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A Accuracy of ratio estimators

A.1 Almost sure convergence of ratio-of-means estimators with independent
and uniformly-bounded terms

Here we prove that Âm

B̂m

a.s.−−−−→
m→∞

A
B , where Âm = 1

m

m∑
i=1

ai and B̂m = 1
m

m∑
i=1

bi give the ratio-of-means

estimator described in the main text. It suffices to prove Âm
a.s.−−−−→

m→∞
Ac and B̂m

a.s.−−−−→
m→∞

Bc 6= 0,

from which the result follows using the continuous mapping theorem [1, 2]. The proof for Âm
follows, which applies analogously to B̂m. Our ai are independent but not identically distributed,
since they depend on pTi that varies per locus, so the standard law of large numbers does not apply
to Âm. We show almost sure convergence using Kolmogorov’s criterion for the Strong Law of Large
Numbers [3], which is satisfied for bounded Var(ai). Since |ai| ≤ C <∞ for all i and some C (see
main text), then E[a2

i ] ≤ C2, so Var(ai) ≤ C2. Therefore, Âm
a.s.−−−−→

m→∞
limm→∞ E

[
Âm

]
= Ac, as

desired.

A.2 Order of error of expectations

The error of the ratio of expectations from the expectation of the ratio is given by

εm = E

[
Âm

B̂m

]
− E[Âm]

E[B̂m]
= −

Cov
(
Âm

B̂m
, B̂m

)
E
[
B̂m

] = − 1

m2Bc

m∑
i=1

m∑
j=1

Cov

(
ai

B̂m
, bj

)
,

which follows from Cov(X,Y ) = E[XY ] − E[X] E[Y ] and expanding the covariance [4]. Previous
work on ratio estimators [4, 5] assumes IID ai and bi, which does not hold for SNP loci. Assuming
independent loci (Cov(ai, bj) = 0 for i 6= j) and large m so B̂m ≈ Bc is practically independent of
any given ai and bj , then

εm ≈ −
1

mB2c2

[
1

m

m∑
i=1

Cov(ai, bi)

]
.

Since ai, bi are bounded, |Cov(ai, bi)| ≤ C2 for the same C of the previous section, so

|εm| ≤
C2

mB2c2
,

for some large enough m and C. Hence εm = O
(

1
m

)
as is for standard ratio estimators [5].

B The Weir-Goudet FST estimator for subpopulations

Here we show that the relative FST estimator presented in [6] (denoted by β̂WT in that work) for
biallelic loci equals the HudsonK FST estimator in the main text. This estimator—the special case
for biallelic loci only—is implemented in the function snpgdsFst with method option set to W&H02
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in the R package SNPRelate by the authors of [6]; despite this method name, this estimator does
not equal the Weir-Hill estimator in [7], but rather the estimator described below (verified both
numerically and by looking at the source code). Note that Weir-Cockerham (W&C84) is the only
other FST estimator implemented in that package as of this writing (other FST estimators proposed
in [6] are not implemented). The earliest presentation of this exact estimator that we are aware of
is [8], which came out the same year that we first described HudsonK [9].

The Weir-Goudet relative FST estimator for subpopulations is given by

F̂WGsubpops
ST =

M̃W − M̃B

1− M̃B
, where

M̃W =
1

m

m∑
i=1

1

n

n∑
j=1

2nj
2nj − 1

(∑
u

p̂2
iju

)
− 1

2nj − 1
,

M̃B =
1

m

m∑
i=1

1

n(n− 1)

n∑
j=1

n∑
k=1,k 6=j

∑
u

p̂ijup̂iku,

(S1)

and p̂iju is the sample allele frequency at locus i for subpopulation j and allele u. As in the existing
FST methods section, here n is the number of subpopulations and nj is the number of individuals
in subpopulation j.

In order to establish the connection between this and other FST estimators, we first generalize
some of our earlier notation to be for more than two alleles. We can calculate the allele frequency
variance term per allele u, or

σ̂2
iu =

1

n− 1

n∑
j=1

(
p̂iju − p̂Tiu

)2
,

where p̂Tiu = 1
n

∑n
j=1 p̂iju is the sample allele frequency estimate for each allele u weighing subpopula-

tions equally. Expanding the square and rearranging, we find that the sum of square subpopulation
sample allele frequencies is given by

n∑
j=1

p̂2
iju = (n− 1)σ̂2

iu + n
(
p̂Tiu
)2
.

Going back to the WG estimator for subpopulations in Eq. (S1), its parts can be restated as

M̃W =
1

m

m∑
i=1

1

n

n∑
j=1

(∑
u

p̂2
iju

)
− 1

2nj − 1

(
1−

∑
u

p̂2
iju

)

=
1

m

m∑
i=1

∑
u

1

n

n∑
j=1

p̂2
iju

− 1

n

n∑
j=1

1

2nj − 1

(
1−

∑
u

p̂2
iju

)

=
1

m

m∑
i=1

(∑
u

n− 1

n
σ̂2
iu +

(
p̂Tiu
)2)− 1

n

n∑
j=1

1

2nj − 1

(
1−

∑
u

p̂2
iju

)
.
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Similarly,

M̃B =
1

m

m∑
i=1

∑
u

1

n(n− 1)

n∑
j=1

p̂iju

n∑
k=1,k 6=j

p̂iku

=
1

m

m∑
i=1

∑
u

1

n(n− 1)

n∑
j=1

p̂iju
(
np̂Tiu − p̂iju

)

=
1

m

m∑
i=1

∑
u

1

n(n− 1)

(np̂Tiu)2 − n∑
j=1

(p̂iju)2


=

1

m

m∑
i=1

∑
u

1

n(n− 1)

((
np̂Tiu

)2 − (n− 1)σ̂2
iu − n

(
p̂Tiu
)2)

=
1

m

m∑
i=1

∑
u

(
p̂Tiu
)2 − 1

n
σ̂2
iu.

Now, taking the special case of biallelic loci (p̂Tiu = p̂Ti for the first allele u, and p̂Tiu = 1 − p̂Ti
for the second allele; note that σ̂2

iu = σ̂2
i for both alleles; also note repeated use of the identity

p2 + (1− p)2 = 1− 2p(1− p)), the expressions simplify to

M̃W =
1

m

m∑
i=1

(
2
n− 1

n
σ̂2
i +

(
pTi
)2

+
(
1− pTi

)2)− 1

n

n∑
j=1

1

2nj − 1

(
1− p̂2

ij − (1− p̂ij)2
)

= 1 +
2

m

m∑
i=1

n− 1

n
σ̂2
i − pTi

(
1− pTi

)
− 1

n

n∑
j=1

p̂ij(1− p̂ij)
2nj − 1

,

M̃B =
1

m

m∑
i=1

(
p̂Ti
)2

+
(
1− p̂Ti

)2 − 2

n
σ̂2
i

= 1− 2

m

m∑
i=1

p̂Ti
(
1− p̂Ti

)
+

1

n
σ̂2
i .

Thus, the numerator and denominator of Eq. (S1), respectively, are also equal to

M̃W − M̃B =
2

m

m∑
i=1

σ̂2
i −

1

n

n∑
j=1

p̂ij(1− p̂ij)
2nj − 1

,

1− M̃B =
2

m

m∑
i=1

p̂Ti
(
1− p̂Ti

)
+

1

n
σ̂2
i .

Thus, the above numerator and denominator are, respectively, twice the values of the HudsonK
estimator in the main text, a common factor of two that cancels out. Therefore, in this special
case where every locus is biallelic, the WG FST estimator for subpopulations equals the HudsonK
estimator.
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C Derivation of existing method-of-moment estimators

C.1 FST estimator for independent subpopulations

Assuming the coancestry model in Eq. (6) in the main text for independent subpopulations (θTjk = 0

for j 6= k), the first and second moments of the IAFs are:

E[πij |T ] = pTi , (S2)

E
[
π2
ij

∣∣T ] =
(
pTi
)2

+ pTi
(
1− pTi

)
θTjj , (S3)

E [πijπik|T ] =
(
pTi
)2 if j 6= k. (S4)

FST = 1
n

n∑
j=1

θTjj appears by averaging Eq. (S3) over j:

E

 1

n

n∑
j=1

π2
ij

∣∣∣∣∣∣T
 =

(
pTi
)2

+ pTi
(
1− pTi

)
FST. (S5)

Since Eq. (S2) has the same value for every j, and Eq. (S4) as well for every j 6= k, we average these

to reduce estimation variance. The results are in terms of p̂Ti = 1
n

n∑
j=1

πij :

E
[
p̂Ti
∣∣T ] = E

 1

n

n∑
j=1

πij

∣∣∣∣∣∣T
 = pTi , (S6)

E
[(
p̂Ti
)2∣∣∣T] = E

 1

n2

n∑
j=1

n∑
k=1

πijπik

∣∣∣∣∣∣T
 =

(
pTi
)2

+ pTi
(
1− pTi

) 1

n
FST. (S7)

FST also appears in Eq. (S7) because j = k terms are introduced in the double sum. Subtracting
Eq. (S5) and Eq. (S7) in turn from Eq. (S6) results in:

E

p̂Ti − 1

n

n∑
j=1

π2
ij

∣∣∣∣∣∣T
 = pTi

(
1− pTi

)
(1− FST) ,

E
[
p̂Ti
(
1− p̂Ti

)∣∣T ] = pTi
(
1− pTi

)(
1− 1

n
FST

)
.

To reduce variance further, we average across loci, giving

E

 1

m

m∑
i=1

p̂Ti − 1

n

n∑
j=1

π2
ij

∣∣∣∣∣∣T
 = p(1− p)T (1− FST) ,

E

[
1

m

m∑
i=1

p̂Ti
(
1− p̂Ti

)∣∣∣∣∣T
]

= p(1− p)T
(

1− 1

n
FST

)
,
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where p(1− p)T = 1
m

m∑
i=1

pTi
(
1− pTi

)
. Eliminating p(1− p)T and solving for FST in this system of

equations results in the following FST estimator:

F̂ indep
ST =

m∑
i=1

(
1
n

n∑
j=1

π2
ij −

(
p̂Ti
)2)

m∑
i=1

(
p̂Ti
(
1− p̂Ti

)
+ 1

n

(
1
n

n∑
j=1

π2
ij − p̂Ti

)) (S8)

This estimator is simplified noting that 1
n

n∑
j=1

π2
ij appears in the IAF sample variance,

σ̂2
i =

1

n− 1

n∑
j=1

(
πij − p̂Ti

)2
=

n

n− 1

 1

n

n∑
j=1

π2
ij −

(
p̂Ti
)2 ,

so substituting it into Eq. (S8) recovers Eq. (13) in the main text as desired:

F̂ indep
ST =

m∑
i=1

σ̂2
i

m∑
i=1

p̂Ti
(
1− p̂Ti

)
+ 1

n σ̂
2
i

.

C.2 Standard kinship estimator

Here we assume the kinship model in Eq. (5) in the main text. Since the first moment is the same
for all individuals j, we average these genotypes to reduce variance,

E

 n∑
j=1

wjxij

∣∣∣∣∣∣T
 = 2pTi ,

which results in the following estimator of pTi :

p̂Ti =
1

2

n∑
j=1

wjxij .

Each ϕTjk appears once per (j, k) pair in Eq. (5), recast here in terms of the sample covariance:

E
[(
xij − 2pTi

) (
xik − 2pTi

)∣∣T ] = 4pTi
(
1− pTi

)
ϕTjk.

Variance in the kinship estimate is reduced by averaging across loci, yielding:

E

[
1

m

m∑
i=1

(
xij − 2pTi

) (
xik − 2pTi

)∣∣∣∣∣T
]

= 4ϕTjk
1

m

m∑
i=1

pTi
(
1− pTi

)
. (S9)

Plugging p̂Ti into Eq. (S9) and solving for ϕTjk recovers Eq. (18) in the main text as desired:

ϕ̂T,stdjk =

m∑
i=1

(
xij − 2p̂Ti

) (
xik − 2p̂Ti

)
4
m∑
i=1

p̂Ti
(
1− p̂Ti

) .
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D Proofs that FST and kinship estimator limits are constants with
respect to the ancestral population T

In our work we calculate the limits of several estimators, which are given in terms of an arbitrary
ancestral population T (not necessarily the MRCA, unless otherwise noted). The apparent paradox
that the limit of an estimator would vary depending on the choice of T is resolved since these limits
are in fact constant with respect to T . All proofs depend on the following IBD identities for change
of ancestral population [10]: (

1− fAj
)

=
(
1− fBj

) (
1− fAB

)
,(

1− ϕAjk
)

=
(
1− ϕBjk

) (
1− fAB

)
,

(S10)

where A,B are two possible ancestral populations for the individuals j, k, and A is ancestral to B.

D.1 Proof that the limit of F̂ indep
ST does not depend on T

Here we study the limit of F̂ indep
ST in Eq. (14) in the main text. Let S be a reference population

ancestral to the individuals in question and T be another population ancestral to S. Denote the key
parameters relative to S by FSST, θ̄

S and relative to T by F TST, θ̄
T . The equations that relate both

quantities satisfy our IBD shift identity (which follows by averaging Eq. (S10) over individuals for
FST or pairs of individuals for θ̄T ):(

1− F TST
)

=
(
1− FSST

) (
1− fTS

)
,(

1− θ̄T
)

=
(
1− θ̄S

) (
1− fTS

)
.

Solving for the values relative to S gives

FSST =
F TST − fTS

1− fTS
, θ̄S =

θ̄T − fTS
1− fTS

.

The desired equality of the limit for both S and T follows:

n
(
FSST − θ̄S

)
n− 1 + FSST − nθ̄S

=
n
(
FT

ST−f
T
S

1−fTS
− θ̄T−fTS

1−fTS

)
n− 1 +

FT
ST−f

T
S

1−fTS
− n θ̄

T−fTS
1−fTS

=
n
(
F TST − θ̄T

)
(n− 1)

(
1− fTS

)
+
(
F TST − fTS

)
− n

(
θ̄T − fTS

)
=

n
(
F TST − θ̄T

)
n− 1 + F TST − nθ̄T

.

D.2 Proof that the limit of ϕ̂T,stdjk does not depend on T

Here we study the limit of the standard kinship estimator ϕ̂T,stdjk in Eq. (19) in the main text. Let
S be a reference population ancestral to the individuals in question and T be another population
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ancestral to S. The equations that relate the terms relative to S and those relative to T follow from
Eq. (S10) just as in the previous subsection:

ϕSjk =
ϕTjk − fTS
1− fTS

, ϕ̄Sj =
ϕ̄Tj − fTS
1− fTS

,

ϕ̄Sk =
ϕ̄Tk − fTS
1− fTS

, ϕ̄S =
ϕ̄T − fTS
1− fTS

.

The desired result follows:

ϕSjk − ϕ̄Sj − ϕ̄Sk + ϕ̄S

1− ϕ̄S
=
ϕTjk − ϕ̄Tj − ϕ̄Tk + ϕ̄T

1− ϕ̄T
.

E Mean coancestry bounds

Here we prove that, for any weights such that wj > 0,
n∑
j=1

wj = 1,

0 ≤ θ̄T ≤ FST ≤ 1,

and for uniform weights 1
nFST ≤ θ̄T . Furthermore, θ̄T = FST iff θTjk = FST for all (j, k), and

θ̄T = 1
nFST for the independent subpopulations model.

The Cauchy-Schwarz inequality for covariances implies θTjk ≤
√
θTjjθ

T
kk. Therefore,

θ̄T =

n∑
j=1

n∑
k=1

wjwkθ
T
jk ≤

 n∑
j=1

wj

√
θTjj

2

≤
n∑
j=1

wjθ
T
jj = FST,

where the second inequality follows from Jensen’s inequality, since x2 is a convex function. Since
θTjj ≤ 1, then FST ≤ 1 as well. Equality in the second bound requires θTjj = FST for all j, and
equality in the first bound requires θTjk = θTjj = θTkk, so that θ̄T = FST requires θTjk = FST for all
(j, k). Since all wj , θTjk ≥ 0, then

0 ≤
n∑
j=1

w2
j θ
T
jj ≤ θ̄T ,

where the second inequality follows from dropping j 6= k terms from the double sum of θ̄T . The case
wj = 1

n gives 1
nFST ≤ θ̄T , with equality for the independent subpopulations model by construction.

F Moments of estimator building blocks

Here we calculate first and some second moments for “building block” quantities that recur in our
estimators, particularly terms involving xij and p̂Ti , and which enable us to calculate the limits of
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our estimators. Below are examples for genotypes, which follow from Eq. (5) in the main text;
calculations for IAFs follow analogously from Eq. (6) in the main text (not shown).

E
[
p̂Ti
∣∣T ] = E

1

2

n∑
j=1

wjxij

∣∣∣∣∣∣T
 =

1

2

n∑
j=1

wj E[xij |T ] =
n∑
j=1

wjp
T
i = pTi ,

E[xijxik|T ] = Cov(xij , xik|T ) + E[xij |T ] E[xik|T ] = 4
(
pTi
(
1− pTi

)
ϕTjk +

(
pTi
)2)

,

E
[
xij p̂

T
i

∣∣T ] = E

[
1

2

n∑
k=1

wjxijxik

∣∣∣∣∣T
]

=
1

2

n∑
k=1

wj E[xijxik|T ]

= 2
n∑
k=1

wj

(
pTi
(
1− pTi

)
ϕTjk +

(
pTi
)2)

= 2
(
pTi
(
1− pTi

)
ϕ̄Tj +

(
pTi
)2)

,

Var
(
p̂Ti
∣∣T ) = Var

1

2

n∑
j=1

wjxij

∣∣∣∣∣∣T
 =

1

4

n∑
j=1

n∑
k=1

wjwk Cov(xij , xik|T ) = pTi
(
1− pTi

)
ϕ̄T ,

E
[(
p̂Ti
)2∣∣∣T] = Var

(
p̂Ti
∣∣T )+ E

[
p̂Ti
∣∣T ]2 = pTi

(
1− pTi

)
ϕ̄T +

(
pTi
)2
,

E
[
p̂Ti
(
1− p̂Ti

)∣∣T ] = E
[
p̂Ti
∣∣T ]− E

[(
p̂Ti
)2∣∣∣T] = pTi

(
1− pTi

) (
1− ϕ̄T

)
.

G Derivation of new kinship estimator

To begin the method-of-moments derivation, we compute the raw first and second moments from
the kinship model of Eq. (5) in the main text.

E[xij |T ] = 2pTi ,

E[xijxik|T ] = E[xij |T ] E[xik|T ] + Cov(xijxik|T )

= 4
(
pTi
)2

+ 4pTi
(
1− pTi

)
ϕTjk.

For obtain a symmetric estimator, we also compute the raw moments of 2− xij (which counts the
alternative allele):

E[2− xij |T ] = 2
(
1− pTi

)
,

E [(2− xij)(2− xik)|T ] = 4
(
1− pTi

)2
+ 4pTi

(
1− pTi

)
ϕTjk.

If we solved for pTi using the first moment equations, we would recover the standard kinship estimator
of Eqs. (17) and (18), so we shall avoid this strategy.

To proceed, we average the two second moment equations above. Note that

1

2
(xijxik + (2− xij)(2− xik)) = (1− xij)(1− xik) + 1,

1

2

((
pTi
)2

+
(
1− pTi

)2)
=

1

2
− pTi

(
1− pTi

)
.
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Therefore, the symmetric estimator (which gives the same calculation if the reference allele is
switched) is

E [(1− xij)(1− xik) + 1|T ] = 2 + 4pTi
(
1− pTi

) (
ϕTjk − 1

)
⇒

E [(1− xij)(1− xik)− 1|T ] = 4pTi
(
1− pTi

) (
ϕTjk − 1

)
.

A genome-wide estimate is obtained by averaging the previous statistics across loci, resulting in

Ajk =
1

m

m∑
i=1

(xij − 1)(xik − 1)− 1,

E [Ajk|T ] =
(
ϕTjk − 1

)
vTm, where

vTm =
4

m

m∑
i=1

pTi
(
1− pTi

)
.

The new kinship estimator follows from obtaining a consistent estimator of the limit of vTm as m
goes to infinity, and applying it to solve for ϕTjk in the above equation for the expectation of Ajk,
as detailed in the main text.

H Mathematical equivalence between the proposed kinship estima-
tor as described here and our original 2016 proposal

The new kinship estimator presented in the main text is algebraically equivalent to the version
presented in our 2016 manuscript [9]. As notation differs, here we establish in detail the correspon-
dence.

We begin by restating the preprint estimator in notation as close as possible in the original
preprint, but with two variables renamed as they clash with our present notation. In the preprint,
there are two steps to the final kinship estimator, analogous to the two steps in our updated
presentation. The first step consisted of obtaining preadjusted kinship estimates that had a uniform
bias, and in the second step the estimates are unbiased using the minimum preadjusted kinship
estimate. The preadjusted estimator (referred to as ϕ̂T,new

jk in the preprint, but which we will
denote by Cjk here since it clashes with the notation of our final kinship estimator in Eq. (34) in
the main text) was given by

Cjk =

m∑
i=1

(xij − 1)(xik − 1)− 1

4
m∑
i=1

p̂Ti (1− p̂Ti )

+ 1
a.s.−−−−→

m→∞

ϕTjk − ϕ̄T

1− ϕ̄T
. (S11)

Thus, bias was determined by the unknown ϕ̄T , which plays the same role as the unknown vTm in
our present work. The final estimator (denoted in the preprint by ϕ̃T,new

jk , but which matches our
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final kinship estimate ϕ̂T,new
jk in Eq. (34) in the main text, so we use our new notation here) was

given by
ϕ̂T,new
jk = Cjk(1− ϕ̄T ) + ϕ̄T

a.s.−−−−→
m→∞

ϕTjk. (S12)

Lastly, it was proposed to estimate the unknown ϕ̄T from the minimum Cjk, since under the
hypothesis that the true minimum kinship is zero, then

min
jk

Cjk = Ĉmin ≈ Cmin = − ϕ̄T

1− ϕ̄T
. (S13)

Lastly, the preprint recommends a more stable estimate than Ĉmin above. Thus, the general ap-
proach was in place that resulted in new kinship estimates given an estimator Ĉmin of Cmin.

Now we tie the preprint estimator to our present estimator. First note that Eq. (S11) is the
same as

Cjk =
Ajk
B

+ 1,

where Ajk is exactly as in Eq. (33) in the main text, and B = 4
∑m

i=1 p̂
T
i (1 − p̂Ti ) is a constant

shared by all individual pairs j and k. We will show that this B cancels out in the end, so that
its form does not matter. Thus, in the present notation we eliminated B, resulting not only in a
simpler presentation but also eliminating the only term in the preprint notation that depended on
p̂Ti (in the new formulation there is no need to estimate any allele frequencies).

The key is to notice that, since B is the same for all individual pairs, any approach to estimate
the limit of the minimum Ajk corresponds directly to an approach for estimating the limit of the
minimum Cjk, and vice versa, using the relation:

Ĉmin =
Âmin

B
+ 1.

Solving for the mean kinship in Eq. (S13) results in an estimate given by

ˆ̄ϕT = − Ĉmin

1− Ĉmin
=
Âmin +B

Âmin
.

Lastly, plugging this ˆ̄ϕT into Eq. (S12) results in a final estimator of

ϕ̂T,new
jk = Cjk(1− ˆ̄ϕT ) + ˆ̄ϕT

=

(
Ajk
B

+ 1

)(
1− Âmin +B

Âmin

)
+
Âmin +B

Âmin

= 1−
Ajk

Âmin
,

which equals the present new estimator in Eq. (34) in the main text, as desired.
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