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S1. Biogeographical realms 
We selected endemic amphibian species from six biogeographical realms (Figure S1; see 
main text). These geographical delimitations are used by biogeographers and 
macroecologists to organize global diversity.  

 

Figure S1. Biogeographical realms (in color) used in this paper. Colors as follow: blue: 
Nearctic; yellow: Neotropical; green=Afrotropical; brown=Australian; cyan: Indomalayan; 
red: Palearctic.  

 
  



S2. Description and analysis of climatic and bioclimatic variables 

S2.1 Description of control and hosing climate experiments  
The climate simulations used in this study were produced with the Institut Pierre Simon 
Laplace low-resolution coupled ocean-atmosphere model (IPSL-CM5-LR)1. The spatial 
resolution of the atmospheric component is 3.75ºx1.875º in longitude and latitude, 
respectively, and includes 39 vertical levels. The nominal resolution of the oceanic 
component is 2º with a higher latitudinal resolution of 0.5° in the equatorial ocean, and 31 
vertical levels. The locations for the release of the freshwater are deep water formation 
regions in the North Atlantic (45ºN to 65ºN, 45ºW to 5ºE), which are classical regions of 
spread of the input of Greenland meltwater2 . Since this freshwater input corresponds to 
Greenland ice sheet melting in terms of its long-term reservoir of freshwater, there is no 
reason to compensate for the water mass added, and no compensation is added in the model. 
Since this is a free surface model, this is not requested for conservation issues.  

Five experiments are considered for the assessment presented here: a) the control run is the 
RCP8.5 emission scenario; b) four hosing experiments that are based on the RCP8.5 but 
include the addition of 0.11, 0.22, 0.34, and 0.68 Sv (1 Sv = 106 m3/s) of freshwater released 
in the North Atlantic from 2020 to 20703. These experiments are labeled as A, B, C, and D, 
respectively. All simulations cover the period 2006-2100. Figure S2 illustrates the additional 
weakening of AMOC over the century that is produced by each of these hosing scenarios. 
The bioclimatic indices used in this paper are derived from the monthly temperature and 
precipitation data produced with the IPSL-CM5-LR. 

Early studies about the effects of an AMOC collapse were based on climate models’ 
simulations in which hosing experiments were imposed to pre-industrial climate conditions4 
(i.e., other forcing factors such greenhouse gases emissions were held constant). While this 
type of experiment can help to analyze effects such as climate feedbacks in isolation, a 
collapse of AMOC is not to be expected to occur under pre-industrial climate or without 
significant external forcing. In this paper, we use recent simulations in which the hosing 
experiments are imposed in the course of a high-emissions scenario (RCP8.5)3. A high-
warming scenario such as the RCP8.5 provides a consistent baseline scenario for exploring 
the impacts of significant melting of Greenland that produces additional and substantial 
weakening or collapse of AMOC. Although the probability of a collapse of AMOC is not 
known, the literature strongly suggests that these probabilities are expected to increase with 
the level of warming5,6. The RCP8.5 represents a high-emission scenario and not a ‘business-
as-usual’ scenario7. However, a recent study has shown that this scenario is in close 
agreement with historical cumulative CO2 emissions, as well as with projections out to 
midcentury under current and stated policies, and is characterized by highly plausible levels 
of CO2 emissions in 21008. We do not assign any probability of occurrence to the RCP8.5 
scenario nor to the collapse of AMOC, instead we center on investigating the impacts on 
amphibian species this climate catastrophe could have. 

The assessment of impacts in this paper focuses on climate and thus 30-year averages 
centered around 2030, 2050 and 2070 are used to represent climate conditions. The effects 
of climate variability including oscillations such as El Niño/Southern Oscillation (ENSO) 
and the North Atlantic Oscillation (NAO), or multidecadal climate variations are not 



addressed in the analysis and may require the use of large ensembles which are not available 
at the moment. 

 

 

Figure S2. Atlantic meridional overrunning circulation (AMOC) index at 26°N. The AMOC 
index is defined as the maximum of the Atlantic meridional stream function at 26°N below 
500 m. The time evolutions of the indices are shown in percent, in reference to the mean state 
of the AMOC in the IPSL-CM5A-LR historical simulation over the period 1850-1950. The 
black line shows the control simulation based on the RCP8.5 projection, while the red, blue 
and light blue refer to the superimposed hosing experiments with the addition of 0.11, 0.22 
and 0.68 Sv of freshwater from 2020 to 2070, respectively (1 Sv = 10⁶ m³/s). Thick and thin 
lines represent 30-year moving averages and annual frequency data, respectively. 



 

S2.2 Differences between scenarios and time horizons 

Bioclimatic variables are more biologically meaningful than precipitation and 
temperature variables alone and thus are commonly used in ecological modelling. We 
constructed five bioclimatic variables used to model amphibian species’ distributions and 
that have been considered important for amphibian’s biology in previous studies9: Annual 
mean temperature (AMT; bio1); warmest month temperature (WMT; bio5); coldest month 
temperature (CMT; bio6); total annual precipitation (AP; bio12); and precipitation 
seasonality (PS; bio15). These bioclimatic variables have a strong influence on species’ 
distributions and functional traits9–12 and have been used to model species' distributional 
areas both under current9 and future climate change conditions12,13. Part I of Figures S3 to S7 
shows maps of these bioclimatic variables under the control scenario and all the hosing 
experiments described in S2.1 for the 2070 period, while Part II shows the differences 
between the control (RCP8.5) and each one of the hosing experiments.  

Figure S8 shows radial graphs of the median change for each region, bioclimatic 
variable and horizon (2030, 2050, 2070), with respect to the reference climatology (1970-
2000). Departures from symmetry in each axis denote differences between the RCP8.5 and 
the RCP8.5 plus additional and substantial weakening of AMOC (experiment D) (e. Some 
salient features of this figure illustrate the effects of additional and substantial weakening 
over the climate of the selected regions. For instance, under the RCP8.5 scenario median 
changes in AMT, CMT and WMT tend to be similar in magnitude and sign for all regions. 
However, with the additional weakening of the AMOC important contrasts between changes 
in CMT and WMT appear in all regions and large differences in precipitation with respect to 
the RCP8.5 control simulation tend to occur.  

Moreover, the variation of deltas across scenarios illustrates important non-
stationarities across geography in the departure of current climate conditions in the hosing 
experiments (Figure S9-S14). For instance, CMT and WMT exhibit large departures in all 
freshwater discharge scenarios with respect to the control simulation. These figures illustrate 
the degree of climatic departure from baseline conditions for each of the five bioclimatic 
variables used in the ecological niche models (Figure S9- S14). The variation of these 
departures is context-dependent and some regions would be more affected by temperature 
whereas other by changes in rainfall regimes. As denoted by the boxplots in these figures, all 
bioclimatic variables show very large variability within regions. The delta values from these 
figures (Figure S9- S14) represent the differences between a given future scenario (e.g., 
control and hosing experiments) and baseline conditions (1970-2000). The non-stationarity 
across time and space shows the complexity of these abrupt climate changes and of their 
potential impacts on ecosystems. For instance, the largest departures were observed in 
precipitation variables (AP and PS) across all six realms (Figure S9- S14). The departure of 
extreme monthly temperatures (CMT and WMT) from baseline conditions is context-
dependent and in some regions is larger (e.g., Palearctic) than in others (e.g., Neotropical). 
As it is discussed in the following subsection, large heterogeneities in climatic departures 
from current conditions are also present within regions which also contribute to the large 
spatial variability in the projected impacts on biodiversity. 
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Figure S3. Annual temperature (AMT; ºC) under the control scenario (RCP85) and the hosing 
experiments. Part I of this figure shows in the upper row the annual temperature values for 
current conditions (left) and the control reference scenario (right). The middle row shows the 
annual temperature values for the hosing experiments A (left) and B (right). The lower row 



shows the annual temperature values for the hosing experiments C (left) and D (right). Part 
II shows the differences between the control reference scenario (RCP8.5) and each one of 
the hosing experiments for 2070 for AMT. The first two rows (A-D) show the anomalies 
with increases in temperature (i.e., warming) for each one of the hosing experiments (A: 
Sv=0.11; B: Sv=0.22; C: Sv=0.34; D: Sv=0.68). The last two rows (E-H) show the anomalies 
with decreases in temperature (i.e., cooling) for each one of the hosing experiments (E: 
Sv=0.11; F: Sv=0.22; G: Sv=0.34; H: Sv=0.68). 
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Figure S4. Temperature of the warmest month (WMT; ºC) under the control reference 
scenario (RCP85) and the hosing experiments. Part I of this figure shows in the upper row 
the temperature values of the warmest month for current conditions (left) and the control 
scenario (right). The middle row shows the temperature values of the warmest month for the 
hosing experiments A (left) and B (right). The lower row shows the temperature values of 



the warmest month for the hosing experiments C (left) and D (right). Part II shows the 
differences between the control reference scenario (RCP85) and each one of the hosing 
experiments for 2070 for WMT. The plots (A-D) shows the anomalies with increases in 
temperature (i.e., warming) for each one of the hosing experiments (A: Sv=0.11; B: Sv=0.22; 
C: Sv=0.34; D: Sv=0.68). The anomalies with decreases in temperature (i.e., cooling) were 
restricted to a few pixels and therefore are not shown.   
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Figure S5. Temperature of the coldest month (CMT; ºC) under the control reference scenario 
(RCP85) and the hosing experiments. Part I of this figure shows in the upper row the 
temperature values of the coldest month for current conditions (left) and the control scenario 
(right). The middle row shows the temperature values of the coldest month for the hosing 



experiments A (left) and B (right). The lower row shows the temperature values of the coldest 
month for the hosing experiments C (left) and D (right). Part II shows the differences between 
the control scenario (RCP85) and each one of the hosing experiments for 2070 for CMT. The 
plots (A-D) shows the anomalies with increases in temperature (i.e., warming) for each one 
of the hosing experiments (A: Sv=0.11; B: Sv=0.22; C: Sv=0.34; D: Sv=0.68). The anomalies 
with decreases in temperature (i.e., cooling) were restricted to a few pixels and therefore are 
not shown.   
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Figure S6. Total annual precipitation (AP; mm) under the control reference scenario (RCP85) 
and the hosing experiments. Part I of this figure shows in the upper row the total annual 
precipitation values for current conditions (left) and the control scenario (right). The middle 
row shows the total annual precipitation values for the hosing experiments A (left) and B 
(right). The lower row shows the total annual precipitation values for the hosing experiments 



C (left) and D (right). Part II shows the differences between the control reference scenario 
(RCP85) and each one of the hosing experiments for 2070 for AP. The first two rows (A-D) 
show the anomalies with increases in precipitation (i.e., wetter) for each one of the hosing 
experiments (A: Sv=0.11; B: Sv=0.22; C: Sv=0.34; D: Sv=0.68). The last two rows (E-H) 
show the anomalies with decreases in precipitation (i.e., drier) for each one of the hosing 
experiments (E: Sv=0.11; F: Sv=0.22; G: Sv=0.34; H: Sv=0.68).  
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Figure  S7. Precipitation seasonality (PS) under the control reference scenario (RCP85) and 
the hosing experiments. Part I of this figure shows in the upper row the precipitation 
seasonality values for current conditions (left) and the control scenario (right). The middle 
row shows the precipitation seasonality values for the hosing experiments A (left) and B 
(right). The lower row shows the precipitation seasonality values for the hosing experiments 



C (left) and D (right). Part II shows the differences between the control reference scenario 
(RCP85) and each one of the hosing experiments for 2070 for PS. The first two rows (A-D) 
show the anomalies with increases in precipitation seasonality for each one of the hosing 
experiments (A: Sv=0.11; B: Sv=0.22; C: Sv=0.34; D: Sv=0.68). The last two rows (E-H) 
show the anomalies with decreases in precipitation seasonality for each one of the hosing 
experiments (E: Sv=0.11; F: Sv=0.22; G: Sv=0.34; H: Sv=0.68).  
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Figure S8. Comparison of the RCP8.5 and the RCP8.5 plus additional and substantial AMOC 
weakening for the 2030, 2050 and 2070 horizons, and for each region. Departures from 
symmetry in each axis denote differences between the RCP8.5 and the RCP8.5 plus 
additional and substantial weakening of AMOC (D, 0.68 Sv). AMT: annual mean 
temperature; AP: annual precipitation; CMT: coldest month temperature; PS: precipitation 
seasonality; WMT: warmest month temperature. Variables are expressed as median changes 
from current conditions and AP is in % units.  



 

 

 

Figure S9. Boxplots illustrating variation in the differences between current climate 
conditions and each climate change scenario (deltas) for each one of the five bioclimatic 
variables for the Afrotropical region. AMT: annual mean temperature; AP: annual 
precipitation; CMT: coldest month temperature; PS: precipitation seasonality; WMT: 
warmest month temperature.   



 
Figure S10. Boxplots illustrating variation in the differences between current climate 
conditions and each climate change scenario (deltas) for each one of the five bioclimatic 
variables for the Australasian region. AMT: annual mean temperature; AP: annual 
precipitation; CMT: coldest month temperature; PS: precipitation seasonality; WMT: 
warmest month temperature. 
 
  



 
Figure S11. Boxplots illustrating variation in the differences between current climate 
conditions and each climate change scenario (deltas) for each one of the five bioclimatic 
variables for the Indomalayan region. AMT: annual mean temperature; AP: annual 
precipitation; CMT: coldest month temperature; PS: precipitation seasonality; WMT: 
warmest month temperature. 
 
 
  



 
Figure S12. Boxplots illustrating variation in the differences between current climate 
conditions and each climate change scenario (deltas) for each one of the five bioclimatic 
variables for the Nearctic region. AMT: annual mean temperature; AP: annual precipitation; 
CMT: coldest month temperature; PS: precipitation seasonality; WMT: warmest month 
temperature. 

 
  



 
Figure S13. Boxplots illustrating variation in the differences between current climate 
conditions and each climate change scenario (deltas) for each one of the five bioclimatic 
variables for the Neotropical region. AMT: annual mean temperature; AP: annual 
precipitation; CMT: coldest month temperature; PS: precipitation seasonality; WMT: 
warmest month temperature. 
 
 



 
Figure S14. Boxplots illustrating variation in the differences between current climate 
conditions and each climate change scenario (deltas) for each one of the five bioclimatic 
variables for the Palearctic region. AMT: annual mean temperature; AP: annual precipitation; 
CMT: coldest month temperature; PS: precipitation seasonality; WMT: warmest month 
temperature. 
 

 

 

  



S2.3 Climatic anomalies and novel climates in thermohaline circulation weakening 
scenarios 

We also analyzed the spatial emergence of novel climates (i.e., non-analog climates)14 and 
climatic departures based on the set of five bioclimatic variables described above. These 
analyses were performed for all experiments: the control reference scenario (RCP 8.5) and 
each of the four hosing experiments (0.11 Sv; 0.22 Sv; 0.34 Sv; 0.68 Sv). Climatic departures 
were calculated as the Euclidean distances between future climatic conditions and current 
climatic conditions (Figure S15)15. Some regions experience larger departures in the short 
term (2030; e.g., Australasian, Nearctic and Palearctic) than others (Figure S15). However, 
Euclidean distances reveal that more extreme climatic conditions could emerge in several 
regions across time under an AMOC collapse scenario (see outliers in Figure S15). Figure 
S16 depicts the Euclidean distances at the grid cell level for the control and hosing 
simulations during the first part of this century (2030). This figure shows that climate 
departures are much larger under four the hosing experiments than under the control scenario 
(RCP8.5), particularly for regions such as Neotropical, Nearctic and Palearctic and for the 
0.68 Sv scenario.    

 

  



 

 

Figure S15. Euclidean distances (log10) based on five bioclimatic variables. Variables are 
expressed as climatic anomalies between each climate change scenario and current climate 
conditions.   

 

  



 

 

Figure S16. Euclidean distances (log10 based on five bioclimatic variables for the 2030 
horizon). Panel a-d shows the Euclidean distances for the control plus freshwater discharge 
simulations A, B, C and D, respectively. Panel e shows the Euclidean distances for the control 
scenario (RCP 8.5). Large values indicate climatic combinations very different to current 
conditions (i.e., novel or non-analog climates).  

  



S3. Ecological modelling approach and extended results 
3.1 Selection of ecological niche modeling algorithms 

A set of 15 species were selected randomly for each biogeographical realm and 
species distribution models were fitted using five algorithms: MaxEnt, MARS, CART, ANN, 
GLM and GBM to explore which algorithms have the best predictive performance (e.g., 
omission rate, AUC, TSS, and Kappa; Table S1; see also16,17 for full description of these 
validation metrics). A full description of each model algorithm can be found in Peterson et 
al.18 and Guisan et al.19. We selected only three algorithms (MaxEnt; CART; and BRT) that 
have a good model performance based on the lowest omission rate, high AUC, and TSS 
values and a low omission rate. Species distribution models for 2509 species were estimated 
with these three algorithms. All models show a high predictive performance (high TSS, 
specificity and sensitivity values; Figure S17). We excluded from subsequent analyses those 
species with a poor performance denoted by low values in validation metrics (e.g., TSS <= 
0.4, sensitivity and specificity <= 0.5). 

 

Figure S17. Validation metrics for each algorithm across six biogeographical regions. TSS: 
True Statistics Skill. 



 

S3.2 Estimates of range contractions using ecological niche modelling algorithms 

We performed ecological niche modeling for 2509 endemic species to six 
biogeographical realms across the world (Table S1). The biogeographical realm with the 
highest number of modelled species was Neotropical (1211) followed by Afrotropical (466 
species). The Palearctic realm had the lowest number of modelled species (108 species).  

 

Table S1. Number of endemic species modelled using ecological niche modelling algorithms.  

Region Endemic species  

Afrotropical 466  

Australasian 175  

Indomalayan 386  

Nearctic 163  

Neotropical 1211  

Palearctic 108  

 

We found an extensive variation in the response of amphibian species to future 
climate change scenarios. This suggests that amphibian species can respond either positively 
(i.e, expand its ranges) or negatively (i.e., contract its ranges) to future climate conditions. 
More species will experience range contractions than range expansions under all climate 
change scenarios. This result is relatively similar across the three model algorithms (Table 
S2).



Table S2. Number of species exhibiting range contraction and expansion under future climate 
change conditions. Species were modelled using three algorithms (MaxEnt: maximum entropy; 
CART: classification and regression trees; BRT: boosted regression trees) with the highest 
predictive performance in preliminary modeling runs. Models were transferred to a high-warming 
scenario (IPLS RCP 8.5), four hosing experiments (HE 0.11, HE 0.22, HE 0.34, HE 0.68 Sv: 1 Sv 
=106 m3/s) of freshwater release in the North Atlantic from 2020 to 2100, and three temporal 
horizons (2030, 2050, 2070). The column labeled as percentage denotes the percentage of species 
that contracted their distributional areas.  

 

Algorithm Scenario 2030 2050 2070 

MaxEnt 

 Contraction Expansion Percentage Contraction Expansion Percentage Contraction Expansion Percentage 

RCP 8.5 1967 542 78 2015 494 80 2027 482 81 

HE 0.11 2038 471 81 2049 460 82 2058 451 82 

HE 0.22 2036 473 81 2056 453 82 2068 441 82 

HE 0.34 2035 474 81 2034 475 81 2044 465 81 

HE 0.68 2031 478 81 2041 468 81 2063 446 82 

CART 

RCP 8.5 1291 984 57 1319 956 58 1314 961 58 

HE 0.11 1459 816 64 1428 847 63 1410 865 62 

HE 0.22 1456 819 64 1453 822 64 1415 860 62 

HE 0.34 1466 809 64 1423 852 63 1421 854 62 

HE 0.68 1515 760 67 1477 798 65 1414 861 62 

BRT 

RCP 8.5 955 1482 39 1059 1378 43 1162 1275 48 

HE 0.11 1250 1187 51 1247 1190 51 1242 1195 51 

HE 0.22 1241 1198 51 1256 1183 51 1260 1177 52 

HE 0.34 1432 1005 59 1339 1098 55 1351 1086 55 

HE 0.68 1297 1140 53 1282 1155 53 1274 1163 52 



Furthermore, the percentage of range contractions was relatively similar across 
biogeographical realms (Table S3). In Nearctic and Palearctic realms, we found that more 
species contract their ranges across all the hosing scenarios in comparison with a control 
scenario (IPLS-RCP 8.5). This suggests that endemic amphibians in extra-tropical realms 
seem to be more sensitive to potential contractions in their distributional areas with climate 
change scenarios simulating a thermohaline weakening. 

Table S3. Percentage of species suffering range contractions across biogeographical realms 
in a high-warming scenario (RCP 8.5) and four hosing experiments (0.11, 0.22, 0.34, 0.68 
Sv; 1 Sv = 106 m3/s) of freshwater release in the North Atlantic from 2020 to 2100), modelled 
using a maximum entropy algorithm.  

Realm Scenario 2030 2050 2070 
Afrotropical RCP 8.5 81 82 82 
 0.68 Sv 81 84 85 
 0.34 Sv 82 83 85 
 0.22 Sv 80 85 85 
 0.11 Sv 80 83 85 
Australasian RCP 8.5 72 78 75 
 0.68 Sv 71 71 73 
 0.34 Sv 73 73 74 
 0.22 Sv 73 73 75 
 0.11 Sv 73 71 73 
Indomalayan RCP 8.5 90 91 91 
 0.68 Sv 79 82 87 
 0.34 Sv 79 83 86 
 0.22 Sv 79 83 87 
 0.11 Sv 80 83 83 
Nearctic RCP 8.5 51 57 53 
 0.68 Sv 72 73 73 
 0.34 Sv 72 72 69 
 0.22 Sv 72 71 70 
 HE 0.11 72 72 72 
Neotropical RCP 8.5 84 85 87 
 0.68 Sv 84 83 84 
 0.34 Sv 85 84 84 
 0.22 Sv 85 84 84 
 0.11 Sv 84 83 84 
Palearctic RCP 8.5 15 18 19 
 0.68 Sv 82 72 64 
 0.34 Sv 75 72 64 



 0.22 Sv 80 74 64 
 0.11 Sv 81 70 60 

 

S3.3 Range contractions across most diverse taxonomic groupings and extinction risk 
status 

Range contractions for the most diverse taxonomic groupings and extinction risk status were 
also estimated for all climate experiments described in section S2.1. Estimated range 
contractions are large for all taxonomic groupings and risk status even for the 2030 horizon. 
For the control simulation, the median reduction in distribution range for all taxonomic 
groupings and risk status is close to 50%, increasing to about 75% by the end of the century 
(Figures S18, S19). “Critically endangered” and “endangered” show lower range 
contractions than other categories, particularly when full dispersal is allowed. The range 
contraction of species is much larger compared to the control scenario across taxonomic 
groupings (Figure S18), extinction risk status (Figure S19), but not between freshwater 
discharge levels (Figures 1, S18, S19).  

 

Figure S18.  Boxplots of projected range contractions for 2509 amphibian species under a 
high-warming scenario (IPLS RCP 8.5; reference scenario) and four hosing experiments 
adding 0.11, 0.22, 0.34, and 0.68 Sv of freshwater (1 Sv = 106 m3/s) labeled as A, B, C, and 
D, respectively. Range contractions are expressed in proportional terms and are shown for 
two dispersal scenarios (full dispersal and no dispersal). Results were averaged across three 
ecological niche modeling algorithms (MaxEnt, BRT, CART; see material and methods) and 
compared across the most diverse amphibian families (i.e., those with more than 100 species). 

 



 

Figure S19.  Boxplots of projected range contractions for 2509 amphibian species under a 
high-warming scenario (IPLS RCP 8.5; reference scenario) and four hosing experiments 
adding 0.11, 0.22, 0.34, and 0.68 Sv of freshwater (1 Sv = 106 m3/s) labeled as A, B, C, and 
D, respectively. Range contractions are expressed in proportional terms and are shown for 
two dispersal scenarios (full dispersal and no dispersal). Results were averaged across three 
ecological niche modeling algorithms (MaxEnt, BRT, CART; see material and methods) and 
compared across IUCN extinction risk status. 

 

 

 

 

 



S3.4 Potential effect of uncertainty in model algorithm, threshold criteria and grain 
size 

Our results are robust to different kinds of uncertainty in projected geographical distributions 
across a high-warming scenario and four hosing experiments. First, we found that the three 
algorithms show that, on average, species are projected to experience extensive losses of 
suitable areas across hosing experiments (Figure S20). We found similar results for the 
percentage of range contraction, independently of the threshold criteria used (Figure S21). 
Finally, we did not find differences using a coarser-grain scale (1°) in the patterns of range 
contraction (Figure S22).  

 



 

Figure S20. Boxplots of projected range contractions for 2509 amphibian species under a 
high-warming scenario (RCP 8.5) and four hosing experiments labeled A, B, C, and D, 
respectively, and three ecological niche algorithms and three time horizons (2030, 2050 and 
2070). BRT: boosted regression tree; CART: classification and regression trees; MaxEnt: 
Maximum entropy. 

 

 



 

Figure S21. Boxplots of projected range contractions for 2509 amphibian species under a 
high-warming scenario (RCP 8.5) and the hosing experiment A for 2050 and three threshold 
criteria to generate presence-absence (i.e., binary) maps. Equal Sens Spec: Equal sensitivity 
and specificity; Max Sens Spec: Maximizing sensitivity and specificity; and MTP: Minimum 



training presence. Results were averaged across three ecological niche modeling algorithms 
(MaxEnt, BRT, CART; see material and methods) and compared across six biogeographic 
regions (A), IUCN extinction risk status (B) and for the most diverse amphibian families 
(i.e., those with more than 100 species; C).  

  



 

 

Figure S22. Boxplots of projected range contractions for 2509 amphibian species under a 
high-warming scenario (RCP 8.5) and the hosing experiment A for three time horizons 
(t1=2030, t2=2050, t3=2070) using a coarser-grain size (1°). Range contractions are 
expressed as proportions and are shown only for a full dispersal scenario. Results were 
averaged across three ecological niche modeling algorithms (MaxEnt, BRT, CART; see 
material and methods) and compared across six biogeographic regions (A), IUCN extinction 
risk status (B) and for the most diverse amphibian families (i.e., those with more than 100 
species; C).  

 

 



Our results suggest that impacts of a thermohaline weakening are severe across the three time 
periods examined (i.e., 2030, 2050, 2070), levels of freshwater discharge (i.e., 0.11 to 0.68 
Sv; 1 Sv = 106 m3/s), biogeographical realms, and two dispersal scenarios (Figure 1). 
Comparisons between projected range losses from the Greenland ice sheet melting 
simulations and a control simulation reveal substantial increases in projected range losses are 
expected from these catastrophic scenarios (Figure 1). In addition, we note that endemic 
species from some biogeographical realms were more susceptible to range contractions. 
These regions include Palearctic, Nearctic and Australasian, although with a slight variation 
between model algorithms. The severity of the hosing experiments on a high-warming 
scenario was evaluated across the conservation status of amphibian species using the 
extinction risk ranking from IUCN20. Some studies have provided evidence that life history 
and geographical range traits that predict extinction risk are useful as indicators to anticipate 
vulnerability to climate change21. Many of these categories for amphibian species were 
defined based on geographical range size, population density or relative abundance and 
potential and direct human stressors. We evaluated the percentage of range contractions 
across IUCN categories from critically endangered (CR) to least concern (LC) (Figure 1). 
Threatened species (i.e., species classified as critically endangered, endangered, and 
vulnerable) will suffer more substantial contractions across hosing experiment scenarios than 
non-threatened species (i.e., least concern; Figure 1). These results suggest that species with 
small geographical ranges and less abundant in the wild will be more affected by a rapid ice 
sheet melting affecting global climate patterns. 

  



S3.5 Comparisons of projected range contractions between scenarios and time horizons 
We found significant differences between all four hosing experiments and the control one. 
The differences were broadly similar either under a full dispersal or no dispersal scenario 
(Table S4). Full dispersal refers to a scenario where species can occupy suitable climates 
across a biogeographical realm. In contrast, no dispersal refers to the lack of ability to 
colonize suitable climates outside its distributional area (Table S4). 

Table S4. Comparisons of range contractions between scenarios using an ANOVA test. 
Control simulation covers the period 2006-2100; A to D denote the four hosing experiments 
with different levels of freshwater discharge into the North Atlantic Ocean over the period 
2020 to 2070. Test results were broadly similar across different niche algorithms and thus 
only results for the Maxent algorithm are shown.  

Dispersal scenario Comparisons z-value p-value 

Full dispersal 

RCP 8.5 vs. A (0.11 Sv) 30.396 < 0.001 
RCP 8.5 vs. B (0.22 Sv) 29.941 < 0.001 
RCP 8.5 vs. C (0.34 Sv) 29.353 < 0.001 
RCP 8.5 vs. D (0.68 Sv) 31.496 < 0.001 
A vs. B -0.476 0.990 
A vs. C -0.994 0.858 
A vs. D 1.118 0.797 
B vs. C -0.519 0.985 
B vs. D 1.594 0.501 
C vs. D 2.109 0.216 

No dispersal 

RCP 8.5 vs. A (0.11 Sv) 15.656 < 0.001 
RCP 8.5 vs. B (0.22 Sv) 16.740 < 0.001 
RCP 8.5 vs. C (0.34 Sv) 15.295 < 0.001 
RCP 8.5 vs. D (0.68 Sv) 18.869 < 0.001 
A vs. B 1.080 0.817 
A vs. C -0.362 0.996 
A vs. D 3.207 0.012 
B vs. C -1.442 0.600 
B vs. D 2.213 0.209 
C vs. D 3.569 0.003 

  



S3.6 Geographical patterns of amphibian species losses and gains under full dispersal 
and no dispersal scenarios. 
Species richness maps were generated based on the stacking of presence-absence maps for 
each species in each biogeographical realm under current climatic conditions and for each 
climate change scenario. We estimated the percentage of species loss and species gains by 
each pixel using these species richness maps.  

The percentage of species loss were calculated based on the total number of current species 
richness and how many species were lost in each pixel under each of the climate change 
scenarios (Figure S23-S29). The geographical patterns of species richness were calculated 
separately for each ecological niche modeling algorithm (Figures S23-S27) and then were 
averaged across algorithms to explicitly incorporate this uncertainty source (Figures 2, S28-
S29). Similarly, the percentage of species gains (Figures S34-S35) were calculated based on 
the total number of current species richness and how many species were gained in each pixel 
under each of the climate change scenarios. 

Under a full dispersal scenario, the percentage of projected species losses varies extensively 
across geography but there are strong similarities across the hosing experiments and temporal 
horizons, except for 2070 and the most extreme hosing experiment (0.68 sv; Figures S24-
S27) in which species loss was much more severe. All realms would be affected by several 
local extinctions. These results suggest that the potential impacts of climate change plus a 
thermohaline shutdown would be non-stationary and widespread across regions. We note that 
the projected local extinctions would be more severe in the Palearctic, northwestern Nearctic, 
north of India, east of Africa, and southeastern Australia (Figure 2 and Figure S23-S29). The 
amphibian assemblages inhabiting these regions would be more impacted by severe range 
contractions driven by a catastrophic climate change event. To further illustrate the effects 
of additional weakening of AMOC, figures S30 to S32 show the difference in the 
geographical patterns of percentage of species losses between RCP8.5 and each one of the 
hosing experiments. These figures reveal the highly non-linear response of the amphibian 
assemblages to these freshwater discharge scenarios and suggest the possibility of a tipping 
point behavior.  

The estimated percentage of species loss is the result of the interplay between changes in 
climate and the species response to such changes. As discussed in section S2 and in previous 
paragraphs, changes in climate are spatially very heterogeneous, particularly under the 
hosing experiments. Similarly, the responses to changes in climate are idiosyncratic and the 
same climatic variation can produce substantially different impacts on the 2,509 amphibian 
species considered in this paper. Figure S30 illustrates the spatial heterogeneity of changes 
in climate and of impacts on amphibian species, as well as their association at the grid scale 
for experiment D (0.68 sv) and the control scenario (RCP 8.5). As is shown in this figure, 
large changes in climate are typically associated with high percentage of species loss. 
However, due to the diversity of species and their sensitivity, in some cases large (small) 
losses can occur for relatively small (large) changes in climate. The diversity in changes in 
climate at the grid cell level and the idiosyncratic responses of the amphibian species 
modelled makes it difficult to extract general conclusions about what combinations of the 
bioclimatic variables drive the overall impacts in each realm. 



Under a no dispersal scenario, the percentage of species losses are consequently more drastic 
(Figure S34-S36). The species losses under a high-emission scenario for the first time horizon 
are less severe than for the hosing scenarios (Fig. S34-a vs. Fig. S34-c). The differences are 
not very large across time horizons for experiment D (Figure S34-b vs. Fig. S34-d). In 
addition, the species losses were highly similar across hosing scenarios and time periods (Fig. 
S36). However, we consider that these no dispersal scenarios likely are unrealistic because 
they reduce to zero the ability of species to track their climate requirements through 
geography and the projected species losses might be extremely inflated. Figure S37 shows 
the percentage of range expansions in each one of the scenarios. Range expansions tend to 
be reduced and homogeneous across all climate change scenarios. 

Finally, the geographical patterns of percentage of species gains (figures S38-S39) show that 
species gains in regional assemblages are more frequent and pervasive in a high-emissions 
scenario (RCP8.5) than in hosing experiments (Figure S34). Although the Neotropical region 
tends to exhibit some gains of species in comparison to other regions, the highest gains were 
toward temperate regions (e.g., the United States and Canada). Although these maps show 
the opposite patterns of species losses, these gains implicate that any species can colonize a 
given cell from any part of each realm and this can be unrealistic for many species due to 
limited dispersal. A further study will be necessary to evaluate properly the turnover in 
species richness across time horizons and scenarios using recently developed metrics of 
temporal turnover22. 

  



 

 

Figure S23. Global geographical patterns of percentage of species loss for a high-emissions 
scenario (RCP 8.5) for three niche model algorithms and three temporal horizons under a full 
dispersal scenario. a) MaxEnt 2030; b) MaxEnt 2050; c) MaxEnt 2070; d) BRT 2030; e) BRT 
2050; f) BRT 2070; g) CART 2030; h) CART 2050; i) CART 2070. 

 

  



 

Figure S24. Global geographical patterns of percentage of species loss for the hosing 
experiment A and for three niche model algorithms and three temporal horizons under a no 
dispersal scenario. a) MaxEnt 2030; b) MaxEnt 2050; c) MaxEnt 2070; d) BRT 2030; e) BRT 
2050; f) BRT 2070; g) CART 2030; h) CART 2050; i) CART 2070. 

 

 

 

  



 

Figure S25. Global geographical patterns of percentage of species loss for the hosing 
experiment B and for three niche model algorithms and three temporal horizons under a full 
dispersal scenario. a) MaxEnt 2030; b) MaxEnt 2050; c) MaxEnt 2070; d) BRT 2030; e) BRT 
2050; f) BRT 2070; g) CART 2030; h) CART 2050; i) CART 2070. 

 

  



 

Figure S26. Global geographical patterns of percentage of species loss for the hosing 
experiment C and for three niche model algorithms and three temporal horizons under a full 
dispersal scenario. a) MaxEnt 2030; b) MaxEnt 2050; c) MaxEnt 2070; d) BRT 2030; e) BRT 
2050; f) BRT 2070; g) CART 2030; h) CART 2050; i) CART 2070.  



 

Figure S27. Global geographical patterns of percentage of species loss for the hosing 
experiment D and for three niche model algorithms and three temporal horizons under a full 
dispersal scenario. a) MaxEnt 2030; b) MaxEnt 2050; c) MaxEnt 2070; d) BRT 2030; e) BRT 
2050; f) BRT 2070; g) CART 2030; h) CART 2050; i) CART 2070. 

  



 

 

Figure S28. Global geographical patterns of percentage of species loss for a high-warming 
scenario (RCP 8.5), averaged across three niche model algorithms for a full dispersal 
scenario. a) 2030; b) 2050; c) 2070. 

 

 
  



 

 
Figure S29. Global geographical patterns of percentage of species loss for all hosing 
experiments averaged across three niche model algorithms under a full dispersal. a) 
simulation A for 2030; b) simulation A for 2050; c) simulation A for 2070; d) simulation B 
for 2030; e) simulation B for 2050; f) simulation B for 2070; g) simulation C for 2030; h) 
simulation C for 2050; i) simulation C for 2070; j) simulation D for 2030; k) simulation D 
for 2050; l) simulation D for 2070. 
  



 
Figure S30. Differences in percentage values of species loss between the control reference 
high-emission scenario (RCP8.5) and the four hosing experiments for 2030. a) RCP8.5 vs. 
experiment A;  b)  RCP8.5 vs. experiment B;  c) RCP8.5 vs. experiment C; d)  RCP8.5 vs. 
experiment D. Red values indicates that percentage differences in species losses were higher 
in a high-emission scenario (RCP8.5) than a given hosing experiment. By contrast, blue 
values indicate that species losses were higher in a given hosing experiment than in the 
control high-emission scenario (RCP8.5). 
  



Figure S31. Differences in percentage values of species loss between the control reference 
high-emission scenario (RCP8.5) and the four hosing experiments for 2050. a) RCP8.5 vs. 
experiment A;  b)  RCP8.5 vs. experiment B;  c) RCP8.5 vs. experiment C; d)  RCP8.5 vs. 
experiment D. Red values indicates that species losses were higher in a high-emission 
scenario (RCP8.5) than a given hosing experiment. By contrast, blue values indicate that 
species losses were higher in a given hosing experiment than in the control high-emission 
scenario (RCP8.5). 
  



Figure S32. Differences in percentage values of species loss between the control reference 
high-emission scenario (RCP8.5) and the four hosing experiments for 2070. a) RCP8.5 vs. 
experiment A;  b)  RCP8.5 vs. experiment B;  c) RCP8.5 vs. experiment C; d)  RCP8.5 vs. 
experiment D. Red values indicates that species losses were higher in a high-emission 
scenario (RCP8.5) than a given hosing experiment. By contrast, blue values indicate that 
species losses were higher in a given hosing experiment than the control high-emission 
scenario (RCP8.5). 
 
  



 
Figure S33. Association between percentage of species loss and climatic departures in 2070. 
Panels a) and b) show the association between percentage of species loss and climatic 
departures for the hosing experiment D and RCP8.5 control reference simulation, 
respectively.  Color gradient from: 1) grey to blue denotes increasing levels of climatic 
departure; 2) grey to yellow indicates increasing percentage of species loss; 3) grey to red 
denotes both increasing levels of climate departure and percentage of species loss.  
  
  



 

Figure S34.  Geographical patterns of percentage of species loss under a no dispersal scenario 
across six biogeographical regions (Afrotropical, Australasian, Indomalaya, Nearctic, 
Neotropical and Palearctic) for different climate change scenarios. (a) and (b) correspond to 
mapping of the percentage of species loss per pixel (1°) under the control reference high-
warming scenario (RCP 8.5) for 2030 and 2070, respectively. (c) and (d) correspond to 
mapping of the percentage of species loss under the hosing experiment D (0.68-Sv; 1 Sv = 
106 m3/s) for 2030 and 2070, respectively. The geographical patterns were calculated 
averaging the results from three niche modeling algorithms (Maxent, BRT, CART) to 
account for model uncertainty explicitly in the mapping of species loss across the globe.  
 
 



Figure S35. Global geographical patterns of percentage of species loss under a no dispersal 
scenario for the control reference high-warming scenario (RCP 8.5), averaged across three 
niche model algorithms. a) 2030; b) 2050; c) 2070. 
 
  



Figure S36. Global geographical patterns of percentage of species loss under a no dispersal 
scenario for all hosing experiments averaged across three niche model algorithms. a) 
simulation A for 2030; b) simulation A for 2050; c) simulation A for 2070; d) simulation B 
for 2030; e) simulation B for 2050; f) simulation B for 2070; g) simulation C for 2030; h) 
simulation C for 2050; i) simulation C for 2070; j) simulation D for 2030; k) simulation D 
for 2050; l) simulation D for 2070. 
 
  



Figure S37. Boxplots of projected range expansions for amphibian species expanding their 
ranges under the control reference high-emission scenario (RCP 8.5; reference scenario) and 
the same scenario including four different hosing rates of0.11, 0.22, 0.34, and 0.68-Sv of 
freshwater (1 Sv = 106 m3/s) labeled as A, B, C, and D, respectively. The number of species 
expanding their ranges varied across scenarios, time horizon, niche modeling algorithms and 
realms (Table S2-S3). Range expansions are expressed in proportional terms and are shown 
for two dispersal scenarios (full dispersal and no dispersal). Results were averaged across 
three ecological niche modeling algorithms (MaxEnt, BRT, CART; see material and 
methods) and compared across six biogeographic regions. 
  



Figure S38. Geographical patterns of percentage of species gains under a full dispersal 
scenario across six biogeographical regions (Afrotropical, Australasian, Indomalaya, 
Nearctic, Neotropical and Palearctic) for different climate change scenarios. (a) and (b) 
correspond to mapping of the percentage of species gains per pixel (1°) under the control 
reference high-warming scenario (RCP 8.5) for 2030 and 2070, respectively. (c) and (d) 
correspond to mapping of the percentage of species gains under the hosing experiment D 
(0.68-Sv; 1 Sv = 106 m3/s) for 2030 and 2070, respectively. The geographical patterns were 
calculated averaging the results from three niche modeling algorithm (Maxent, BRT, CART) 
to account for model uncertainty explicitly in the mapping of species gains across the globe.  
 
 
 
  



Figure S39. Global geographical patterns of percentage of species gains for all hosing 
experiments averaged across three niche model algorithms under a full dispersal scenario. a) 
simulation A for 2030; b) simulation A for 2050; c) simulation A for 2070; d) simulation B 
for 2030; e) simulation B for 2050; f) simulation B for 2070; g) simulation C for 2030; h) 
simulation C for 2050; i) simulation C for 2070; j) simulation D for 2030; k) simulation D 
for 2050; l) simulation D for 2070. 
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