow Language (CWL) script and the time for the creation, setup and release of

an instance. This study aims to establish an estimate of the cost and compute time needed for the

execution of multiple BLAST runs in a cloud environment.

Conclusions

We demonstrate that the public cloud providers are a practical alternative for the execution of

advanced computational biology experiments at low cost. Using our cloud recipes, the BLAST

alignments required to annotate a transcriptome with ~500,000 transcripts can be processed in

less than 2 hours with a compute cost of about 200-250 USD. In our opinion, for BLAST based

Manuscript Click here to access/download;Manuscript;Main manuscript.docx

https://www.editorialmanager.com/giga/download.aspx?id=107294&guid=a82d8395-072a-4623-99c9-e05374c285a8&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=107294&guid=a82d8395-072a-4623-99c9-e05374c285a8&scheme=1

2

workflows, the choice of cloud platform is not dependent on the workflow but, rather, on the

specific details and requirements of the cloud provider (e.g. NCBI maintains updated copies of

the very large genetic sequence databases, such as nr, RefSeq and SRA, on both GCP and AWS).

These choices include the accessibility for institutional use, the technical knowledge required for

effective use of the platform services, and the availability of open-source frameworks such as

application programming interfaces (APIs) to deploy the workflow.

Background

The NIH Science and Technology Research Infrastructure for Discovery, Experimentation,

and Sustainability (STRIDES) initiative (https://cloud.cit.nih.gov/) permits NIH supported

scientists to explore the use of cloud environments and provides cost-effective access to

industry-leading commercial cloud providers. The NIH’s STRIDES cloud provider partners, at

the time of this study, were Amazon Web Services (AWS; Seattle, WA, USA) and Google Cloud

Platform (GCP; Mountain View, CA, USA). Cloud computing offers an on-demand model

where a user can dynamically allocate “unlimited” compute resources and then release them as

soon as the analysis is complete [1]. They offer a reduced cost of compute resources and a

friendly user interface that makes cloud computing accessible for large computational biology

experiments.

As part of the STRIDES initiative, NIH-funded institutions began to upload and compute data in

the cloud. Public biological databases like the Sequence Read Archive (SRA,

https://www.ncbi.nlm.nih.gov/sra/docs/sra-cloud/) and computational tools like BLAST

(https://github.com/ncbi/blast_plus_docs), from the National Center for Biotechnology

Information (NCBI), were migrated and are available for public use on AWS and GCP. In

addition, NIH-funded researchers are contributing to the NIH’s STRIDE initiative not only

migrating data analysis workflows to the cloud but also disseminating the suitability of the cloud

computing for computational biology experiments.

The annotation of RNA transcripts with functional and biological processes is an important step

in developing an understanding of the biological complexity of an organism. Annotation is a

challenging process that requires the integration of multiple biological databases and several

computational tools to accurately assign a function to an RNA product. Available public

information on a target organism is the main limitation of the annotation of non-model

organisms. The NCBI Genome database, for instance, contains 54,049 genome-sequencing

projects by organism [2]. This includes 12,204 eukaryotes genomes for more than 1,000 species

or strains at different assembly levels (95 complete genomes, 1,872 chromosomes, 7,743

scaffolds, and 2,494 contigs (https://www.ncbi.nlm.nih.gov/genome/browse/#!/eukaryotes/),

accessed on June 30, 2020. Although these data include an important group of organisms, there

is a lack of annotation of several species that have significant public health and economic

importance. Significantly, in the plant kingdom, Viridiplantae, only 3 complete genomes, 331

chromosomes, 625 scaffolds, and 394 contigs are annotated. The advances in next-generation

sequencing technologies and the decrease in the cost of sequencing a complete transcriptome is

driving a new era in which annotation will be increasing, important and productive.

A review of published manuscripts since 2012 [3-11] reveals that many developed pipelines have

a common core component and use the NCBI BLAST tools [12] to align assembled

transcriptomes against annotated databases of nucleotides or proteins to identify similarity and

https://www.ncbi.nlm.nih.gov/sra/docs/sra-cloud/
https://github.com/ncbi/blast_plus_docs
https://www.ncbi.nlm.nih.gov/genome/browse/#!/eukaryotes/

3

infer function. After an assembly, these alignments are the initial step to identify close and/or

distant homologous genes, proteins, and functional domains that could be cross-referenced with

other public databases, such as Gene Ontology [13], to generate new annotations of query

sequences. As the number of transcripts assembled per study increases, the computing power and

storage required to align these transcripts to the BLAST databases also increases. On premises

computer infrastructures (including server farms) have been used mainly for the computation of

sequence alignments using BLAST. Many laboratories, however, are not equipped with the

compute power required for the analysis of increased transcriptome sequencing results. Although

a minimum infrastructure could be easy to build and maintain, it may be unnecessary and less

financially burdensome with the advent of cloud computing and its utilization in computational

biology.

The utilization of cloud environments for computational biology experiments is increasing [14-

17]. However, little has been published estimating cloud costs and implementation best practices.

A recent work published by Ohta at al. [18] presents a tool named CWL-metrics that collects

runtime metrics of Docker containers and workflow metadata to analyze workflow resource

requirements. This study presents a cost estimation for the execution on the cloud for AWS EC2

instances but does not mention the cloud batch system for users to submit thousands of jobs to

the cloud.

Modern cloud providers offer “unlimited” compute resources that can be accessed on-demand.

An instance, as the virtual machines are named in the cloud environment, is deployed using a

variety of operating systems like GNU/Linux or Microsoft Windows. Users pay only for the time

that the instance is running plus the cost of other resources such as network egress and/or the size

of network storage devices. A workflow can be deployed on a manually created instance but this

is not cost efficient as the instance will need to be manually reconfigured with workflow

dependencies. It will also remain active once the analysis is completed which wastes resources.

Private genomic cloud providers, for instance DNAnexus (www.dnanexus.com), DNAstar

(www.dnastar.com), Seven Bridges (www.sevenbridges.com) and SciDAP (scidap.com), and

others, also offer cloud-based genomics frameworks. These commercial cloud providers make

the execution of computational biology experiments easier by offering command line and web-

based interfaces designed for genomic data analysis.

Most cloud providers offer a batch system that can do the configuration automatically for users

to submit several parallel jobs. The batch system makes the process of instance creation, setup

and termination fully automatic.

Batch processing is a technique for processing data as a single large collection of iterative steps

instead of individually. It reduces user interactivity to process submissions by automating the

remaining steps. Modern cloud providers offer a batch system that can be personalized to process

many different workflows. Figure 1 shows the component of a generic cloud batch system. It is

comprised of a batch queue to which users submit the tasks. Each task uses a job definition to

create a job where all computational resources and the workflow steps are outlined. Then, an

instance is automatically created with the resources requested by the job. Since all the data for

the analysis is in the cloud, the instance downloads the input data from the cloud storage system

and, after successfully completing the workflow, uploads the results, releasing all computational

resources.

4

In this manuscript, we present a comparative study of multiple BLAST searches and alignments

required to annotate transcriptome data. This study aims to establish an estimation of the cost and

time needed for the execution of multiple BLAST searches on the cloud. Our recommendation

on best practices for deploying computational biology workflows in the cloud are also presented.

Methods

Transcriptome Annotation Workflow

This study focuses only on the many BLAST alignments which are the most compute-

demanding core of a transcriptome annotation process. BLAST alignments require considerable

compute resources which generate intermediate results that are used to complete the annotation

process. The remaining part of the annotation pipeline is excluded from our study as it can be

executed on a workstation and does not require an extensive use of the cloud.

The input for the workflow is a transcriptome in FASTA format. First, TransDecoder [19] is

executed to generate all open reading frames (ORFs) from the input file. Then, BLASTP and

RPS-BLAST are executed on the TransDecoder output files generating a list of homologous

proteins and conserved protein domains (BLASTP uses the BLAST nr database, and RPS-

BLAST uses the NCBI Conserved Domain Database (CDD) [20]). The transcriptome files are

also used as inputs for BLASTN and RPST-BLASTN which are executed using the BLAST nt

database and the NCBI CDD database, respectively. These processes generate a list of

homologous genes and a list of conserved domains, see Figure 2. The workflow was

implemented using the Common Workflow Language (CWL) [21] and is freely available at:

Figure 1: Basic components in a cloud-based batch system

5

https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-

cbb/workflows/Annotation/transcriptome_annotation.cwl

The workflow uses as input a FASTA file, which we named query, and includes multiple

transcripts to be processed. The number of transcripts to be included in a query is another

parameter that merits an analysis. The size of the query affects the workflow processing time as a

complete transcriptome could be comprised of thousands to hundreds of thousands of transcripts

assembled from a next-generation sequencing (NGS) experiment [22].

Our analysis is based on the execution of the workflow with a batch system provided by each

cloud platform. This approach keeps the compute time, and therefore the cost, to a minimum. It

also limits the user interaction with the jobs to only the submission step.

Containerized workflows

Containerizing a workflow involves bundling it with all its dependencies and configuration files

so that it can be executed across different computing environments. The workflow dependencies

in the container uses the same version and compiled libraries when it is executed in any

computing infrastructure which would make the process highly reproducible. In this study, we

use Docker as the container engine. Docker permits the creation of container images that can be

used on a personal laptop or on a cloud platform. The workflow container image generated is

freely available from the Google Container registry (https://cloud.google.com/container-registry)

with name: gcr.io/cbb-research-dl/transannot-cloud-cmp

Figure 2: Schema of the transcriptome annotation workflow

https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl
https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl
https://cloud.google.com/container-registry

6

All files used to generate this image are available at: https://github.com/ncbi/cloud-

transcriptome-annotation/tree/master/config/gcp/docker

Common Workflow Language

Common Workflow Language (CWL) [21] is an open standard workflow language used to

describe and implement complex pipelines which uses interchangeable blocks. The resulting

product is portable and scalable. It can be executed across a variety of hardware environments as

dissimilar as personal laptops or the cloud.

Workflow managers are tools that simplify the execution of workflows in multiple computational

environments. Some have been developed to manage and execute CWL workflows like Toil[23],

CWL-Airflow [24], Arvados (https://arvados.org/) and REANA (http://reanahub.io/). Others,

however, use their own workflow languages like Nextflow [25], and SnakePipes [26]. All

provide a unified interface to users to choose the compute environment to process jobs. Users

can configure the workflow manager to submit jobs to a high-performance compute cluster or to

a cloud provider. Nevertheless, all these workflow managers use the cloud batch system to

submit jobs for computing in the cloud.

In this study, we aim to estimate the minimum cost of executing a transcriptome annotation

pipeline in the cloud. We selected CWL because it is the workflow language with many available

workflow managers. Also, CWL provides a reference implementation runner: cwltool

(https://github.com/common-workflow-language/cwltool). This runner can be executed on the

command line inside a GCP or AWS job definition minimizing all dependencies for processing a

workflow. We intentionally avoided the use of workflow managers to be able to quantify runtime

for the workflow steps as precise as possible.

GCP

The Google Cloud Platform (GCP) offers a batch system specifically designed for life sciences,

the Cloud Life Sciences (https://cloud.google.com/life-sciences). This system was initially

Google Genomics but has evolved to allow the scientific community to process biomedical data

at scale.

Cloud Life Sciences offers an Application Program Interface (API) implemented for users to

develop their own workflow in JSON format using three main attributes: actions, environments

and resources. Actions are the list of commands to execute using a defined container image.

They also include statements to mount local solid-state drives (SSD) or network storage devices,

defined in resources. Environments define the environment variables available inside the

container. Finally, resources define the instance type and the local SSD or network storage

devices.

The API, using the JSON described in Box 1, automatically creates instances on-demand,

following the requirements defined in the resources section of the job JSON file. GCP also

provides a customized container image where the instance interacts with other GCP products like

Google Storage where data is stored. In addition, GCP creates the instances using a customized

Linux operating system that formats and mounts the instance local disks making them available

for the jobs.

https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/gcp/docker
https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/gcp/docker
https://arvados.org/
https://github.com/common-workflow-language/cwltool
https://cloud.google.com/life-sciences

7

Box 1 shows a brief extract of the pipeline used in GCP. We show only the main activity where

the command attribute defines the command line to execute the CWL workflow. ImageUri

attribute defines the container image used to run the command. In this case, our previously

created Docker image. Finally, the mounts attribute defines the paths in the container to mount

the disks created in the resources attribute.

The VirtualMachine attribute defines the resources used to create the job instance. In this

attribute, users can define instance boot disk size, operating system, extra disks and the machine

type. The complete JSON file is available at: https://github.com/ncbi/cloud-transcriptome-

annotation/blob/master/config/gcp/pipeline.json

Box 1: Brief extract of the GCP pipeline definition JSON file

{
 "actions": [

 ...,

 {
 "commands": [
 "/bin/bash",
 "-c",
 "cwltool --no-container --on-error continue --tmpdir-prefix /data/ --tmp-outdir-prefix /data/ --outdir /data/${SAMPLE}
https://raw.githubusercontent.com/ncbi/cloud-transcriptome-annotation/master/bin/cwl-ngs-workflows-
cbb/workflows/Annotation/transcriptome_annotation.cwl

 --blast_db_dir /data --threads ${CPUs} --evalue 1e-5 --blast_nt_db nt --blast_nr_db nr --blast_cdd_db split-cdd --fasta
/data/${SAMPLE}.fa >> /data/pipeline.log 2>&1"
],
 "imageUri": "gcr.io/cbb-research-dl/transannot-cloud-cmp",
 "mounts": [
 {
 "disk": "gcloud-shared",
 "path": "/data"
 }
]
 },

 ...,

 "environment": {

 "CPUs": "64"
 },

 "resources": {
 "virtualMachine": {
 "bootDiskSizeGb": 60,
 "bootImage": "projects/cos-cloud/global/images/family/cos-stable",
 "disks": [
 {
 "name": "gcloud-shared",
 "sizeGb": 600,
 "type":"local-ssd"
 }
],
 "machineType": "n1-standard-64",

 ...,

 }
 }

}

https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/config/gcp/pipeline.json
https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/config/gcp/pipeline.json

8

AWS

AWS Batch (https://aws.amazon.com/batch/) is the batch system provided by Amazon Web

Services. It is comprised of compute environments, job queues and job definitions. The compute

environment defines the computational resources to be used by the batch jobs. It is connected to

the Amazon Elastic Container Service (ECS) which is a fully managed service that creates and

manages computer clusters inside the Amazon cloud environment. The resources defined by the

compute environment are used by the ECS to create and setup instances in which the workload is

distributed. Job queues are used as an intermediate service to associate submitted jobs with the

compute environments. Lastly, the jobs use a job definition, in JSON format, which defines

specific information for the job, like container images, commands, number of vCPUs, RAM

memory, environment variables and local or remote folder to mount on the container.

Box 2 shows a brief extract of the job definition JSON script used in AWS. The

containerProperties attribute defines the job properties. Image defines the container image, in

this case our Docker image. Command defines the command to be executed inside the container.

In the case of AWS, a single command can be outlined in the job definition, thus, complex

pipelines with multiple steps can be encapsulated in a BASH script. This script can be stored

inside the container image or the container can download it at runtime. For simplicity, we have

included this script inside the Docker image.

Box 2: Brief extract of the AWS job definition JSON file

{
 ...,
 "containerProperties": {
 "image": "gcr.io/cbb-research-dl/transannot-cloud-cmp",
 "vcpus": 64,
 "memory": 131072,
 "command": [
 "/usr/envs/transannot/bin/aws-pipeline.sh"

],
 "volumes": [

 {
 "host": {
 "sourcePath": "/data"

 },
 "name": "data"

 }
],
 "environment": [

 {
 "name": "CPUs",
 "value": "32"

 }
],
 "mountPoints": [

 {
 "containerPath": "/data",
 "sourceVolume": "data"

 }
],
 ...,

 }
}

https://aws.amazon.com/batch/

9

The AWS Batch system automatically creates all infrastructure, network components and

compute instances, following the requirements of the compute environments. The default

configuration of the Amazon Machine Image (AMI) used for the instances, however, is not

configured to use local SSD disks available on certain machine types. This limits the default

options on the AWS Batch system to certain types of workflows. Workflows that use intensive

disk IO operations will have improved performance and efficiency if local SSD disks are used.

Thus, a modified AMI capable of use the instance local disks is required for our study. We create

a customized AMI for our study that is freely available in the AWS zone us-east1 with ID: ami-

0dac0383cac1dc96e. This AMI creates an array with the local SSD disks in the instance using

the Linux utility mdadm. The array is formatted with XFS filesystem and mounted in a folder

named /data.

To improve the default AWS Batch options, Amazon offers a Virtual Private Cloud (VPC) that

provides an extra layer of isolation for the resources used by the AWS Batch system. This VPC

logically isolates all resources used in a defined virtual network improving the security. It is

customizable for each compute problem.

The templates used in our study to create all the components of the AWS Batch system are

available at: https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/aws. All

resources are created in the Jupyter notebook in: “02 - AWS-Batch”.

GCP and AWS batch system limitations

Bioinformatics best practices for pipeline execution require the containerization of each tool

included in the analysis. Projects such as Bioconda [27] and Biocontainers [28] provide standard

containerized images for thousands of bioinformatics tools. However, the batch system for both

tested cloud providers requires that all tools used in the workflow to be included in a single

container. Each action in the cloud job definition has associated a single Docker image that is

used to execute the action task. Docker-in-Docker, the process to execute docker containers

inside another Docker container is not permitted in both GCP and AWS. This limitation

constrains users to containerize all tools involved in a workflow, into a single Docker image.

Hence, knowledge on how to create Docker images is a requirement for the migration of

workflows to the cloud.

GCP and AWS transitory instances

Both GCP and AWS offer access to transitory instances which are spare compute capacity at a

reduced cost. These instances are called SPOT in AWS and Preemptible in GCP. The transitory

instances at reduced cost results from the fact that the cloud provider might terminate the

instance at any time. Preemptible prices in GCP are fixed but not in AWS. The cost of the SPOT

instances has a minimum but can be increased to the normal EC2 price if the demand for

resources increases.

Transitory instances for workflow execution require extra processing steps to identify terminated

jobs for resubmission. This is a reasonable option to reduce the cost of the analysis but requires a

flexible timeframe to complete all analyses. Users need to be aware of this caveat.

Jupyter Notebooks

https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/aws

10

Jupyter notebooks are an open-source web application framework for the creation and sharing of

documents that contain live code [29]. It is a standard way to share scientific code for ease of

reproducibility and reuse [30]. The implementation of our study was fully developed in Jupyter

notebooks. Readers can reproduce our results and figures using the notebooks that are available

at the project GitHub repository. The notebooks create all cloud resources and submit the jobs to

the batch systems. They also retrieve the job logs in JSON format and create the figures

automatically from those logs. Each notebook includes a description about its purpose and is

named using a numeric prefix to highlight the execution order.

The notebooks implemented in this study are designed to be executed on a local laptop or a

workstation. Both interact asynchronously with the cloud providers using the command line

APIs provided. In the case of GCP, we used the Google Cloud SDK

(https://cloud.google.com/sdk). For AWS, we used the AWS Command Line Interface

(https://aws.amazon.com/cli/). In these notebooks, the workflow input files are created, these are

uploaded to each cloud provider storage space, the cloud batch systems are configured, the jobs

are submitted and the results are retrieved. The notebooks interact with the cloud batch system to

process jobs and retrieve results and logs stored in the results/PRJNA320545 folder.

Table 1:Machine types with resources in each cloud

 Results and Discussion

In this study, we present an analysis of the complexity, cost and best practices for executing the

core components of a transcriptome annotation workflow in the cloud. For our experiments, we

used the two cloud provider partners of the NIH’s STRIDES Initiative: GCP and AWS. For each

cloud provider, similar compute instances were tested using 16, 32 and 64 vCPUs. The machine

types and their resources are described in Table 1. We used the transcriptome assembled from a

public BioProject with ID PRJNA320545 for the organism Opuntia streptacantha (prickly pear

Provider
Machine

type
vCPU

Memory
(GB)

Instance

Local SSD

(GB)

Network

Bandwidth

(Gbps)

USD/Hour

AWS m5d 16 64 2 x 300 Up to 10 0.904

AWS m5d 32 128 2 x 600 10 1.808

AWS m5d 64 256 4 x 600 20 3.616

AWS m5dn 16 64 2 x 300 Up to 25 1.088

AWS m5dn 32 128 2 x 600 25 2.176

AWS m5dn 64 256 4 x 600 75 4.352

GCP n1 16 60 24 x 375 32 0.861

GCP n1 32 120 24 x 375 32 1.393

GCP n1 64 240 24 x 375 32 2.475

GCP n2 16 64 24 x 375 32 0.951

GCP n2 32 128 24 x 375 32 1.572

GCP n2 64 256 24 x 375 32 2.816

https://cloud.google.com/sdk
https://aws.amazon.com/cli/

11

cactus). The transcriptome includes 474,563 transcripts generated with Trinity [31], and is

available in data/PRJNA320545/transcriptome.fasta.gz. The transcriptome length distribution

and statistical metrics are available in the 01 - Data Partitioning notebook.

Figure 3: Time and cost for the 10,000 query size files. a) Total time for each input file for each configuration (Cloud

provider/Machine Type/vCPUs). The total cost of processing the 20 input files (200,000 transcripts in total) is at the top of

each box using normal and transitory instances. The cost of processing one transcript is at the bottom of each box. b) Time

and percent of the total cost for instance creation, setup and release. c) Time and percent of the cost for transferring the

BLAST databases to the instance from the cloud storage bucket (S3 in AWS and Cloud Storage in GCP). d) Time and

percent of the cost for the CWL workflow execution.

12

From the Opuntia pool of transcripts, we analyzed three sizes of query files: 2,000, 6,000, and

10,000 transcripts in each input query file. Two experiments were executed. First 20 FASTA

files (input files for the workflow) for each query size were randomly created, see notebook “01 -

Data Partitioning”. Each of these files were submitted independently as jobs to the batch systems

on each cloud provider. For the second experiment, 120,000 transcripts were randomly selected

and then partitioned in files with 2,000, 6,000, and 10,000 transcripts to analyze the relationship

between query size, runtime and cost.

Jobs were submitted to each cloud platform using the notebook “02 - Google Cloud Platform”

and “02 - AWS-Batch”. In each notebook, the input files created for each experiment were

copied to the respective cloud storage system, followed by job submissions for each

configuration of machine type/CPU.

Four times were collected from the jobs:

1. the total run time

2. the time to transfer the BLAST databases to the instance local SSD disk

3. the time executing the CWL workflow

4. the time for creation, setup and release of the instance

Figure 3 shows the collected times for the 10,000-query size. In Figure 3a the total run time for

each input file (each containing 10,000 transcripts) for a total of 200,000 transcripts processed

for each cloud provider, machine type and the number of vCPUs.

In addition, each box in Figure 3a shows the total cost for the 20 files using normal and

transitory instances (top) and the cost of processing one transcript (bottom). The bottom row

with three plots shows the remaining three times collected from the jobs.

The total running time for the 10,000-query sized files are similar for the same number of vCPUs

notwithstanding the cloud provider. Furthermore, this example shows how the running time can

be reduced by more than a half by increasing the number of vCPUs. Unfortunately, this time

reduction does not decrease the total cost of the project as the price per hour for machines with

more vCPUs increases as well.

The AWS platform is more efficient than the GCP during the instance creation, setup and

release, see Figure 3b. This stage takes only 0.1% of the total cost. The GCP cost for this stage

goes from 1.5% to 4.5% on bigger machines. The differences are due to the Amazon Elastic

Container Service (ECS) which allocates new jobs on existing instances as soon as the instance

gets free without releasing them, whereas GCP creates, sets up, and releases an instance for each

job.

Transferring the BLAST databases from each cloud storage (S3 in AWS and Cloud Storage in

GCP) bucket, Figure 3c, (current size is 342GB), to the instance local SSD disk is a crucial step

in reducing the cost of the analysis. Initially, we tested the default parameters in both cloud

providers which use network storage devices taking an average of 1 hour which is about 30 % of

the total cost of the analysis and takes more time than the CWL workflow execution. After

customizing both batch systems to use the instance local SSD disks, the time was reduced to a

range of 4 % to 11 % of the total cost in the 10,000 query size.

As expected, the CWL workflow execution time is the most time-consuming part of the job,

Figure 3d. All configurations show similar times for executing the CWL workflow. The GCP N1

13

machine type spent more time on the CWL workflow than the other machine types in all

configurations because the GCP N1 is the Google first generation machine type with slower

vCPUs.

Figure 4 shows the time and cost of processing 120,000 transcripts using second generation 64

vCPUs instances on each cloud provider. Reducing the number of transcripts per input file

reduces the total run time but will also increase the cost of the analysis as more instances will be

used. BLAST databases are transferred to more instances spending, on average, 10 minutes for

each instance. For example, our experiment with the 10,000-query size processes all transcripts

in about 105 minutes with a total cost of 59.37USD using 12 instances (GCP, N2, 64 CPU).

Processing the same number of transcripts with a query size of 2,000 costs122.36USD with all

transcripts processed in 43 minutes using 60 instances (GCP, N2, 64 CPU).

We have determined that a transcriptome with ~500,000 transcripts can be processed in less than

2 hours with a compute cost ranging from 200USD to 250USD using normal instances. For

transitory instances (SPOT in AWS and preemptible in GCP) the total cost could be reduced to

50USD for the complete analysis. However, the processing of all transcripts requires a flexible

timeframe due to the availability of the transitory instances and the number of terminated jobs

that require resubmission. In our opinion, these are reasonable costs that make the transcriptome

annotation process in the cloud accessible to any genomic laboratory without access to an on-

premise computational infrastructure.

Figure 4: Left plot shows the total processing time for 120,000 transcripts using different query sizes. Right plot shows the

total cost using normal compared to transitory instances.

14

Best practices

Our recommendation for best practices using public cloud providers for computational biology

experiments are:

1. For reproducibility, write the pipeline using a workflow language.

We recommend CWL because the resulting product is portable and scalable, and it can be

executed across a variety of computational environments as dissimilar as personal laptops

or the cloud. As mentioned above, CWL is the workflow language with many workflow

managers available and they can be directly executed in a container using the cwltool

runner.

2. Containerize the CWL workflow with Docker.

Use Conda/Bioconda to install all Bioinformatics tools in the container image.

3. Use Jupyter Notebooks for coding and documenting each step during experiments.

4. Use the cloud provider batch system for deploying jobs.

5. Cloud computing behaves differently than local workstations or on-premise clusters.

Users should define and execute small tests with their data and workflow before

submitting large jobs. Testing different cloud services and configurations could help to

reduce the runtime and cost for the whole analysis.

6. Use the instance local disks for computing instead the default network devices.

7. Use transitory instances to reduce the cost ONLY if there are no timeframe restrictions for

completing the analysis.

Conclusion

Despite differences in the configuration and setup of batch systems between GCP and AWS, the

cost and processing time are similar for the type of workflow we designed for our experiment. In

our opinion, for BLAST-based workflows, the choice of a cloud platform is not dependent on the

workflow but, rather, on the specific details of the cloud provider. These specific details are

related to the accessibility of each cloud platform for institutional use, the technical knowledge

of the specific platform services, and/or the availability of open-source frameworks to deploy the

workflows on a specific cloud provider.

We found that GCP is easier to use as it only requires a JSON file for batch processing whereas

AWS needs a complete setup of all batch system components. GCP is more suitable for daily

data analysis work in research laboratories. On the other hand, AWS, once properly configured,

is more efficient in terms of machine creation, setup and release. The ECS can reuse instances

reducing the cost for large data analysis projects. AWS is more suitable for large data analysis

groups to establish a set of queues and compute environments for multiple pipelines.

Availability of supporting source code and requirements

Project name: Cloud Transcriptome Annotation

Project home page: https://github.com/ncbi/cloud-transcriptome-annotation

Operating system(s): Linux and MacOS

Programming languages: Python, BASH

Other requirements: Conda/Bioconda, Jupyter Notebook

https://github.com/ncbi/cloud-transcriptome-annotation

15

CWL workflow:

https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-

cbb/workflows/Annotation/transcriptome_annotation.cwl

CWL Viewer:

https://w3id.org/cwl/view/git/0d8650062673c8af2c1139c557afc4c3d6a1b53c/bin/cwl-ngs-

workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl

Abbreviations

AMI: Amazon Machine Images (AMI)

API: Application Program Interface

AWS: Amazon Web Services

CDD: Conserved Domain Database

CWL: Common Workflow Language

ECS: Amazon Elastic Container Service

GCP: Google Cloud Platform

NCBI: National Center for Biotechnology Information

ORFs: Open Reading Frames

SSD: Solid State Disk

VPC: Virtual Private Cloud

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

RVA, LMR and DL contributed to the design of the annotation workflow and the manuscript

preparation. RVA designed, implemented and executed all cloud environments, configurations

and experiments. All authors read and approved all versions of the manuscript.

Funding

This work was supported by the Intramural Research Program of the National Library of

Medicine, National Center for Biotechnology Information at the National Institutes of Health.

Acknowledgements

We would like to thank:

NCBI BLAST Group: Christiam Camacho, Vadim Zalunin, Greg Boratyn, Ryan Connor and

Tom Madden for their support with BLAST.

https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl
https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl
https://w3id.org/cwl/view/git/0d8650062673c8af2c1139c557afc4c3d6a1b53c/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl
https://w3id.org/cwl/view/git/0d8650062673c8af2c1139c557afc4c3d6a1b53c/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl

16

NCBI Cloud and System Group: Al Graeff, Brian Koser, Andrew Arensburger, Brad Plecs, Ron

Patterson and Dima Beloslyudtsev for their support with the cloud platforms.

References

1. Langmead, B. and A. Nellore, Cloud computing for genomic data analysis and
collaboration. Nature Reviews Genetics, 2018. 19(4): p. 208-219.

2. Sayers, E.W., et al., Database resources of the National Center for Biotechnology
Information. Nucleic Acids Res, 2020. 48(D1): p. D9-D16.

3. Al-Qurainy, F., et al., Comprehensive Stress-Based De Novo Transcriptome Assembly and
Annotation of Guar (Cyamopsis tetragonoloba (L.) Taub.): An Important Industrial and
Forage Crop. Int J Genomics, 2019. 2019: p. 7295859.

4. Chabikwa, T.G., et al., De novo transcriptome assembly and annotation for gene
discovery in avocado, macadamia and mango. Sci Data, 2020. 7(1): p. 9.

5. Ji, P., et al., Characterization of common carp transcriptome: sequencing, de novo
assembly, annotation and comparative genomics. PLoS One, 2012. 7(4): p. e35152.

6. Torre, S., et al., RNA-seq analysis of Quercus pubescens Leaves: de novo transcriptome
assembly, annotation and functional markers development. PLoS One, 2014. 9(11): p.
e112487.

7. Carruthers, M., et al., De novo transcriptome assembly, annotation and comparison of
four ecological and evolutionary model salmonid fish species. BMC Genomics, 2018.
19(1): p. 32.

8. Haas, B.J., et al., De novo transcript sequence reconstruction from RNA-seq using the
Trinity platform for reference generation and analysis. Nat Protoc, 2013. 8(8): p. 1494-
512.

9. Bryant, D.M., et al., A Tissue-Mapped Axolotl De Novo Transcriptome Enables
Identification of Limb Regeneration Factors. Cell Rep, 2017. 18(3): p. 762-776.

10. Vera Alvarez, R., et al., Workflow and web application for annotating NCBI BioProject
transcriptome data. Database (Oxford), 2017. 2017.

11. Gamez, R.M., et al., Banana (Musa acuminata) transcriptome profiling in response to
rhizobacteria: Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006.
BMC Genomics, 2019. 20(1): p. 378.

12. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-10.
13. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene

Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9.
14. Peters, K., et al., PhenoMeNal: processing and analysis of metabolomics data in the

cloud. Gigascience, 2019. 8(2).
15. Belyeu, J.R., et al., SV-plaudit: A cloud-based framework for manually curating

thousands of structural variants. Gigascience, 2018. 7(7).
16. Kiar, G., et al., Science in the cloud (SIC): A use case in MRI connectomics. Gigascience,

2017. 6(5): p. 1-10.
17. Hiltemann, S., et al., CGtag: complete genomics toolkit and annotation in a cloud-based

Galaxy. Gigascience, 2014. 3(1): p. 1.

17

18. Ohta, T., T. Tanjo, and O. Ogasawara, Accumulating computational resource usage of
genomic data analysis workflow to optimize cloud computing instance selection.
Gigascience, 2019. 8(4).

19. Haas, B. and A. Papanicolaou. TransDecoder (Find Coding Regions Within Transcripts).
2020; Available from: https://github.com/TransDecoder/TransDecoder/wiki.

20. Yang, M., et al., NCBI's Conserved Domain Database and Tools for Protein Domain
Analysis. Curr Protoc Bioinformatics, 2020. 69(1): p. e90.

21. Peter, A., et al., Common Workflow Language, v1.0. 2016.
22. Pertea, M., The human transcriptome: an unfinished story. Genes (Basel), 2012. 3(3): p.

344-60.
23. Vivian, J., et al., Toil enables reproducible, open source, big biomedical data analyses.

Nat Biotechnol, 2017. 35(4): p. 314-316.
24. Kotliar, M., A.V. Kartashov, and A. Barski, CWL-Airflow: a lightweight pipeline manager

supporting Common Workflow Language. Gigascience, 2019. 8(7).
25. Di Tommaso, P., et al., Nextflow enables reproducible computational workflows. Nat

Biotechnol, 2017. 35(4): p. 316-319.
26. Bhardwaj, V., et al., snakePipes: facilitating flexible, scalable and integrative epigenomic

analysis. Bioinformatics, 2019.
27. Gruning, B., et al., Bioconda: sustainable and comprehensive software distribution for

the life sciences. Nat Methods, 2018. 15(7): p. 475-476.
28. da Veiga Leprevost, F., et al., BioContainers: an open-source and community-driven

framework for software standardization. Bioinformatics, 2017. 33(16): p. 2580-2582.
29. Shen, H., Interactive notebooks: Sharing the code. Nature, 2014. 515(7525): p. 151-2.
30. Perkel, J.M., Why Jupyter is data scientists' computational notebook of choice. Nature,

2018. 563(7729): p. 145-146.
31. Grabherr, M.G., et al., Full-length transcriptome assembly from RNA-Seq data without a

reference genome. Nat Biotechnol, 2011. 29(7): p. 644-52.

https://github.com/TransDecoder/TransDecoder/wiki

Figure 3 Click here to access/download;Figure;Figure 3.png

https://www.editorialmanager.com/giga/download.aspx?id=107297&guid=671caca2-5c2e-4908-bb90-f6cf3610b40a&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=107297&guid=671caca2-5c2e-4908-bb90-f6cf3610b40a&scheme=1

Figure 4 Click here to access/download;Figure;Figure 4.png

https://www.editorialmanager.com/giga/download.aspx?id=107298&guid=f9bf650c-f244-4209-94c0-bdb5702f0d18&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=107298&guid=f9bf650c-f244-4209-94c0-bdb5702f0d18&scheme=1

Figure 1 Click here to access/download;Figure;Figure 1.png

https://www.editorialmanager.com/giga/download.aspx?id=107302&guid=255b75b8-6fda-4511-8ac4-4834d99058ab&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=107302&guid=255b75b8-6fda-4511-8ac4-4834d99058ab&scheme=1

Figure 2 Click here to access/download;Figure;Figure 2.png

https://www.editorialmanager.com/giga/download.aspx?id=107303&guid=e5bcb7b5-3d74-4c88-911f-c2234052dd14&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=107303&guid=e5bcb7b5-3d74-4c88-911f-c2234052dd14&scheme=1

November 13, 2020

Dear Editors,

We would like to resubmit our manuscript entitled “Transcriptome annotation in the cloud: complexity,

best practices and cost” for your consideration for publication in GigaScience as a Technical Note.

We thank the editors and referees for the considerable time dedicated to our manuscript. The referees’

revisions were particularly constructive and have helped us to improve our study. We think that we have

answered all their questions and addressed all their comments in the manuscript.

In this manuscript, we present a comparative study of multiple BLAST alignments using two public cloud

providers: Amazon Web Services (AWS; Seattle, WA, USA) and Google Cloud Platform (GCP; Mountain

View, CA, USA). These are the cloud providers partners of the NIH Science and Technology Research

Infrastructure for Discovery, Experimentation, and Sustainability (STRIDES) initiative. We have

prepared several Jupyter Notebooks with all the code required to submit BLAST jobs to the batch system

on each cloud provider in order to reproduce or extend our results. We demonstrate that the public cloud

providers are a practical alternative for executing advanced computational biology experiments at quite low

cost. Using our cloud recipes, the BLAST alignments required to annotate a transcriptome with ~500,000

transcripts can be processed in less than 2 hours with a computing cost of about US$ 200-250.

All code used during this study is freely available at: https://github.com/ncbi/cloud-transcriptome-

annotation

Thank you very much for your consideration of our manuscript. We look forward to your reply on this

submission.

Sincerely,

Roberto Vera Alvarez 1,a, Leonardo Mariño-Ramírez 1,2,b and David Landsman 1,c

1 Computational Biology Branch, National Center for Biotechnology Information, National Library of

Medicine, Natioanl Insitutes of Health, Bethesda, MD, USA.
2 Current address: Division of Intramural Research, National Institute on Minority Health and Health

Disparities, NIH, Bethesda, MD, USA.

a. veraalva@ncbi.nlm.nih.gov

b. marino@nih.gov

c. landsman@ncbi.nlm.nih.gov

Personal Cover Click here to access/download;Personal Cover;Cover_letter.docx

https://github.com/ncbi/cloud-transcriptome-annotation
https://github.com/ncbi/cloud-transcriptome-annotation
mailto:landsman@ncbi.nlm.nih.gov
https://www.editorialmanager.com/giga/download.aspx?id=107299&guid=eda11d32-1d59-4f0c-b753-ce29b183845e&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=107299&guid=eda11d32-1d59-4f0c-b753-ce29b183845e&scheme=1

Reviewer reports:

Response: We thank the referee for the comments and for their time dedicated to this
manuscript.

Reviewer #1: In this manuscript, the authors describe the usability and the performance of
public cloud computing services and their batch job execution services for the transcriptome
annotation pipeline. The authors also compare the services of two major public cloud
vendors, Google Cloud Platform (GCP), and Amazon Web Service (AWS). The results show
that the two cloud providers can provide a similar experience on its operation, workflow
execution time, and payment for execution. The performed experiments follow the modern
best practice of data analysis using tools and frameworks for better reproducibility, including
Docker container, the Common Workflow Language (CWL), and Jupyter Notebook. This article
can be a good example of a reproducible study with open data and open-source software.

This report is very significant with the practical statistics, which can be a helpful reference for
all the cloud use cases in biomedical data analysis. The title states that this study focuses on
the transcriptome annotation, but the output provides insight for all the cloud use cases. I
suggest the authors change the title because the current one looks the best practice valid
only for the transcriptome annotation in the wide variety of genomic data analysis.

Response: We thank the referee for their comment and suggestions. It is true that the results of
this study provide insight for many computational biology workflows but our experiments were
limited to the transcriptome annotation process, specifically to the BLAST searches that are the
core of the annotation. We think that the best practices and conclusions of this study should
remain limited to the cloud transcriptome annotation process.

Below are minor comments for the manuscript.

Page 3, the last paragraph:
The authors claim as "little has been published describing cloud costs and implementation
best practices". However, there is a study implemented software to monitor the runtime
metrics of a given workflow, and support the cost estimation for the executions on the cloud
(https://doi.org/10.1093/gigascience/giz052). This article describes the cost for the normal
EC2 instance and does not mention the batch execution services, yet it provides additional
information to the readers. Please consider introducing this in the background section as a
related study. (Disclaimer: I am the first author of this article)

Response: We agree with the referee that this study provides additional information about the
use and cost of computational biology workflows in the cloud. A new paragraph was added to
the Background section: “The utilization of cloud environments for computational biology
experiments is increasing [14-17], however, little has been published estimating cloud costs and
implementation best practices. A recent work published by Ohta at al. [18] presents a tool

Response to reviewers Click here to access/download;Personal
Cover;Anwers_to_Reviewers.docx

https://doi.org/10.1093/gigascience/giz052
https://www.editorialmanager.com/giga/download.aspx?id=107300&guid=6b1b362d-7d64-40a0-9394-708d022814af&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=107300&guid=6b1b362d-7d64-40a0-9394-708d022814af&scheme=1

named CWL-metrics that collects runtime metrics of Docker containers and workflow metadata
to analyze workflow resource requirements. This study presents a cost estimation for the
execution on the cloud for AWS EC2 instances, but does not mention the cloud batch system
for users to submit thousands of jobs to the cloud.”

Page 12, Best practices
The authors describe here that they recommend CWL as a workflow language. I think the
authors should introduce the reason they chose CWL at the Method section where they first
mention CWL (Page 4, Transcriptome Annotation Workflow). The authors also should provide
a more practical reason to choose CWL because CWL is not only one framework that has
portability and scalability. For example, having multiple workflow runners or its syntax easily
parsed and connected to the resources such as runtime metrics can be a reason to choose
CWL in this use case.

Response: We agree with the referee about the inclusion of more information about CWL and
the reason why it was selected for our study. We added a new section to the manuscript
named: Common Workflow Language

Workflow dependencies
Both AWS batch and Google LifeScience allow users to specify only one container per one
batch job. This means the user needs to install the workflow runner (in this article cwltool)
and the tools to process the data (e.g., BLAST) in a single container. However, the current
best practice for bioinformatics is to separate the containers for each tool. Thus, in most
cases, users cannot reuse the containers they use for a normal computing environment to the
cloud batch system. The authors need to mention the limitation that one needs to create a
container for cloud batch systems. Another possible solution would be to run sibling
containers from the main batch job container, though I do not know if it is feasible with AWS
and GCP.

Response: The referee’s comment is correct. Docker-in-Docker, the process to execute docker
containers inside of another Docker container is not allowed in both GCP and AWS. We add a
new section to the manuscript named GCP and AWS batch system limitations to address these
limitations.

Software and framework related to the cloud batch services Many workflow languages and
runners are supporting AWS batch and GCP. For example, Nextflow
(https://www.nextflow.io/docs/latest/awscloud.html), Cromwell
(https://cromwell.readthedocs.io/en/stable/backends/Google/), or Snakemake
(https://snakemake.readthedocs.io/en/stable/executing/cloud.html#executing-a-
snakemake-workflow-via-tibanna-on-amazon-web-services) can run the workflows via AWS
batch or GCP. Task Execution Service (TES) of the Global Alliance for Genomics and Health
(GA4GH) Cloud working group is also a framework to utilize the cloud batch system
(https://github.com/ga4gh/task-execution-schemas). Some tools that run workflows on the
cloud using the ETL framework (https://doi.org/10.21105/joss.01069) or cloud batch services

https://www.nextflow.io/docs/latest/awscloud.html
https://cromwell.readthedocs.io/en/stable/backends/Google/
https://snakemake.readthedocs.io/en/stable/executing/cloud.html#executing-a-snakemake-workflow-via-tibanna-on-amazon-web-services
https://snakemake.readthedocs.io/en/stable/executing/cloud.html#executing-a-snakemake-workflow-via-tibanna-on-amazon-web-services
https://github.com/ga4gh/task-execution-schemas
https://doi.org/10.21105/joss.01069

(https://github.com/DataBiosphere/dsub) are also available. These may not be directly
relevant to this study, but it would be helpful for readers to understand how the cloud batch
services are being used by the researchers.

Response: We agree with the referee about the inclusion of more information about workflow
managers. We added a new section to the manuscript named: Common Workflow Language.

Reviewer #2: Reviewer's report
Title: Transcriptome annotation in the cloud: complexity, best practices and cost.
transcriptome data
Reviewers: Qiao Xuanyuan and Lucas B. Carey

Response: We thank the referees for their comments and time dedicated to this manuscript.

Reviewer's report:
The authors provide a perspective on transcriptome annotation in the cloud by presenting a
comparative study of the two main public cloud providers, aiming to help the reader
determine the proper cloud platform and its utilization in their research. The main strength of
this paper is that it addresses a question that little has been studied before—the cloud cost
estimates and implementation best practices. This is useful not only for labs doing
transcriptome annotation, but, because all code is provided and very well commented, it
might be of use for labs dealing with big data & distributed computation problems in
general.
The manuscript is well written, and I have only a few minor concerns on presentation and the
information that is provided.

1. The tested transcriptome data need to be clarified. I read the Data partitioning code for the
creation of 20 FASTA files of the different query sizes (Fig 3). The variation in processing time
among these files is consistent across clusters, and is therefore presumably due to differences
in query sets in each file. This is surprising, as 10,000 is a large number. Are the differences
because the sequence records were created sequentially from the input fasta file, with some
genes having large numbers of hits? Would subsetting transcripts randomly result in more
uniform processing times? There is almost two-fold variation in processing time between
query files.

Response: The referee’s comment is correct. The variation in processing time for queries with
the same number of transcripts was due to the sequentially subsampling approach. We have
modified the Data Partitioning notebook to create a random sampling of the transcriptome file.
The notebook now shows the statistics for each file created. All measured parameters, mean,
standard deviation, minimum length, 25%, 50% and 75% quarters show similar values for all
files. Modified text was added in the beginning of the Results and Discussion section “From the
Opuntia pool of transcripts, we analyzed three sizes of query files: 2,000, 6,000, and 10,000
transcripts in each input query file. Two experiments were executed. First 20 FASTA files (input

https://github.com/DataBiosphere/dsub

files for the workflow) for each query size were randomly created, see notebook “01 - Data
Partitioning”. Each of these files were submitted independently as jobs to the batch systems on
each cloud provider. For the second experiment, 120,000 transcripts were randomly selected
and then partitioned in files with 2,000, 6,000, and 10,000 transcripts to analyze the
relationship between query size, runtime and cost.”

2. Please include a figure showing the distribution of transcript lengths for Opuntia
streptacantha, and write that it is the prickly pear cactus. Presumably timing depends on the
transcript lengths and on the number of BLAST hits.

Response: The referee’s comment about that the timing certainly depends on the transcript
length and the number of BLAST hits. We added a cell to the 01 - Data Partitioning notebook
that shows the transcriptome length distribution and its statistic metrics.

3. It is difficult to draw the conclusions from the way the data are plotted in Figure 4. The
author concluded that "Reducing the number of transcripts per input file will reduce the total
running time but will also increase the cost of the project as more instances will be in used."
In addition to the raw data boxplot, it is better to show how the time and cost scale with
query size, or with the number of instances. (The number of instances equals query size
divided by total transcripts). Controlling the total transcripts and making instances as variable
may be helpful in balancing the interpretation and data.
The plot below shows the relationship between the number of CPUs and time, and query size
and time. (data collected using https://automeris.io/WebPlotDigitizer/). It also provides
direct-viewing evidence to support the author's conclusion "AWS is more suitable for large
data analysis groups to establish a set of queues and compute environments for multiple
pipelines." Unlike the boxplot in the current manuscript, this figure also shows the
differences in scaling between 16, 32 & 64 vCPU nodes.

Please add graphs showing query file sizes vs time (as below) and query file sizes vs cost. As
well as cost vs time. These are the important take-home messages from the manuscript, but
it is difficult to extract this information from the current figures.

0

50

100

150

200

250

300

2000 6000 10000

ti
m

e
(m

in
)

query size

GCP 16

AWS 16

AWS 32

GCP 32

AWS 64

GCP 64

https://automeris.io/WebPlotDigitizer/

Response: We agree with the referee’s comment that the relationship between query size, time
and cost was not well described in the way that the results were presented in Figure 4. We add
a new experiment where we processed 120,000 transcripts using the three query sizes. The
new Figure 4 shows the relationship between the time, cost and query size for processing a
fixed number of transcripts. Additional text describing this experiment was added to the Result
and Discussion section: “Figure 4 shows the time and cost of processing 120,000 transcripts
using second generation 64 vCPUs instances on each cloud provider. Reducing the number of
transcripts per input file reduces the total run time but will also increase the cost of the analysis
as more instances will be used. BLAST databases are transferred to more instances spending, on
average, 10 minutes for each instance. For example, our experiment with the 10,000-query size
processes all transcripts in about 105 minutes with a total cost of 59.37USD using 12 instances
(GCP, N2, 64 CPU). Processing the same number of transcripts with a query size of 2,000
costs122.36USD with all transcripts processed in 43 minutes using 60 instances (GCP, N2, 64
CPU). “

Optional (not necessary) suggestions:
The figures could be improved to give a clearer visualization of the data. For Figure 3a, will
adding a secondary Y-axis regarding money and draw a line plot be better to show the
relationship between total time and cost? For Figure 3b&c&d, drawing a component bar chart

could allow the readers to compare the job-dependent time among various configurations
and demonstrates the proportionality at the same time.

Response: We thank the referee for this suggestion. In our opinion, as the data we are plotting
here is not continuous data, drawing a line between points in Figure 3a could imply the idea of
continuity. For Figures 3b, 3c, and 3d drawing bars could hide the variability of the runtime for
each input file that is associated with instance and network performance. We prefer to keep
the figure as it is now.

Reviewer #3: The authors provide a comparison of two cloud-based solutions for running
BLAST-based transcriptomics analysis.
With cloud-based solutions becoming more popular in science, I think this comparison, along
with the practical recommendations provided in this manuscript will be interesting to
readers.

Response: We thank the referee for their comments and time dedicated to this manuscript.

Some suggestions for enhancements below:

1) The authors mention that there are numerous genomics companies in the space of cloud
based biocomputations, citing reference 14 which discusses some of the legal responsibilities
of groups doing such cloud based analyses. However, the authors do not connect this
discussion back to the use of GCP or AWS, where users would need to obtain similar
gaurantees of data security which may not be possible to obtain. Thus a comparison of
pricing against the private firms which provide similar services would be interesting to see if
they provide specific guarantees that affect researchers with data that requires specific legal
requirements.

Response: We thanks the referee for the comment. This study was executed under the NIH’s
STRIDES initiative using the currently available cloud provider partners: AWS and GCP. We do
not consider that a comparison between public and private cloud providers and their legal
responsibilities is within the scope of this study. However, we think that mentioning some of
the most important private cloud providers is necessary. Accordingly, we rephrased the
paragraph as:

In addition, private genomic cloud providers, for instance DNAnexus (www.dnanexus.com),
DNAstar (www.dnastar.com), Seven Bridges (www.sevenbridges.com) and SciDAP (scidap.com),
also are in the market and offer cloud-based genomics frameworks. These commercial cloud
providers make the execution of computational biology experiments easier offering command
line and web-based interfaces designed for genomic data analysis.

2) I really like the inclusion of a best practices section with practical recommendations, and
would love to see this section expanded:

 a) In the first point the authors state: "We recommend CWL because the resulting product is
portable and scalable,and it can be executed across a variety of computational environments
as dissimilar as personal laptops or the cloud". However, these features are not exclusive to
CWL, and solutions such as NextFlow and SnakeMake (and probably others) would also fit
this description (and both of these also offer point 2 Conda and containerization). Please
elaborate on your recommendation to include discussion of other workflow management
systems, and explain in more detail why you would recommend CWL over these other
solutions.

Response: We agree with the referee about the inclusion of more information about CWL and
workflow managers. We added a new section to the manuscript named: Common Workflow
Language.

 b) In point 5, you recommend that users "Execute a small test in the cloud to find the best
instance type for a workflow". Do you have any further practical recommendations about
how users can best go about this? E.g. how does one define a "small test run" from a full
datasets, and how can they predict how this will scale up to the full analysis and determine
the most suitable machine types?

Response: We agree with the referee that defining a “small test run” may be difficult and it is
intrinsically determined by the data and the workflow to be used. Our intention with this
recommendation was to alert users that the cloud is a completely different environment than
local workstations or on premise clusters. Users should test different cloud services and
configurations before submitting a huge number of jobs. We edited that recommendation to:

5. Cloud computing behaves differently than local workstations or on premise clusters. Users

should define and execute small tests with their data and workflow before submitting large
jobs. Testing different cloud services and configurations could help to reduce the runtime
and cost for the whole analysis.

3) It could be nice to expand the section about the Jupyter notebooks, and how these are
being used, perhaps with some screenshots of results, and/or a small schematic showing that
(if I understand correctly): the user interacts with the Jupyter notebook on their local
machine, which in turn configures the cloud resources and starts the CWL workflow on the
cloud, and then fetches the relevant results back and analyses them and displays results to
the user. I think a schematic to this effect would be helpful for less technical readers and this
in combination with some screenshots of the analysis results in Jupyter will increase the
appeal of your work to research scientists.

Response: We agree with the referee about expanding the Jupyter notebook section. We added
more description to it. The notebooks are available on Github for reading and browsing. Adding
more figures to the manuscript would increase its size and complexity. Jupyter notebooks are

very popular and we think that less technical readers could easily find documentation about
Jupyter notebooks without any problem.

4) In the conclusion the authors state “In our opinion, the choice of a cloud platform is not
dependent on the workflow but, rather, on the specific details of the cloud provider”.
However, I don’t believe the authors can make this statement having tested only a singe
workflow. So please rephrase the conclusion, or compare performance of different workflows
covering a range of different characteristics (e.g. one that is memory-intensive, one that is
CPU-intensive, and one that requires a lot of data transfer) and showing whether this
conclusion holds, or whether some of the “specific details of the cloud provider” may make it
more or less suitable for certain types of workflows.

Response: We agree with the referee that the phrase was general. We rephrased to this:

In our opinion, for BLAST based workflows, the choice of cloud platform is not dependent on the
workflow but, rather, on the specific details and requirements of the cloud provider (e.g. NCBI
maintains updated copies of the very large genetic sequence databases, such as nr, RefSeq and
SRA, on both GCP and AWS). These choices include the accessibility for institutional use, the
technical knowledge required for effective use of the platform services, and the availability of
open-source frameworks such as application programming interfaces (APIs) to deploy the
workflow.

5) AWS, Google, and Azure are probably the "big 3" providers that most readers will l know
about, and they might wonder why Azure was not included here and how it would compare. I
understand that the authors cannot compare all providers, but it may be useful to at least
mention Azure in the introduction where different providers are mentioned, and briefly
explain if there were any specific reasons why you chose to compare AWS and GCP, and
whether the same methodology could also be applied to Azure.

Response: We thank the referee for the comment. This study was executed under the NIH’s
STRIDES initiative using the current available cloud provider partners: AWS and GCP. We don’t
have access to Azure, therefore, we cannot extrapolate the conclusions of this study to Azure or
any other cloud provider.

NIH OGC August 2008

NIH Publishing Agreement & Manuscript Cover Sheet

By signing this Cover Sheet, the Author, on behalf of NIH, agrees to the provisions set out below, which modify and supersede,
solely with respect to NIH, any conflicting provisions that are in the Publisher’s standard copyright agreement (the “Publisher’s
Agreement”). If a Publisher’s Agreement is attached, execution of this Cover Sheet constitutes an execution of the Publisher’s
Agreement, subject to the provisions and conditions of this Cover Sheet.

1. Indemnification. No Indemnification or “hold harmless” obligation is provided by either party.

2. Governing Law. This agreement will be governed by the law of the court in which a claim is brought.

3. Copyright. Author’s contribution to the Work was done as part of the Author’s official duties as a NIH employee and

is a Work of the United States Government. Therefore, copyright may not be established in the United States. 17
U.S.C. § 105. If Publisher intends to disseminate the Work outside of the U.S., Publisher may secure copyright to the
extent authorized under the domestic laws of the relevant country, subject to a paid-up, nonexclusive, irrevocable
worldwide license to the United States in such copyrighted work to reproduce, prepare derivative works, distribute
copies to the public and perform publicly and display publicly the work, and to permit others to do so.

4. No Compensation. No royalty income or other compensation may be accepted for work done as part of official duties.

The author may accept for the agency a limited number of reprints or copies of the publication.

5. NIH Representations. NIH represents to the Publisher that the Author is the sole author of the Author’s contribution

to the Work and that NIH is the owner of the rights that are the subject of this agreement; that the Work is an original
work and has not previously been published in any form anywhere in the world; that to the best of NIH’s knowledge
the Work is not a violation of any existing copyright, moral right, database right, or of any right of privacy or other
intellectual property, personal, proprietary or statutory right; that where the Author is responsible for obtaining
permissions or assisting the Publishers in obtaining permissions for the use of third party material, all relevant
permissions and information have been secured; and that the Work contains nothing misleading, obscene, libelous or
defamatory or otherwise unlawful. NIH agrees to reasonable instructions or requirements regarding submission
procedures or author communications, and reasonable ethics or conflict of interest disclosure requirements unless they
conflict with the provisions of this Cover Sheet.

6. Disclaimer. NIH and the Author expressly disclaim any obligation in Publisher’s Agreement that is not consistent with

the Author’s official duties or the NIH mission, described at http://www.nih.gov/about/. NIH and the Author do not
disclaim obligations to comply with a Publisher's conflict of interest policy so long as, and to the extent that, such
policy is consistent with NIH's own conflict of interest policies.

7. For Peer-Reviewed Papers to be Submitted to PubMed Central. The Author is a US government employee who

must comply with the NIH Public Access Policy, and the Author or NIH will deposit, or have deposited, in NIH’s
PubMed Central archive, an electronic version of the final, peer-reviewed manuscript upon acceptance for publication,
to be made publicly available no later than 12 months after the official date of publication. The Author and NIH agree
(notwithstanding Paragraph 3 above) to follow the manuscript deposition procedures (including the relevant embargo
period, if any) of the publisher so long as they are consistent with the NIH Public Access Policy.

8. Modifications. PubMed Central may tag or modify the work consistent with its customary practices and with the

meaning and integrity of the underlying work.

The NIH Deputy Director for Intramural Research, Michael Gottesman, M.D., approves this publishing agreement and
maintains a single, signed copy of this text for all works published by NIH employees, and contractors and trainees who
are working at the NIH. No additional signature from Dr. Gottesman is needed.

Author’s name:

Author’s Institute or Center: Check if Publisher’ Agreement is attached

Name of manuscript/work:

Name of publication:

__ __________________
Author’s signature Date

NIH publishing agreement

Roberto Vera Alvarez, Leonardo Mariño-Ramírez, and David Landsman

NCBI/NLM/NIH

Transcriptome annotation in the cloud: complexity, best practices and cost

GigaScience

07/02/2020

Click here to access/download;Personal Cover;NIH Publishing
Agreement and Manuscript Cover Sheet.pdf

https://www.editorialmanager.com/giga/download.aspx?id=107304&guid=a80139cb-54af-4931-8b7e-b1ce71941aa4&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=107304&guid=a80139cb-54af-4931-8b7e-b1ce71941aa4&scheme=1

