
Dear Editor,

We would like to thank you for the opportunity to submit a revised version of our manuscript. We
would also like to express our gratitude to the reviewers for their feedback and helpful comments.
We have revised the manuscript according to their suggestions, which we think has significantly
improved its content. We sincerely hope that the manuscript is now suitable for publication.

Please  find  below our  point-by-point  response  to  specific  reviewers’ comments  (note  that  line
numbers refer to the manuscript version with tracked changes):

Reviewer #1

The authors utlise a number of publically available chip seq data sets for TOP2B and also for CTCF,
RAD21, STAG1, STAG2, and a number of histone modifications. They use a range of computing
methods to compare the genomic locations of TOP2B peaks/enriched regions with the peaks for the
other types of proteins (CTCF, RAD21 etc). They also look at chromatin accessibility (DNAase
hypersentivity)  and  various  DNA features  including  CpG  islands.  They  do  find  concordance
between TOP2B peaks DNAase hypersenitive regions and CTCF and RAD21. However this is not
surprising, as in ref 11 Uuskula-Reimand et al, they previously showed and reported in detail that
half of CTCF and cohesin (contains RAD21) - part of abstract from Ref 11 copied below
"TOP2B associates  with DNase I  hypersensitivity  sites,  allele-specific  transcription  factor  (TF)
binding, and evolutionarily conserved TF binding sites on the mouse genome. Approximately half
of all CTCF/cohesion-bound regions coincided with TOP2B binding. Base pair resolution ChIP-exo
mapping  of  TOP2B,  CTCF,  and  cohesin  sites  revealed  a  striking  structural  ordering  of  these
proteins along the genome relative to the CTCF motif. These ordered TOP2B-CTCF-cohesin sites
flank  the  boundaries  of  topologically  associating  domains  (TADs)  with  TOP2B  positioned
externally and cohesin internally to the domain loop."
https://www.ncbi.nlm.nih.gov/pubmed/27582050

Although this reference is cited in the introduction of this study, this study fails to fully address how
the findings in this manuscript relate to this previous closely related research. The authors should
consider  revising  their  Introduction  and Discussion  to  reference  more  fully  the  closely  related
previous literature.

We have introduced several  changes  to  fully  address  this  question.  On the one hand,  we have
extended some paragraphs from the “Introduction” and “Results and discussion” sections (lines 22-
25, 44-45, 251). In addition, we have performed two new analyses that we included in “Results and
Discussion” by adding a new paragraph (lines 512-529) and a new section (“Prediction of TOP2-
induced DSBs”, lines 658-679) where we specifically discuss our results in the context of Uusküla-
Reimand et al (2016) and Canela et al (2017) findings.

This study also reports the generation two new datasets one from mouse cells and one from human
cells to utlise their machine learning programmes to determine if they can predict where the TOP2B
peaks/enriched regions will be found. In the venn diagrams in Figure 5B and 5E approx half the
predicted TOP2B sites (based on the location of CTCF, RAD21 and DNAse hypersentive sites)
overlap with the experimentally determined TOP2B sites. This agrees with the 50% concordance
published in ref 11. What might be the reasons for the concordance not being 100%?

We would like to clarify that for this manuscript we have generated new datasets of TOP2B binding
in MCF7 cells, the ones corresponding to mouse thymocytes are published (Álvarez-Quilón 2020).
We have now clarified this further in the text (lines 555-556, 613-614). Regarding the partial (non-
100%) concordance between our  predicted  and experimental  peaks,  we believe this  reflects  an



intrinsic limitation of peak calling, as opposed to other more quantitative analyses. Thus, even with
two experimental replicates, with the same cell line and the same antibody, overlap between the
called peaks is only 28-36 %. In our case, this is likely to be more accused, since we are converting
a quantitative probability signal into a qualitative score by simply applying an arbitrary threshold of
0.95. As a matter of fact, as we show in Figures 6,S10,S13 and S15, predicted peaks not identified
experimentally still harbor clear experimental TOP2B signal, despite not being selected by peak
calling algorithms, and vice versa.

This  manuscript  confirms  what  was  was  previously  reported  for  murine  cells,  using  different
computer programmes.

We agree  that  the main contributions  of  our  study are not  the biological  discoveries  regarding
TOP2B binding themselves, but the development of machine learning models for the systematic
generation  of  virtual  TOP2B  ChIP-seq  tracks.  We  have  now  included  several  changes  in  the
manuscript to made this aspect clearer.

Reviewer #2

In this manuscript Martinez-Garcia et al. develop a computational tool to predict the localization of
TOPO2 beta genome wide based on input data sets  from DNaseI,  and Chip-Seq of CTCF and
RAD21. The model can be used to predict both mouse and human TOPO2 beta localization. These
results  are based on the previously observed strong co-localization of TOPO2 beta with CTCF,
cohesion and DNaseI accessible sites from several research groups in both mouse and human cells.
The models show very good accuracy, with reported ~95% of TOPO2 beta peaks called using the
trained sets with the models, and ~90% accuracy using the experimental data sets (MCF7, mouse
thymocytes). Overall this is a well-done manuscript. However, given the strong co-localization of
TOPO2 beta with the features used to develop the models (DNaseI, CTCF and cohesion), its utility
is  somewhat  diminished.  I  recommended publication of this  manuscript  provided the following
concerns are addressed.

Major Points
1.) It has been well known that TOPO2 beta co-localizes with DNaseI, CTCF and cohesion binding
sites. It seems that much of the TOPO2 binding can be predicted summing the unique peak calls
from the three chromatin elements (Fig 1C). What is the overlap frequency of TOPO2 beta peaks to
the combined CTCF, DNaseI and Rad21 peaks (removing redundant peak calls – Bedtools Merge
function)? Can this  simple method achieve worse/similar/better  accuracy that the computational
methods? Can this analysis be added to Figure 5 (or as a supplement). A similar presentation can be
used  as  in  Figure  5  with  the  merged  DNAseI,  CTCF  and  Rad21  peak  data  set  replacing  the
“Predicted” data set from the authors models. This could serve as good control as to the superiority
of the authors models.

We have included the suggested analysis within the section "A general model of TOP2B binding
based on DNase-seq, RAD21 and CTCF” (lines 512-529). The corresponding results are illustrated
in S10 Figure. Our model clearly outperforms the merged DNAseI-CTCF-Rad21 peak set, which
identifies numerous false-positive regions with absent experimental TOP2B signal.

2.) It has been known for some time that regions of open chromatin are “sticky”. This has been seen
when  using  IgG  controls  in  ChIP-Seq  experiments  and  when  ChIPing  proteins  which  do  not
associate with chromatin like GFP. This is a aprticulare problem if the washing is not stringent
enough. I would like the authors to process an IgG control ChIP-Seq data set for one other their cell
lines (at similar read density to the TOPO2 Beta data set), call peaks using similar parameters as



used to  call  TOPO2 Beta  peaks  and determine  the  overlap  with  their  TOPO2 Beta  peaks  and
predicted peaks as seen in Figure 5 B, E. Can the analysis be included in the supplement?

We agree with Reviewer #2 that using IgG can be problematic because of the potential stickiness of
open chromatin sites,  so we have followed his/her  suggestion for  all  the peak calling analyses
performed in the paper, with the exception of the initial one where we identify TOP2B binding sites
for training purposes, since our previous results had already validated the utility of this set of peaks
for the generation of predictive models. Since the read densities of test and control samples affect
peak  calling  results,  this  change  yielded  different  peak  numbers  in  Figure  6  (Figure  5  in  the
previous version). Nonetheless, these modifications have not led to any significant difference in the
overall results nor the main findings of our study.

3.) It is important to validate antibodies prior to using them for ChIP-Seq experiments. I don’t see
that the authors have validated the TOPO2 Beta antibodies used for the ChjIP-Seq experiments. Can
a extract of total cellular proteins be resolved on a 4-20% gradient gel and the antibodies used for
ChIP-Seq be used to do a Western blot? Is one band observed at the expected molecular weight?
Can this be added to the supplement?

We  have  now  validated  the  antibody  used,  both  in  human  and  mouse  cells  (S14  Figure)  by
performing western blot analysis in wild-type as well as TOP2B-depleted and -deleted cells.

4.) I don’t see anywhere in the manuscript that the code to run the model is available. I do see a
GEO deposit number. Does this have the code to run the model? I am assuming it is not available to
the reviewers as a reviewer link and password is not provided. The code needs to be made freely
available. Detailed instructions should be provided on how to run the code, using CTCF, RAD21
and DNAseI inputs, to get the predicted TOPO2 Beta output.

The code has been documented and made public in GitLab:  https://gitlab.com/mgarciat/genome-
wide-prediction-of-topoisomerase-iibeta-binding

Minor Points
1.) Can a key be added to 1B and 1D? as in figure 1C? It is difficult for the reader to go to the figure
legend to determine what the groups are.

A key has been added to Figures 1B and 1D.

2.) Can the ChIP-Seq peak calls and the “predicted” peak cells be added for each track in Figure 6 A
and B? Also, supplemental Fig S6, S7 and Fig 1A?

As kindly suggested by the reviewer, and since Figure 6A illustrates comparative peak analyses, we
have included peak tracks for experimental and predicted TOP2B signals. We prefer not to include
them in the other Figures in which peak analysis is not performed, but we are of course open to
reconsider.

Reviewer #3

Summary:
Martinez-Garcia et al., built several machine learning models to predict the genome-wide binding of
topoisomerase II  beta  (TOP2B) using  sequence features,  DNA shape,  and chromatin properties
obtained from publically available data. The authors showed that open chromatin and occupancy of
chromatin architecture proteins  are consistently the best predictors.  Using only DNase I  signal,

https://gitlab.com/mgarciat/genome-wide-prediction-of-topoisomerase-iibeta-binding
https://gitlab.com/mgarciat/genome-wide-prediction-of-topoisomerase-iibeta-binding


CTCF,  and RAD21 binding,  the  authors  were able  to  accurately  predict  TOP2B binding.  With
experimental validations, the authors showed that the predictive power of these three features is
conserved  across  cell  types  and  between  human  and  mouse,  achieving  performance  similar  to
biological replicates.  Furthermore the predicted probability of TOP2B binding highly resembles
experimental data showing the potential of using such a model to achieve quantitative predictions.

We find the work by Martinez-Garcia et al. to be interesting and the manuscript well-written and
should  be  of  general  interest  to  genome  biologists  and  those  with  specific  interests  in  DNA
topoisomerases and DNA repair. This is a computational biology paper takes published observations
that TOP2B correlates well with cohesin and DNA and formalizes them into a predictive model.
Understanding TOP2B binding has important implications yet experiments are often limited by the
availability  of  antibodies.  Thus,  the  predictive  model  proposed in  the  manuscript  is  a  valuable
approach  that  could  be  applied  by  others.  The  authors  evaluated  different  models  and  feature
selection  methods.  Reasonable  approaches  appear  to  be  taken  both  computationally  and
experimentally. For example, the authors carefully tested and interpreted the usage of GC-corrected
background sets and used two different TOP2B antibodies for experimental validation.

Major comments:

The major concerns I have come from:

1) Apparent lack of availability of data (no reviewer token was given and so I could not check the if
appropriate  data  and  metadata  was  submitted.  Small  but  crucial  details  such  as  the  specific
antibodies (e.g. no part number was provided) used were not included in the methods and there was
no  way  to  assess  whether  this,  along  with  other  crucial  metadata  was  included  in  the  GEO
submission referred to.

Although  we  provided  the  GEO  accession  number  in  the  first  version  of  the  manuscript,  the
corresponding token was missing. The data can now be accessed on GEO GSE141528 using the
following token: kvknomqerfirzet. We apologize for the inconvenience.

2) Equally important would be to address the lack of code and intermediate files that would allow
others, including reviewers, to replicate the findings. Given this paper uses existing and appropriate
models to make useful predictions, it would be most important that other computational biologist
can easily replicate them and make new predictions.

The code has been documented and made public in GitLab:  https://gitlab.com/mgarciat/genome-
wide-prediction-of-topoisomerase-iibeta-binding

3) There seems to be no direct acknowledgement and exploration (aside from a citation) of recent
papers  that  generated  original  data,  and made computational  models,  to  reveal  and predict  the
location  of  TOP2  covalent  complexes.  Specifically  the  original  END-seq  method  has  been
demonstrated  to  capture  TOP2  covalent  complexes  (Canela  et  al.  2017  PMID:  28735753  and
PMID: 31202577). In Canela et al. 2017 PMID: 28735753 they presented a linear regression model
that could predict DNA breaks (TOP2cc’s) using only RAD21. It would be important for the authors
to more directly relate their work to this study. Given this current study and the previous study used
MEFs there would be specific opportunities to see how well the author’s current model predicts the
END-seq (TOP2cc) data from Canela et al. 2017. At the very least some discussion is warranted
giving both studies highlight the importance of cohesin in their predictions.

We have included  the  suggested  analysis  within  the  new section  "Prediction  of  TOP2-induced
DSBs”  (lines  658-679).  The  corresponding  results  are  illustrated  in  S16 Figure.  We think  this

https://gitlab.com/mgarciat/genome-wide-prediction-of-topoisomerase-iibeta-binding
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analysis  has  substantially  contributed  to  improve  our  study,  and  we  thank  the  referee  for  the
insightful suggestion.

Detailed comments:

1) Method: For processing: “raw reads were merged for biological replicates”. For identification of
binding  sites:  “when  replicates  were  possible,  peaks  were  called  for  individual  replicates  and
overlapping peaks  were kept”.  It  is  thus not clear if  biological  replicates were merged prior to
alignment or not.

Peaks from individual biological replicates were overlapped after alignment. To make it clear in the
manuscript, we have re-written the corresponding paragraph from “Materials and methods” section
(lines 68-74).

2) Method: it is not exactly clear how the additional set of GC-matched controls was generated.

To clarify this question, we have extended our previous explanation from “Materials and methods”
(lines 80-88).

3) Method: the features used clearly violates the assumptions of NB. The authors did not clarify
why they were still interested to try out the method.

We understand the reviewer’s concerns. However,  Naive Bayes (NB) is one of the most efficient
and effective inductive learning algorithms for machine learning,  achieving a surprisingly good
performance in classification even in cases of strong dependences among attributes. This is one of
the claims that, for example, Harry Zhang (2004) made when he comprehensively explored which
conditions are sufficient and necessary for NB classifiers optimality. According to this study, NB
can still be optimal even in cases of strong dependences among attributes.

Zhang,  H.  (2004).  The  Optimality  of  Naive  Bayes.  In  V.  Barr  &  Z.  Markov  (eds.),  FLAIRS
Conference (p./pp. 562-567), : AAAI Press. ISBN: 1-57735-201-7.

4) Are the random controls showing similar genomic distribution (distance to TSS for example) as
TOP2B peaks?

We have included a peak distribution analysis that is shown in S3 Fig A and B. Accordingly, we
have also included a new section within “Materials and methods” called “Distribution of TOP2B
binding sites across the genome” (lines 110-124). 

5) Line 233-234, 15 experiments used for model training is not clearly indicated in table S1. It is
thus  not  clear  which  datasets  were  used  for  the  classification  shown in  Table  1.  This  is  then
explained in lines 272-277. However,  it  will  be more clear if  it’s  explained before getting into
prediction results.

We have included a new column in S1 Table that indicates whether a given dataset has been used
for training, test or other analysis.

6) Interpretation: line 297, “These observations contrast with previous findings of TOP2B being
involved in transcriptional regulation [47], and may indicate that other chromatin features, such as
histone  marks  and  DNase-seq,  are  capturing  such  associFation..”  Would  the  authors  expect
difference performance if they used RNAP2 instead of RNA-seq? Could predictions for TOP2B at
specific genomic regions (TSS/first exon) be a more appropriate question when RNA-seq is used?



More details in the discussion how these results contrast previous results would be welcomed. For
instance, the association of TOP2B occupancy with cohesin and DNAse I has been revealed in
several studies as has its association with transcribed genes. Canela et al.’s END-seq work PMID:
28735753 clearly showed that  without  transcription a  linear  model  with RAD21 binding could
predict  TOP2cc genome wide.  To me it  seems the results  here  from Martinez-Garcia  et  al  are
congruent  with  previous  work.  Discussing  this  would  be  relevant.  Furthermore,  the  fact  that
transcription was relevant for TOP2 mediated DSBs is worth mentioning (using modified END-seq
from Canela et al. PMID: 31202577 along with Gothe et al (PMID: 31202576)).

We agree with the reviewer. We have now rephrased that section (lines 376-381) to clarify that the
fact that Pol2 and RNA-seq datasets prove as poor predictors of TOP2B binding in our analysis
does not necessary contradict previous findings, but just reflects that other chromatin features that
correlate  with  transcription  are  likely  capturing  this  association.  We  have  also  specifically
mentioned and discussed the described association between TOP2-DSBs and positive transcription
reported in Canela et al (2019) and Gothe et al (2019), as suggested.
 
7) Analysis: Fig1D, GG signal peak seems to be biased on one side? Is this driven by a few regions?

The reviewer is correct there is a bias in GG signal that is not general, but caused by a group of
regions,  as determined by cluster analysis  on GG frequency around TOP2B peaks (see below).
However, we think this analysis is out of the context and scope of our findings, and would rather
not include it in the manuscript.

8) Analysis: Fig6, it would be good to add a genome-wide correlation measure between prediction
probability and real ChIP-seq data.

We performed Pearson’s correlation coefficient analyisis comparing our predictions and the two
validation systems (thymus and MCF7), which we have reported in Tables S5 and S6. These tables
are cited in lines 564-565 and 619-620.



9) Analysis:  The proposed model is  trained using TOP2B peaks but the prediction is  made on
sliding windows across the genome. Could the authors train the model using whole-genome sliding
windows or comment on the potential/necessity of doing so. Is it possible to adopt other models to
be able to predict the quantitative signal (instead of classification)?

Indeed, other approaches can be adopted for genome wide prediction of quantitative signals. An
example is using regression instead of binary classification. This way the whole genome could be
used to feed the models instead of positive (TOP2 binding) and negative (random) regions. This is
something that  we are currently considering to implement  in  order  to predict  other  sequencing
signals,  and we thank the  reviewer  for  the  suggestion,  but  is  outside  the  scope of  the  current
manuscript. In any case, we think that one important and surprising point of our analyses is that
binary classification can, by computing probability, accurately capture binding intensity. Indeed, we
believe this operates by somehow mimicking the nature of the ChIP-seq experiments in which the
DNA fragment is either immunoprecipitated or not, and the strength of the signal is a reflection of
the probability of this to occur within the entire population of cells. 

Reviewer #4

In the manuscript, the authors proposed a computational approach to predict TOP2B binding sites
using chromatin accessibility and architectural proteins. The authors compared the performance of
three classifiers: Naive Bayes, Support Vector Machine and Random Forests on a bunch of different
features including: histone marks, Pol2 binding, architectural components, chromatin accessibility,
gene expression, DNA shape, DNA sequence and CpG methylation. Next, they conducted feature
selection  and  found  that  DNase  I  hypersensitivity,  CTCF  and  cohesin  binding  are  the  most
important features to predict TOP2B binding sites. Then, they trained a generalized model using
these three features in one cell type and applied the model to a different cell type and validated the
predictions  with  ChIP-seq  of  TOP2B,  showing  that  the  generalized  model  can  predict  TOP2B
binding sites in new cell line and species.

TOP2B plays important roles in DNA metabolism and 3D organization of chromatin. But currently
there are few TOP2B ChIP-seq datasets available. Based on the high accuracy of the predictions
presented in the manuscript, this approach offers an attractive way to predict TOP2B binding in
different cell types and tissues using the public available datasets. The manuscript is well written
and is sound and accurate in general.

Comments

1. Why is Random Forests added after feature selection, not at the beginning of the comparing
different features and feature selection? RF can also identify the most important features. Would the
important features selected by RF be consistent with the ones selected by FCBF and SS?

We  agree  with  the  reviewer,  and  actually  Random  Forests  (RF)  was  our  first  option,  but
unfortunately could not deal with the dimensionality and the large data volume of the training set.
However,  our analyses showed that the chromatin features  with highest dimensionality,  namely
DNA sequence  and  DNA shape,  were  poorly  informative.  Therefore,  following  the  reviwers’s
suggestion, we applied RF to a reduced version of the training data for which only the 15 high
throughput sequencing experiments from Table S1 were included. As expected, RF performance
was similar to that obtained by naive bayes and support vector machines, and feature importances
were  quite  consistent  with  our  feature  selection  analyses.  The results  of  this  new analyses  are
included in S7 Figure and S4 Table.



2. In the “Feature selection algorithms” method section, the authors mention that FCBF uses SU as
goodness function in line 124, and then mention CFS measure is used as goodness function in line
138. Is CFS used instead of SU in FCBF? Could the authors provide more details?

We agree that the provided description was confusing and we have rephrased the corresponding
paragraph (lines 187-188).

3. Could the authors add the comparison of models trained using all features vs three important
features to validate that the prediction accuracy is not reduced much.

We have included the suggested analysis in S5 Figure and lines 467-469.

4. For feature selection, SS selects DNase-seq, RAD21 and STAG2 as important features in liver,
while DNase-seq, RAD21 and CTCF in MEF. Could the authors compare the performance of the
model  trained  using  DNase-seq,  RAD21  and  CTCF  with  the  model  trained  using  DNase-seq,
RAD21 and STAG2 in liver to support that the performance is similar?

We have included the suggested analysis in S6 Figure, S3 Table and lines 474-477.

5.  The  authors  compared  the  predicted  peaks  with  HOMER  detected  peaks.  Did  the  authors
compare this predictive model with other models that can predict TF binding sites (e.g. DRAF)?

We have encountered some issues when identifying binding sites using popular peak callers due to
samples heterogeneity. In order to follow the reviewer’s suggestion, we tried to use DRAF but it
seems  to  be  specifically  designed  to  be  applied  to  sequence-dependent  transcription  factors.
According to its website “DRAF utilizes models based on TFBS DNA sequence and TF amino acid
properties to provide predictions”. In the corresponding paper, the authors state that they used TFBS
sequences from the HOCOMOCO database. After some filtering, they end up with the following
426  TFBS  models  (401  total  TFs):
http://autosome.ru/HOCOMOCOS/hocomoco_ad/hocomoco_ad.html.  TOP2  is  not  among  such
TFs, which indeed make sense since it does not bind to specific motifs.
 
6. Did the authors apply this approach to predict other TF binding sites, e.g. TOP2A? How is the
performance of that?

This is a very interesting point, and we thank the reviewer for the suggestion, but falls outside the
scope  of  the  current  manuscript.  Indeed,  we  are  currently  working  on  the  application  of  our
predictive framework to different intermediates of TOP2 dynamics, such as TOP2ccs and TOP2-
mediateds DSBs (work in progress), as well as, as suggested by the reviewer, other topoisomerases,
such as TOP1 or TOP2A. We consider current manuscript as a proof-of-principle for the genome
wide prediction of this type of enzymes that do not show clear dependence on DNA sequence for
binding to chromatin.

7. The authors should provide more description about the machine learning framework. It is not
clear what package if any was used. Code and scripts should be provided along with the training
data. It would be nice to provide the folds of validation too.

The code has been documented and made public in GitLab:  https://gitlab.com/mgarciat/genome-
wide-prediction-of-topoisomerase-iibeta-binding
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