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I. MATERIALS AND METHODS 

A. Pathological Tissue Detection 

To determine the normal wall and the media layer locations 

and dimensions, two geometrical parameters, Dthick and Douter, 

were computed for each ROI pixel as functions of D1 and D2 

(Eqs. 1 and 2). 𝐷1 is the Euclidian distances of the pixel 

(𝑖𝑟𝑖𝑚 , 𝑗𝑟𝑖𝑚) from the media-adventitia border bma and 𝐷2 is the 

Euclidian distances of the pixel (𝑖𝑟𝑖𝑚 , 𝑗𝑟𝑖𝑚) from the lumen 

border bl (Fig. 3 and Fig. S1). Threshold values for Dthick and 

Douter were calculated to determine whether a pixel was in a 

section of sufficient thickness to be considered pathological or 

sufficiently close to the media-adventitia border to lie within 

the media. 

B. Classification 

To classify the pixels corresponding to pathological tissue, a 

sequence of convolutions, activations, and pooling operations 

were executed. The network found to perform best, and utilized 

in this work, is shown in Fig. S2 and Fig. 4. 

  
(a) (b) 

Fig. S1.  Schematic presentation of the pathological tissue detection. (a) The 

Euclidean distances from a pixel (𝑟𝑖𝑚 ∈ ROI) to the media-adventitia border 

(𝐷1) and the lumen border (𝐷2) were calculated. (b) Pixels within the ROI for 

which 𝐷𝑜𝑢𝑡𝑒𝑟 ≥ 𝑇ℎ𝑚𝑒𝑑𝑖𝑎 and 𝐷𝑡ℎ𝑖𝑐𝑘 ≥ 𝑇ℎ𝑝𝑎𝑡ℎ correspond to pathological 

tissue (gray); other pixels within the ROI correspond to non-pathological 

tissue or media (yellow). 
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Fig. S2.  Detailed architecture of the 26-layer CNN used to classify pixels within the pathological region of interest. For the “naïve” method, all architecture was 
the same with the exception of the final fully-connected layers, which had 5 nodes/outputs instead of 4. See Fig. 4 for representations of the intermediary data 

structures and activations of the hidden layers. 
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II. DATASET 

As intravascular images were collected from a clinical 

population in the course of treatment, the data were inherently 

inhomogeneous and imbalanced. Fig. S3 shows the average 

quantity and relative distribution of tissue types present in the 

imaged vessel walls of each patient, as well as the number of 

VH-IVUS frames available from each patient’s acquisition. 

Though sometimes present in small numbers, all five tissue 

types were detected by VH-IVUS in each patient (though 

notably not in each frame). In total, 553 frames were available 

in the dataset, from which 200 were randomly selected and set 

aside for exclusive use in testing. 

From the 353 frames used for training and validation, 

3.4×105 41-by-41 pixel patches of each class were extracted and 

augmented 6-fold (through reflection and rotation in 90o 

increments) for use in training the full networks. For the pixel 

sensitivity study (Supplemental Materials, Section III.B), a 

smaller sub-set of 104 patches of each class was selected to 

accelerate training; 10-fold cross-validation was performed. 

From the 200 frames withheld for testing, 5×104 patches of 

each class were selected and used for evaluation of both 

methods. In sampling the labeled testing data, regions 

immediately adjacent to boundaries between tissue types and 

edges of tissue regions were avoided. Doing so limited 

uncertainties arising from VH resolution and image data 

degradation due to file compression; enhanced label certainty 

for inclusion in testing was also achieved by requiring 

agreement between two automated color-based methods used 

for determining categorical labels from colored VH images (in 

which color-coded labels have been integrated with the 

underlying grayscale image). Furthermore, avoiding transition 

zones and borders ensured higher certainty by targeting to a 

greater extent the “bulk” of a tissue region – VH-IVUS 

validation has been conducted by histology and atherectomy 

[1]–[5], which allows comparison of bulk tissue type 

identification rather than pixel-by-pixel comparison, thereby 

making such an approach to sampling data for testing against 

VH-IVUS prudent. A sample frame from the testing subset, 

alongside the corresponding “bulk” regions and actual 

randomly-selected pixels used in quantifying test performance, 

and is shown in Fig. S4. For the ablation study, a smaller sub-

set of 104 patches of each class was randomly selected to 

accelerate classification and analysis. 

 
Fig. S3.  Plaque distribution of patients comprising dataset. Top: Prominence 

of plaque and composition for each patient, reported in average number of 
pixels per frame corresponding to each characterized tissue type as determined 

by VH-IVUS. Bottom: Number of VH-IVUS frames available for each patient. 

   
(a) (b) (c) 

Fig. S4.  Selection of testing data from a typical frame withheld from training. (a) Sample VH-IVUS frame from the testing subset. (b) Masked region showing 

regions of bulk tissue (avoiding boundaries between tissue types and edges of tissue regions). (c) Specific pixels included in the balanced testing dataset (selected 
from the bulk tissue region shown in (b)). Note how, due to the relative scarcity of dense calcium and necrotic core, a greater portion of each calcified and necrotic 

region is sampled in constructing the balanced set used to quantify the test performance of the networks. 
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III. RESULTS 

Performance of both the naïve and enriched deep learning 

methods described here is compared with that reported for 

existing methods in Table III, which also includes validation 

metrics reported for VH-IVUS. Included methods include those 

addressed and described briefly in the introduction: Zhang et al. 

[6], Brunenberg et al. [7], Athanasiou et al. [8], Taki et al. 

(2010) [9], Taki et al. (2013) [10], Athanasiou et al. [11], 

Hwang et al. [12], and Kim et al. [13]. Performance of VH-

IVUS is reported for results from an ex vivo validation study 

carried out by Nair et al. [5]. 

A. Enriched Method CNN Performance 

The overall performance metrics for the domain enriched 

method (Table I) depend both on (four-class) classifier 

performance and reliability of pathological tissue detection, 

which together share responsibility for the full segmentation 

procedure. The CNN classifier achieved generally high 

precision and recall. Tables SI and SII show the error matrix 

and mean predicted class scores for the enriched method’s four-

class CNN classifier when presented with the testing set. The 

model trained on just pathological tissue achieved an accuracy 

of 92.3% (cf. naïve five-class classifier accuracy of 90.8% for 

those four tissue classes). Progression of training for this 

network is shown in Fig. S5. 

As noted above, results of the CNN for the 5-class model are 

the same as those for its corresponding complete segmentation 

method (Table II). 

B. Patch Size Sensitivity Test 

The CNN takes as input not a full image, but rather a patch, 

or neighborhood of pixels surrounding the pixel of interest to 

be classified. The size of the patch can impact the subsequent 

performance of the trained network – if a patch is too small, it 

may not capture sufficient context or information for a robust 

classification to be made, but if a patch is too large, additional 

parameters (𝜃) must be learned, increasing solution space 

complexity, training time, and data and network storage size, 

among other potential pitfalls. Therefore, a preliminary study 

of patch size was performed to assess performance achieved by 

networks utilizing square neighborhoods of various sizes 

ranging from 33 to 71 pixels in dimension (1,089 to 5,041 total 

pixels). 

Ten-fold cross-validation was performed for each patch size 

using a relatively small dataset (4×104 patches equally 

distributed among the four tissue types). That is, the dataset was 

randomly split into ten equally-sized balanced subsets, and the 

training procedure was repeated ten times; each time, a different 

one of those subsets was withheld from training and used to 

evaluate the final performance of the network trained on the 

other nine. The same network architecture was used for all 12 

patch sizes with the exception of the input layer, which was 

modified to accept the desired patch size; the number of inputs 

to the first fully-connected layer differed accordingly. Training 

time was recorded for a single training run executed on the same 

hardware in consistent conditions for all 12 patch sizes. (Due to 

the amount of training required, tasks were otherwise 

distributed across different hardware and conditions, not 

allowing for direct comparison. A range of times is therefore 

not reported.) 

Results of the sensitivity study indicated that the overall 

domain enriched deep learning approach and method to classify 

atherosclerosis using IVUS isn’t largely dependent on the patch 

size used, as shown in Fig. S6. However, a patch size of 41-by-

41 was shown to offer desirable performance. In particular, this 

patch size had among the highest average test accuracies, 

lowest standard deviation in accuracy, and lowest training times 

of those patch sizes assessed. Though not the best performing 

by any of those metrics alone, taken together this patch size 

demonstrated the most desirable holistic performance profile. 

However, the study provides confidence that the quality of the 

data and fidelity with regards to the underlying population from 

which the set is drawn is more important than the specific 

details of patch size and similar network design features. 

TABLE SII 

CLASSIFIER MEAN PREDICTED CLASS SCORE 

O
u

tp
u

t 
C

la
ss

  Target Class  
 DC NC FT FFT Mean 

DC 0.9855 0.1779 0.0023 0.0000 0.2914 

NC 0.0145 0.7969 0.0271 0.0000 0.2096 

FT 0.0000 0.0204 0.7158 0.1012 0.2093 
FFT 0.0000 0.0048 0.2549 0.8988 0.2896 

Mean 0.2500 0.2500 0.2500 0.2500 0.2500 

 

 
Fig. S5.  CNN validation accuracy (top) and loss (bottom) through 50 epochs 
of training for the enriched model. Accuracy and loss plateaued by around the 

50th epoch; deviation between training and validation accuracies – indicating 

overfitting – became apparent soon afterwards when training was allowed to 

proceed beyond 50 epochs. 

TABLE SI 

CLASSIFIER ERROR MATRIX: 4 CLASSES TRAINED ON PATHOLOGICAL TISSUE 

O
u

tp
u

t 
C

la
ss

  Target Class   
 DC NC FT FFT Precision M 

DC 49336 4664 0 0 91.4% 858 

NC 664 44340 1208 0 95.9% 12320 

FT 0 996 45657 4771 88.8% 24893 
FFT 0 0 3135 45229 93.5% 11929 

Recall 98.7% 88.7% 91.3% 90.5% 92.3% - 
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C. Ablation Study 

An ablation study was carried on the 4-class CNN classifier 

of the domain enriched method to interrogate the organization 

and relationships within the network structure. In turn, each of 

the 504 nodes or channels was “ablated” by negating a filter’s 

weights and associated bias term (in a convolutional layer) or 

all input connection weights and bias term (in a fully-connected 

layer), thereby depriving the node or channel of input and 

inhibiting its function by mandating an output of zero. By 

systematically “ablating” small segments of the network in this 

way, we probed where and how “knowledge” was represented 

in our network, how robust and redundant or centralized our 

network was, and how important certain parts of the network 

were to overall importance. 

Two major analyses were performed to investigate 

characteristics of the network: the impact of individual channels 

and nodes on final class sensitivity (i.e. recall) and the 

relationship between changes in class sensitivity caused by the 

various ablations. The results of the first analysis are shown in 

Fig. S7, which illustrates the absolute drop in class sensitivity 

resulting from ablation of channels and nodes, arranged by 

layer. On the left side of this figure, each horizontal line 

represents a channel or node of the corresponding layer which 

was ablated, with colors indicating the extent and direction of 

change in sensitivity for each class resulting from its ablation. 

Changes are also compiled for entire layers to examine 

importance of network layer in the outcome for each class, as 

shown on the right side of the figure. 

One can observe that the ablation of most functional units has 

a very small effects on end output, suggesting the network is 

fairly robust in that classification is generally distributed. A few 

notable exceptions exist, however. First, a few units play an 

outsized role in the successful classification of FFT pixels, 

particularly in the first convolutional layer; when these units are 

ablated, sensitivity for FFT drops by up to 61%p. Clearly the 

output of these early channels are important to the downstream 

processing performed in later layers to positively identify pixels 

showing FFT tissue. The other units with a major role are the 

nodes of the second fully-connected layer, the output of which 

enters the softmax and subsequently classification layers. As 

the layer whose outputs are directly compared to establish class 

assignment, it is expected that each node would have profound 

importance to the classification of a single corresponding tissue 

type, as observed. An interesting observation is the impact on 

the three other classes; we see that ablation of the node 

corresponding to DC results in an improvement in NC 

sensitivity of just over 10%p. Ablation of the nodes 

corresponding to FT and FFT similarly result in more modest 

improvements in sensitivity for the other class. One 

interpretation is that these units not only contribute to 

classification of one class, but effectively suppress the others. 

While most clear in the final fully-connected layer, examples of 

competing performance driving confusion between DC and NC 

and FT and FFT are visible throughout the network. For both 

pairs, an ablation causing a decrease in sensitivity for one class 

in the pair was often accompanied by an increase in the 

sensitivity of its counterpart. These relationships and trends 

emerge, and are explored more explicitly, in Fig. S8. 

The results of the second analysis, shown in Fig. S8, illustrate 

relationships between the representation of different tissue 

classes. Positive correlations may suggest that the tissue classes 

share many features encoded by the network such that ablation 

of the units strongly activated by these features similarly 

impacts both classes. However, negative correlations may also 

suggest shared features; if two classes share many features, 

ablation of units strongly activated by distinguishing features 

could cause pixels of the feature-sharing class to be selected 

with greater frequency, thereby driving changes in sensitivity 

of the two classes in opposite directions. In such a case, the unit 

activated by the distinguishing feature could be considered to 

be a suppressor or inhibitor of the related class which is 

inactivated by the ablation. Given this understanding, the 

results indicate that network representations of DC and NC are 

closely related, as are representations and classification 

pathways of FT and FFT. Both pairs demonstrate negative 

correlations. However, the complexity of these relationships are 

neither fully characterized nor done justice by so simple a 

summary. The results of the ablation study illustrate the 

inextricable, distributed, and interdependent nature of the 

interrogated neural network. 

  

 
Fig. S6.  Results of the sensitivity study demonstrate the effect of patch size on 
a small dataset. The averages and standard deviations of final test accuracies 

generated by ten-fold cross-validation are plotted as a solid line (left vertical 

axis). Time to execute the training process once is plotted as a dashed line (right 
vertical axis) trending upwards with patch size. Patch size as listed corresponds 

to a single dimension (i.e. the square root of the total number of pixels contained 

in a given patch of that size). The diamonds call out the performance of the 
networks utilizing 41-by-41 patches like those used in the remainder of the 

work presented herein. It can be seen that this patch size was among the best 

performing with regards to average final testing accuracy, standard deviation in 

final testing accuracy, and training time length. 
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Fig. S7.  Results of the neural network ablation study illustrate distributed responsibility for classification. The absolute drop in class sensitivity resulting from 
ablation of channels and nodes shows that most individual ablations do not drastically impact overall performance. Left: Each horizontal line represents a channel 

or node of the corresponding layer which was ablated, with colors indicating the change in sensitivity for each class resulting from its ablation. (Note that, to show 

detail, the color scale does not span the entire observed range of outcomes.) An inverse trend appears between the direction of change for some classes (see Fig. 
S8 for more detailed assessment). Right: Changes are also compiled for entire layers, showing importance of network layer in the outcome for each class. Boxplots 

illustrate drop (in percentage points) to class sensitivity. (Larger numbers indicate larger drops in sensitivity, and therefore a greater role of the functional unit in 

the successful identification of the associated class.) 
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Fig. S8.  Results of neural network ablation study suggest that network representations and classification pathways of DC and NC, as well as FT and FFT, are 
closely related. Each point represents a single unit ablation, with position indicating drop in class sensitivity (in percentage points); as such, each point corresponds 

to a single horizontal line in Fig. S7. Color indicates the layer to which the ablated unit belonged. Plots mirrored across the diagonal show the same information 

in transpose but with different axis ranges; plots on the upper right include 9 outlier points (maximum change resulting from ablation greater than 3 standard 
deviations from the mean) that are excluded from those on the bottom left (as well as the histograms). Note that the scales differ for the plots above and below the 

diagonal. Pearson’s linear correlation coefficient (ρ) and p-value (p) are displayed for each set of observed changes. (Values below the diagonal are calculated 

excluding the 9 outliers while those above the diagonal include all 504 points.) The p-values less than the displayed precision are as follows: pDC-NC = 2.67×10-26; 
pDC-FFT = 1.32×10-12; pNC-FT = 3.85×10-8; pNC-FFT = 5.43×10-10; pFT-FFT = 2.68×10-28. The strongest correlations are negative ones between DC and NC and FT and 

FFT, supporting observations in Fig. S7 and described in the text. Conv: Convolutional Layer; FC: Fully-Connected Layer. 
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