Supplementary Information

Benchmarking Monolayer MoS₂ and WS₂ Field-Effect Transistors

Amritanand Sebastian¹, Rahul Pendurthi¹, Tanushree H Choudhury², Joan M Redwing^{2,3,4}

& Saptarshi Das^{1,3,4*}

¹Deparment of Engineering Science and Mechanics, Pennsylvania State University, University Park. PA 16802

²2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Pennsylvania State University, University Park, PA, 16802, USA

³Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802

⁴Materials Research Institute, Pennsylvania State University, University Park, PA 16802

Supplementary Figure 1. Characterization of MOCVD grown monolayer WS₂ and MoS₂. AFM of scratch and height profile across the scratch along the red line for (a) MoS₂ and (b) WS₂. Raman spectrum with the characteristic peaks for c) MoS₂ with E_{2g} at 386.6 cm^{-1} and A_{1g} at 403.5 cm^{-1} and d) WS₂ with E_{2g} at 357 cm^{-1} , A_{1g} at 417.1 cm^{-1} and 2LA(M) at 352.5 cm^{-1} . PL spectrum for e) MoS₂ and f) WS₂ showing the characteristic monolayer response with peaks at 1.85 eV and 1.97 eV, respectively.

Supplementary Figure 2. Threshold voltage extraction, channel length dependence, and device to device variation. Threshold voltage extraction using a) linear extrapolation $(V_{t_{lin}})$, b) Y-function (V_{t_Y}) , and c) constant-current method $(V_{t_{cc}})$. The median values for $V_{t_{lin}}$, V_{t_Y} , and $V_{t_{cc}}$ verses channel length (L_{CH}) showing no scaling effects for d) MoS₂ and e) WS₂. Histograms showing the variation in $V_{t_{lin}}$, V_{t_Y} , and $V_{t_{cc}}$ across all measured devices for f) MoS₂ and g) WS₂ FETs for different channel lengths.

Supplementary Note 1

In 2D FET literature, threshold voltage is extracted using various methods such as linear extrapolation $(V_{t_{lin}})$, Y-function (V_{t_Y}) , and constant-current method $(V_{t_{cc}})$ as shown in Supplementary Fig. 2a-c. Linear extrapolation is the most common among these techniques. However, poor ON-state performance, presence of SB at the metal/semiconductor interface, and contact-gating effect in a back-gated geometry can limit the use of linear extrapolation. Y-function method is more appropriate for contact dominated FETs. Finally, constant current method is simply another threshold voltage extraction technique, which is discussed for completeness. Clearly none of the extracted threshold voltages, $V_{t_{lin}}$, V_{t_Y} , and $V_{t_{cc}}$ show any channel length (L_{CH}) dependence as evident from Supplementary Fig. 2d and 2e for MoS₂ and WS₂, respectively. Supplementary Fig. 2f and 2g show the distributions of $V_{t_{lin}}$, V_{t_Y} , and $V_{t_{cc}}$ for all measured MoS₂ and WS₂ FETs, respectively. For MoS₂ FETs, the distributions of V_{t_Y} and $V_{t_{lin}}$ are very similar with median values of 2.9 V and 2.5 V, respectively. However, $V_{t_{cc}}$ results in lower median value of 1.5 V for MoS₂, as the extraction is done at a constant current of 100 $nA/\mu m$, which is lower than the current at $V_{t_{lin}}$ and $V_{t_{Y}}$. A similar trend is observed for WS₂, where both $V_{t_{Y}}$ and $V_{t_{lin}}$ have median values of 6.5 V and 6.4 V, while $V_{t_{cc}}$ has a median value of 5.9 V. The corresponding standard deviations were found to be 0.8 V for $V_{t_{lin}}$, V_{t_Y} , and $V_{t_{cc}}$ for MoS₂ and 0.8 V, 0.7 V, and 0.6 V, respectively, for $V_{t_{lin}}$, $V_{t_{Y}}$, and $V_{t_{cc}}$, in case of WS₂. Supplementary Table 1 summarize the statistics of $V_{t_{lin}}$, V_{t_Y} , and $V_{t_{cc}}$

Jupplemental	y fable f			
	Device-to-devic	e variation in thr	eshold voltage	
	MoS_2		WS ₂	
	Median, Mean \pm SD	Min, Max	Median, Mean \pm SD	Min, Ma
$V_{t_{cc}}(V)$	$1.5, 1.7 \pm 0.8$	-0.5, 5.3	$5.9, 5.8 \pm 0.6$	4.2, 7.3
$V_{\mathrm{t}_{Y}}\left(V ight)$	$2.9, 2.8 \pm 0.8$	-0.1, 5.3	$6.5, 6.5 \pm 0.7$	4.2, 7.8
$V_{\mathrm{t_{lin}}}\left(V ight)$	$2.5, 2.9 \pm 0.8$	-0.1, 4.5	$6.4, 6.5 \pm 0.8$	4.5, 8

Supplementary Note 2

It is important to discuss the possible origin of the variation seen in the electrical characteristics of monolayer MoS₂ and WS₂ FETs. Low device-to-device variation in MoS₂ and WS₂ FETs is attributed to the MOCVD growth of single-crystalline and epitaxial monolayers on the sapphire substrates. This is confirmed by in-plane XRD phi-scans in Fig. 1e and 1f, for MoS₂ and WS₂, respectively, which show six-fold rotational symmetry and epitaxial alignment of the monolayer with the underlying sapphire. If the films were polycrystalline with a high degree of misorientation within the plane of the film, then we would expect to see multiple peaks at different angles in the in-plane XRD scan. These films were also transferred to a Quantifoil Cu grid to investigate the microstructure in TEM by using selected area diffraction pattern (SAED) and dark field imaging. As shown in detailed materials characterization of these films (https://www.mri.psu.edu/2dcrystal-consortium/user-facilities/thin-films/list-thin-film-samples-available) the respective SAED patterns show a single crystalline pattern, while composite dark field maps illuminate two contrasting regions in the monolayer films. For MoS₂ these regions correspond to anti-phase domains. For WS₂ however, the regions are unidirectional and are separated by translational boundaries. We believe that it is possible to reduce the spatial variations in 2D FETs through further optimization of growth and improvement in fabrication process flow, which is unlikely for UTB Si owing to significant thickness variations at length scales similar to monolayer MoS₂ and WS₂. In addition, random dopant fluctuations and detrimental quantum confinement effects leading to increase in the bandgap of ultra-thin Si open up opportunities for 2D materials for advanced scaling nodes.

Supplementary Figure 3. Channel length dependence and device to device variation in subthreshold slope. The median subthreshold slope extracted over 1 (SS₁), 2 (SS₂), 3 (SS₃), and 4 (SS₄) orders of magnitude change in the drain current for a) MoS₂ and b) WS₂ as a function of L_{CH} . No L_{CH} dependence is observed. Histograms showing the device-to-device variation in SS₁ and SS₄ across all c) MoS₂ and d) WS₂ FETs.

Device-to-device variation in subthreshold slope and interface traps							
	MoS ₂		WS_2				
	Median, Mean ± SD Min, Max Median, Mean ± SD M						
$SS_1(mV.dec^{-1})$	327, 335 ± 115	93, 729	$438, 443 \pm 66$	296, 596			
$SS_2(mV.dec^{-1})$	$335, 344 \pm 109$	103, 740	$449, 453 \pm 56$	305, 618			
$SS_3(mV.dec^{-1})$	369, 386 ± 116	124, 791	$480, 483 \pm 45$	369, 621			
$SS_4 (mV.dec^{-1})$	$432, 460 \pm 138$	166, 1000	$541, 546 \pm 42$	453, 738			
$D_{\rm IT} (10^{12} eV^{-1} cm^{-2})$	$6.2, 6.6 \pm 2.3$	1.75, 15.7	$8, 8.1 \pm 0.7$	6.5, 11.2			

Supplementary Figure 4. Channel length dependence of maximum, minimum, and ratio of maximum to minimum current. Distribution of maximum current (I_{max}) and minimum current (I_{min}) for different channel lengths for a) MoS₂ and b) WS₂ FETs, extracted from the transfer characteristics. Median, 25th percentile and 75th percentile is denoted. Distribution of ratio of maximum to minimum current ratio (I_{max}/I_{min}) for different L_{CH} for c) MoS₂ and d) WS₂ FETs. I_{max}/I_{min} is mostly found to be independent of L_{CH} for both MoS₂ and WS₂ FETs. Note that I_{max} demonstrates some L_{CH} dependence for longer channel devices with $L_{CH} \ge 1 \ \mu m$ for MoS₂ and WS₂ FETs due to the linear scaling law but can be ignored for I_{max}/I_{min} which is measured in orders of magnitude.

Device-to-device variation in $I_{\text{max}}/I_{\text{min}}$							
	MoS ₂		WS_2				
	Median, Mean \pm SD	Min, Max	Median, Mean \pm SD	Min, Max			
$I_{\rm max}/I_{\rm min}~(\times 10^7)$	$2.1, 3.4 \pm 5.5$	6.2 × 10 ⁻³ , 52	$2.1, 2.7 \pm 2.6$	0.1, 19			

Benchmarking median $I_{\text{max}}/I_{\text{min}}$ for $L_{\text{CH}} = 100 \text{ nm}$							
	$I_{\rm max}/I_{\rm min}$	EOT (nm)	V _{GS,Range} (V)	$SV_{GS,Range}$ (V) at SEOT = 0.9 nm			
[1] - MoS ₂	$pprox 7 imes 10^6$	1.9	1.5 to -0.5 (2)	0.94			
[1] - MoS ₂	$pprox 4 imes 10^6$	50	-	-			
Our Work - MoS ₂	3.5×10^{7}	22	14 to -3 (17)	0.65			
Our Work - WS ₂	3.9×10^{7}	22	12 to -5 (17)	0.65			
[2] - UTB SOI	1.3×10^{6}	4	1.8 to -0.2 (2)	0.45			

Supplementary Note 3

<u>Mobility from peak Transconductance</u>: The field-effect electron mobility is extracted from the transconductance (g_m) using Supplementary Equation (S1).

$$\mu_{g_m} = \frac{dI_{\rm DS}}{dV_{\rm GS}} \left(\frac{L_{\rm CH}}{WC_{\rm OX}V_{\rm DS}} \right) \tag{S1}$$

<u>Y-function mobility</u>: The linear part of Y-function, given by Supplementary Equation (S2) is extrapolated to obtain Y-function threshold. μ_Y is extracted using the slope of Y-function versus $V_{GS} - V_{t_Y}$

$$Y = \frac{I_{\rm DS}}{\sqrt{g_{\rm m}}} = (\mu_Y W C_{\rm OX} V_{\rm DS})^{0.5} (V_{\rm GS} - V_{\rm t_Y})$$
(S2)

<u>TLM mobility</u>: TLM mobility (μ_{TLM}) is obtained from the slope of the total resistance (R_T) versus L_{CH} using Supplementary Equation (S3).

$$R_{\rm T} = 2R_{\rm c} + R_{\rm ch}; \ R_{\rm ch} = \frac{L_{\rm CH}}{\mu_{\rm TLM} C_{\rm OX} (V_{\rm GS} - V_{\rm t_{\rm lin}})} = \frac{L_{\rm CH}}{q n_{\rm S} \mu_{\rm TLM}}; \ n_{\rm S} = \frac{C_{\rm OX} (V_{\rm GS} - V_{\rm t_{\rm lin}})}{q}$$
(S3)

Supplementary Figure 5. Device-to-device variation in Y-function mobility and TLM mobility. The distribution of Y-function mobility (μ_Y) for different channel lengths (L_{CH}) for a) MoS₂ and b) WS₂ FETs. Median, 25th percentile and 75th percentile is denoted. The distribution of the TLM mobility (μ_{TLM}) for c) MoS₂ and d) WS₂

Device-to-device variation in field-effect carrier mobility									
$\mu_{g_m}(cm^2 V^{-1} s^{-1})$						$\mu_Y (cm^2)$	$V^{-1}s^{-1}$)		
	MoS	2	WS ₂		MoS	2	WS ₂		
$L_{\rm CH}(\mu m)$	$\begin{array}{c} \text{Median,} \\ \text{Mean} \pm \text{SD} \end{array}$	Min, Max	Median, Mean ± SD	Min, Max	Median, Mean ± SD	Min, Max	$\begin{array}{c} \text{Median,} \\ \text{Mean} \pm \text{SD} \end{array}$	Min, Max	
0.1	4, 4 ± 1	1, 5	3, 3 ± 1	2, 5	5, 4 ± 2	0.1, 6	$2, 2 \pm 0.6$	0.9, 3	
0.2	7, 7 ± 3	0.3, 11	4, 4 ± 2	1, 8	8, 7 ± 3	0.3, 11	3, 3.2 ± 2	0.6, 6	
0.3	$10, 9 \pm 4$	0.3, 15	7, 7 ± 3	3, 11	11, 10 ± 5	0.3, 18	5, 6 ± 2	2, 10	
0.4	11, 9 ± 4	0.7, 15	9, 7 ± 3	2, 11	12, 10 ± 5	0.6, 16	7, 7 ± 2	2, 10	
0.5	12, 11 ± 5	0.2, 18	9, 9 ± 3	1, 12	13, 12 ± 6	0.3, 22	8, 8 ± 3	1, 13	

1	15, 14 ± 5	2, 23	10, 10 ± 5	2, 19	17, 14 ± 7	0.6, 25	10, 11 ± 5	3, 18
2	19, 18 ± 7	3, 26	$12, 12 \pm 6$	2, 24	21, 18 ± 8	2, 29	13, 13 ± 7	2, 25
3	$18, 20 \pm 4$	13, 27	18, 19 ± 7	8, 29	21, 18 ± 7	2, 28	16, 17 ± 8	4, 30
4	$23, 23 \pm 4$	17, 28	$21, 20 \pm 6$	12, 30	$23, 22 \pm 6$	2, 29	$20, 20 \pm 7$	10, 30
5	$24, 24 \pm 3$	17, 30	$29, 24 \pm 9$	12, 33	23, 22 ± 5	11, 31	23, 22 ± 9	11, 32

Supplementary Note 4

We have evaluated n_S by considering the effect of C_{IT} . After evaluating C_{IT} from the subthreshold slope, Supplementary Equation (S4) was used to evaluate n_S in the ON-state.

$$n_{\rm S} = \frac{C_{\rm G}}{q} \left(V_{\rm GS} - V_{t_{\rm lin}} \right); \qquad C_{\rm G} = \frac{C_{\rm OX} \left(C_{\rm IT} + C_{\rm S} \right)}{C_{\rm OX} + C_{\rm IT} + C_{\rm S}}; \qquad C_{\rm S} = \frac{q^2 n_{\rm S}}{k_{\rm B} T}$$
(S4)

Here, $C_{\rm G}$ is the total gate capacitance. $n_{\rm S} = 10^{13} \ cm^{-2}$ for MoS₂ and $n_{\rm S} = 4.4 \times 10^{12} \ cm^{-2}$ for WS₂ used in the main text corresponds to $C_{\rm S}$ of $6.13 \times 10^{-1} F.m^{-2}$ and $2.7 \times 10^{-1} F.m^{-2}$ respectively. Maximum $C_{\rm IT}$ is found to be $2.5 \times 10^{-2} F.m^{-2}$ and $1.7 \times 10^{-2} F.m^{-2}$ for MoS₂ and WS₂, respectively and $C_{\rm OX} = 1.6 \times 10^{-3} F.m^{-2}$. Hence, in the ON-state $C_{\rm S} \gg C_{\rm IT}$ as well as $C_{\rm S} \gg C_{\rm OX}$, resulting in $C_{\rm G} \approx C_{\rm OX}$, simplifying Supplementary Equation (S4) into Supplementary Equation (S5).

$$n_{\rm S} = \frac{C_{\rm OX}}{q} \left(V_{\rm GS} - V_{\rm t_{\rm lin}} \right) \tag{S5}$$

To obtain a constant $n_{\rm S}$, a constant overdrive voltage $(V_{\rm GS} - V_{\rm t_{lin}})$ is ensured by extracting the $V_{\rm t_{lin}}$ and then estimating the required $V_{\rm GS}$ for every device. $I_{\rm ON}$ is extracted from the output characteristics with a $V_{\rm GS}$ step size of 2 V, and the median error in $n_{\rm S}$ is $0.11 \times 10^{12} \ cm^{-2}$ and $0.03 \times 10^{12} \ cm^{-2}$ for MoS₂ and WS₂ FETs, respectively. $n_{\rm S}$ is also found for the analysis of $R_{\rm c}$. $R_{\rm c}$ is extracted from the transfer characteristics with a $V_{\rm GS}$ step size of 85 mV, and median error in $n_{\rm S}$ is 0.003 and $0.004 \times 10^{12} \ cm^{-2}$ for MoS₂ and WS₂ FETs, respectively.

Device-to-device variation in TLM mobility							
	MoS ₂		WS ₂				
	Median, Mean \pm SD	Min, Max	Median, Mean ± SD	Min, Max			
$\mu_{\rm TLM}(cm^2 V^{-1} s^{-1})$	27.3, 27.7 ± 5.5	21.1, 46.5	16.2, 17.9 ± 9.7	2, 33.3			

Supplementary Figure 6

Supplementary Figure 6. Channel length dependence of drive current. Distribution of I_{ON} as a function of channel length (L_{CH}) for a) MoS₂ and b) WS₂ FETs for V_{DS} of 1 V, and for c) MoS₂ and d) WS₂ FETs for V_{DS} of 5 V. Note that the distribution is plotted as a function of $1/L_{CH}$. Median, 25th percentile and 75th percentile is denoted.

Device-to-device variation in the drive current									
	I _{ON} (μΑ.μ	m^{-1}) at $V_{\rm I}$	I _{ON} (L	ι <i>Α</i> . μ m^{-1}) at $V_{\rm DS}=5$	V			
	Mos	\mathbf{S}_2	WS ₂		Mos	\mathbf{S}_2	WS	2	
L _{CH} (μm)	$\begin{array}{l} \text{Median,} \\ \text{Mean} \pm \text{SD} \end{array}$	Min, Max	$\begin{array}{c} \text{Median,} \\ \text{Mean} \pm \text{SD} \end{array}$	Min, Max	$\begin{array}{c} \text{Median,} \\ \text{Mean} \pm \text{SD} \end{array}$	Min, Max	$\begin{array}{c} \text{Median,} \\ \text{Mean} \pm \text{SD} \end{array}$	Min, Max	
0.1	54, 52 ± 13	14, 73	17, 18 ± 5	10, 26	146, 141 ± 32	42, 177	30, 34 ± 10	25, 53	
0.2	46, 41 ± 18	2, 68	11, 13 ± 8	3, 27	$126, 109 \pm 47$	9, 180	$20, 25 \pm 14$	7, 50	
0.3	41, 38 ± 14	1, 57	$14, 15 \pm 6$	6, 24	126, 116 ± 38	6, 144	28, 30 ± 13	9, 51	
0.4	36, 31 ± 14	2, 50	$15, 14 \pm 5$	2, 20	$110, 104 \pm 41$	7, 155	30, 31 ± 9	10, 49	
0.5	35, 32 ± 12	1, 48	$12, 12 \pm 4$	3, 19	121, 110 ± 37	4, 146	30, 28 ± 10	12, 46	
1	25, 24 ± 8	2, 35	8, 8 ± 3	2, 13	99, 92 ± 29	11, 125	$26,25\pm8$	7, 35	
2	17, 16 ± 5	2, 21	5, 4 ± 2	1, 8	70, 64 ± 20	9, 82	20, 18 ± 7	3, 26	
3	12, 11 ± 4	1, 14	4, 4 ± 1	1,6	49, 45 ± 15	5,60	15, 15 ± 4	7, 20	
4	10, 9 ± 2	1, 11	3, 3 ± 1	2, 4	$40, 37 \pm 8$	8,46	12, 12 ± 3	6, 16	
5	8, 7 ± 2	2, 10	3, 3 ± 1	1, 4	32, 31 ± 7	8, 39	10, 10 ± 3	5, 15	

Benchmarking of scaling impact on MoS ₂ FETs (parentheses show the number of devices used for the study)								
	$\mu_{g_{1}}$	$(cm^2 V^{-1}s^{-1})$			I _{ON} (μΑ. μ	$m^{-1})$		
	Our work	[3]	[4]		Our work	[3]		
L _{CH} (µm)	Median, Mean ± SD	Median, Mean ± SD	Median, Mea SD	n ±	Median, Mean ± SD	Median, Mean ± SD		
0.1	3.6, 4 ± 1 (17)	3, 2.7 ± 0.9 (17)			100, 99 ± 23 (17)	39.6, 36.7 ± 14.2 (17)		
0.2	7.2, 6.6 ± 3.1 (22)	5, 4.6 ± 1.7 (24)			87, 78± 33 (22)	28.4, 27.1 ± 12.2 (24)		
0.3	9.5, 8.9 ± 3.7 (22)				79, 72 ± 25 (23)			
0.4	11.3, 9.1 ± 4.3 (23)				69, 59 ± 26 (23)			
0.5	$11.7, 10.8 \pm 5.1 \\ (23)$	9.2, 8.5 ± 3 (27)			66, 62 ± 22 (23)	25.1, 22.3 ± 10 (27)		
1	$14.7, 14.2 \pm 5.4 \\ (21)$	$11.1, 10.5 \pm 3.4 \\ (27)$			49, 46 ± 15 (23)	12.1, 12.9 ± 5 (27)		
2	19.3, 17.8 ± 7.3 (21)				32, 30 ± 10 (22)			
3	17.8, 20.1 ± 4 (15)				23, 21 ± 7 (19)			
4	$22.5, 23.1 \pm 3.6$ (19)		Nil, 34.2 ± 3 (200)	3.6	19, 17 ± 4 (20)			
5	23.9, 24.2 ± 3.1 (17)		$L_{\rm CH} = 4-8.6 \mu$	um	15, 14 ± 3 (19)			

Supplementary Figure 7. Benchmarking scaling of MoS_2 FETs. Channel length dependent statistics with literature for a) field-effect mobility and b) drive current for synthetic monolayer MoS_2 FETs. Using error bar plots, mean and standard deviation is shown.

Device-to-device variation in saturation velocity							
	MoS ₂		WS ₂				
	Median, Mean \pm SD	Min, Max	Median, Mean \pm SD	Min, Max			
$v_{\rm SAT} (cm. sec^{-1}) (10^5)$	$6.4, 5.9 \pm 2.5$	0.2, 11.2	4, 4.1 ± 1.5	1, 6.9			

Supplementary References

- [1] Q. Smets, B. Groven, M. Caymax, I. Radu, G. Arutchelvan, J. Jussot, *et al.*, "Ultra-scaled MOCVD MoS2 MOSFETs with 42nm contact pitch and 250µA/µm drain current," pp. 23.2.1-23.2.4, 2019.
- [2] C. Min, T. Kamins, P. V. Voorde, C. Diaz, and W. Greene, "0.18-μm fully-depleted silicon-oninsulator MOSFET's," *IEEE Electron Device Letters*, vol. 18, pp. 251-253, 1997.
- [3] H. Liu, M. Si, S. Najmaei, A. T. Neal, Y. Du, P. M. Ajayan, *et al.*, "Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films," *Nano Lett*, vol. 13, pp. 2640-6, Jun 12 2013.
- [4] K. K. H. Smithe, S. V. Suryavanshi, M. Munoz Rojo, A. D. Tedjarati, and E. Pop, "Low Variability in Synthetic Monolayer MoS2 Devices," *ACS Nano*, vol. 11, pp. 8456-8463, Aug 22 2017.