SUPPLEMENTARY INFORMATION

3

PDX1^{LOW} MAFA^{LOW} β-cells contribute to islet function and insulin release

4

Daniela Nasteska¹⁻³, Nicholas H.F. Fine¹⁻³, Fiona B. Ashford¹⁻³, Federica Cuozzo¹⁻³, Katrina
Viloria¹⁻³, Gabrielle Smith^{1,3}, Aisha Dahir^{1,3}, Peter W.J. Dawson^{4,5}, Yu-Chiang Lai^{1,4,5}, Aimée
Bastidas-Ponce⁶⁻⁹, Mostafa Bakhti⁶⁻⁸, Guy A. Rutter^{10,11}, Remi Fiancette¹², Rita Nano^{13,14},
Lorenzo Piemonti^{13,14}, Heiko Lickert⁶⁻⁹, Qiao Zhou¹⁵, Ildem Akerman^{1,3}, David J. Hodson^{1-3*}

9

¹Institute of Metabolism and Systems Research (IMSR), University of Birmingham,
 Birmingham, UK

- ¹² ²Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and
- 13 University of Nottingham, Midlands, UK.
- ¹⁴ ³Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, 15 Birmingham, UK
- ⁴School of Sport, Exercise and Rehabilitation Science, University of Birmingham, UK
- ⁵MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, UK
- ⁶Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764
 Neuherberg, Germany
- ⁷German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
- ⁸Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg,
 Germany
- ⁹Technical University of Munich, School of Medicine, Munich, Germany
- ¹⁰Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and
- Metabolism, Department of Metabolism, Reproduction, and Digestion, Imperial College London, London, UK
- ¹¹Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- ²⁹ ¹²Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences,
- 30 University of Birmingham, B15 2TT, Birmingham, UK
- ³¹ ¹³San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Italy
- 32 ¹⁴Vita-Salute San Raffaele University, Milan, Italy
- ¹⁵Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medical College,
- 34 New York, USA
- 35
- 36 *Corresponding author: David J. Hodson, <u>d.hodson@bham.ac.uk</u>
- 37
- 38
- 39
- 40
- 41

42 SUPPLEMENTARY FIGURES

43

Supplementary Figure 1: PDX1 fluorescence intensity distribution plots. PDX1
 fluorescence intensity distribution plots shown by individual replicate (n = 6).

46

49 Supplementary Figure 2: Raw data and normalization controls for mouse B-MAT 50 islets, NEUROG3 expression and overexpression strength. a, b Non-normalized PDX1 (a) and MAFA (b) fluorescence intensity-probability distribution showing a decrease in the 51 proportion of cells occupying the bottom 15 percentile for PDX1 and MAFA expression in B-52 MAT versus B-NORM islets (n = 6 islets/3 animals; two-way ANOVA, Bonferroni's multiple 53 comparison) (PDX1: F = 13.38, DF = 30) (MAFA: F = 3.98, DF = 32). c, As for a, but wider 54 bins showing no changes in the proportion of cells occupying the higher fluorescence 55 intensity ranges in B-MAT versus B-NORM islets (n = 6 islets/3 animals; two-way ANOVA, 56 Bonferroni's multiple comparison)) (F = 43.25, DF = 3). d DAPI nuclear staining intensity 57 distribution is similar in normal (β-cell normal; B-NORM) and Ad-M3C-transduced (β-cell 58

59 mature: B-MAT) islets (n = 6 islets/3 animals; two-way ANOVA). **e** Loss of immature β -cells is still evident in B-MAT islets following normalization of PDX1 expression levels versus 60 DAPI for each cell analyzed (n = 6 islets/3 animals; two-way ANOVA) (F = 4.9, DF = 30). f61 As for e, but taking into account only cells that are positive for both insulin (INS) and PDX1 62 (n = 6 islets/3 animals; two-way ANOVA) (F = 4.1, DF = 20). g NEUROG3 cannot be 63 detected in normal B-NORM islets using specific antiserum, but is faintly present in B-MAT 64 islets (scale bar = 85μ m). h Whole-islet PDX1 fluorescence intensity is only slightly 65 increased in B-MAT versus B-NORM islets (n = 7 islets/3 animals; unpaired t-test). i Western 66 blot showing PDX1 and GAPDH expression (run in parallel on separate blots) in B-NORM 67 and B-MAT islets (n = 9 animals, labelled 1 through 9; samples 1 -6 and 7-9 were run on 68 separate gels processed in parallel). A slight shift in the PDX1 band in B-MAT islets is 69 apparent due to the presence of exogenous PDX1. j Densitometric quantification of the blots 70 shown in (i) (n = 8 animals, labelled 1-5 and 7-9). Note that B-NORM 6 and B-MAT 6 were 71 omitted from analysis due to poor abundance (i.e. GAPDH was undetectable). Bar graphs 72 show the mean ± SEM. Box-and-whiskers plot shows median and min-max. All tests are 73 74 two-sided where relevant.

78 Supplementary Figure 3: Overexpression localization and time course studies for Ad-79 M3C. a mCherry expression and thus Ad-M3C viral transduction is significantly higher in BFP^{LOW} cells (i.e. immature) (n = 48 cells from 7 islets) (unpaired t-test). **b** Representative 80 images showing mCherry expression in Pdx1-BFP islets 48 hours following infection with 81 Ad-M3C. White arrows show BFP/PDX1^{HIGH} cells with low mCherry levels, whereas blue 82 arrows show BFP/PDX1^{LOW} cells with high mCherry levels (scale bar = 26.5 μ m). **c-e** The 83 proportion of β -cells occupying the bottom 15 percentile for PDX1 expression (PDX1^{LOW}) is 84 reduced in islets transduced with Ad-M3C at 24 hrs post-infection (c), and this change is 85 sustained at 48 hrs (d) and 120 hrs (e) post-infection (n = 6 islets/3 animals; two-way 86 ANOVA, Bonferroni's multiple correction) (24 hrs: F = 3.01, DF = 20) (48 hrs: F = 2.24, DF = 87 20) (120 hrs: F = 4.9, DF = 20). Note that the same 12 hrs (control) PDX1 fluorescence 88 89 intensity distribution is shown in all graphs to allow cross-comparison (the experiments were performed in parallel). f Representative images showing PDX1 staining at 12-120 hrs post-90 infection (scale bar = 25 μ m). g An increase in PDX1 fluorescence is apparent after 48 hrs. 91 92 as overexpression continues to increase in the targeted cells (n = 9 islets/3 animals; one-

- way ANOVA, Sidak's multiple correction) (F = 20.83, DF = 3). Bar graphs show the mean \pm SEM. Violin plot shows median and interquartile range. Box-and-whiskers plot shows median and min-max. All tests are two-sided where relevant.

97 Supplementary Figure 4: Overexpression is largely confined to β-cells and ER stress 98 markers are not upregulated. a Expression levels of Arx, Pax6 and Nkx6-1 are not significantly altered in B-MAT islets (n = 4 animals; paired t-test). b No difference in the 99 proportion of PDX1⁺GCG⁺ cells was detected in B-NORM compared to B-MAT islets (scale 100 bar = 120 μm). c Imaging of live Ins1Cre;R26mT/mG reporter islets was used to preserve 101 102 mCherry expression for assessment of localization. No mCherry expression was detected in non- β -cells (tdTomato; grey) at the viral titres used here (n = 17 islets/2 animals) (scale bar 103 = 25 µm). d Expression of the ER stress/UPR markers Xbp1, Hspa5 and Ddit3 is not 104 significantly altered in B-MAT islets (n = 4 animals; paired t-test). Bar graphs show the mean 105 106 ± SEM. All tests are two-sided where relevant. ER-endoplasmic reticulum; UPR-unfolded protein response. 107

Supplementary Figure 5: Ca²⁺ recordings shown by individual preparation, raw insulin 110 secretion data and fold-change insulin release. a, b Summary bar graphs showing 111 amplitude of Ca2+ responses to glucose (a) or KCI (b) for each separate islet 112 isolation/preparation, measured using Fluo8 (n = 34 islets/4 preparations/4-5 animals). c, d113 Summary bar graphs showing amplitude of Ca²⁺ responses to glucose (c) or KCl (d) for each 114 separate islet isolation/preparation, measured using Fura2 (n = 33 islets/4 preparations/4 115 116 animals). e Uncorrected basal and glucose-stimulated insulin secretion in B-NORM and B-MAT islets (n = 8 replicates/4 animals). f As for e, but raw Exendin-4-stimulated insulin 117 secretion (n = 8 replicates/4 animals). g As for e and f, but fold-change glucose- and 118 119 Exendin-4-stimulated insulin secretion in B-NORM and B-MAT islets (n = 8 replicates/4 animals; paired t-test). Note that all samples were run together with the same low glucose 120 control, but due to the relative magnitude, Exendin-4 responses are displayed separately 121

- with the same high glucose state (G3, 3 mM glucose; G16.7, 16.7 mM glucose; Ex4, 20 nM Exendin-4). Bar graphs show the mean \pm SEM. All tests are two-sided where relevant.

Supplementary Figure 6: Normalization controls for B-hMAT islets, and insulin 126 127 receptor antagonist experiments. a DAPI nuclear staining intensity distribution is similar in normal (β-cell normal; B-hNORM) and Ad-M3C-transduced (β-cell mature; B-hMAT) 128 human islets (n = 14 islets/4 donors; two-way ANOVA). **b** Loss of immature PDX^{LOW} β -cells 129 is still evident in B-hMAT islets following normalization of PDX1 expression levels versus 130 DAPI for each cell analyzed (n = 13 islets/4 donors; two-way ANOVA, Bonferroni's multiple 131 132 comparison) (F = 2.32, DF = 34). c As for b, but taking into account only cells that are positive for both insulin (INS) and PDX1 (n = 8 islets; two-way ANOVA, Bonferroni's multiple 133 comparison) (F = 6.15, DF = 20). d, e Treatment with the insulin receptor antagonist, S961 134 50 nM, increases the proportion of immature PDX1^{LOW} β-cells in wild-type islets versus 135 vehicle (Veh)-treated controls, as shown by frequency distribution (d) (F = 3.97, DF = 20) 136 137 and representative images (e) (scale bar = $25 \mu m$) (n = 8 islets/3 animals; two-way ANOVA, Bonferroni's multiple comparison). Box-and-whiskers plot shows median and min-max. All 138 tests are two-sided where relevant. 139

Supplementary Figure 7: Gene expression analyses in D-NORM and D-MAT islets.
 mRNA levels for *Cacna1*d, *Cacna1c*, *Cacnb2*, *Glp1r*, *Gjd2*, *Gck*, *Ins1* and *Ins2* in D-NORM

143 mRNA levels for *Cacna1*d, *Cacna1c*, *Cacnb2*, *Glp1r*, *Gjd2*, *Gck*, *Ins1* and *Ins2* in D-NORM 144 versus D-MAT chemogenetic islets (n = 6 animals; paired t-test). Bar graphs show paired

observations (before and after). All tests are two-sided where relevant.

148 Supplementary Figure 8: Full blot scans corresponding to Supplementary Figure 2i.

150 SUPPLEMENTARY TABLES

Unique Identifier	Age group (years)	Gender	BMI (kg/m²)	Glycemia (mmol/L)* HbA1C (%)	History of diabetes	Islet purity (%)	Islet culture duration (h)	Country of origin
HP1267	50-55	8	26.5	6.4 mmol/L	No	90	16	Italy
HP1300	20-25	6	23.5	5.6 mmol/L	No	70	18	Italy
HP1301	60-65	Ŷ	29	11.6 mmol/L	No	80	14	Italy
HP1306	45-50	50	27.7	6.8 mmol/L	No	80	18	Italy
HP1319	60-65	50	23.1	5.2 mmol/L	No	90	42	Italy
HP1325	60-65	Ŷ	23.9	6.1 mmol/L	No	60	19	Italy
HP1331	60-65	Ŷ	19.5	7.1 mmol/L	No	90	16	Italy
HP1332	60-65	9	29.3	6.1 mmol/L	No	90	14	Italy
HP1356	50-55	9	19.3	7.1 mmol/L	No	80	16	Italy
HP1365	60-65	9	27.7	9.3 mmol/L	No	70	65	Italy
HP1373	65-70	Ŷ	21.5	7.1 mmol/L	No	65	18	Italy
R277	45-50	50	33.7	5.6%	No	75	114	Canada
R278	55-60	50	27.6	5.7%	No	80	17	Canada
R292	45-50	50	27.6	5.6%	No	90	17	Canada
R330	35-40	Ŷ	24.2	5.1 %	No	85	33	Canada
R340	35-40	8	23.3	5.3%	No	95	16	Canada
R341	40-45	6	30	n/a	No	95	34	Canada
R344	55-60	8	27.8	5.5%	No	95	42	Canada

151

Supplementary Table 1: Human islet donor characteristics. *: glycemia values during
 Intensive Care Unit stay **: not diagnosed ante-mortem; ∂-male; ♀-female; n/a-not
 available; ages are reported as a range in line with the journal indirect identifier policy.

Primers							
SYBR Green primers							
β-actin	Sigma	For: CGAGTCGCGTCCACCC					
,	Ŭ	Rev: CATCCATGGCGAACTGGTG					
Pdx1-native	Sigma	For: ACTTAACCTAGGCGTCGCACAAGA					
		Rev: GGCATCAGAAGCAGCCTCAAAGTT					
Pdx1-viral	Sigma						
	Olgina	Rev CCGGGATTCTCCTCCACGT					
MafA-native	Sigma						
<i>Mail</i> (hative	Olgina						
MafAwiral	Sigma						
	Sigina						
Neurog3-pative	Sigmo						
neurogo native	Sigina						
Neurog3-viral	Sigma						
Neurogo-vital	Sigina						
Cok	Sigmo						
GCA	Sigina						
And	Sigmo						
AIX	Sigma						
Dave	Ciarra a						
Paxo	Sigma						
N// 0/	0'						
NKX 61	Sigma						
Cacna1c	Sigma	For: CCAACCICAICCICIICIICA					
		Rev: ACATAGICIGCATIGCCIAGGAT					
Cacna1d	Sigma	For: GAAGCTGCTTGACCAAGTTGT					
		Rev: AACTTCCCCACGGTTACCTC					
Cacnb2	Sigma	For: GCAGGAGAGCCAGATGGA					
		Rev: TCCTGGCTCCTTTTCCATAG					
Rfx6	Sigma	For: TGCCAGTGCATACTCGACAAT					
		Rev: AACAGGATTTTCAAGCAGGGG					
Xbp1	Sigma	For: AGCAGCAAGTGGTGGATTTG					
		Rev: GAGTITICTCCCGTAAAAGCTGA					
Hspa5	Sigma	For: ACTTGGGGACCACCTATTCCT					
		Rev: GTTGCCCTGATCGTTGGCTA					
Ddit3	Sigma	For: CTGGAAGCCTGGTATGAGGAT					
		Rev: CAGGGTCAAGAGTAGTGAAGGT					
Glp1r	Sigma	For:					
		GGGTCTCTGGCTACATAAGGACAAC					
		Rev: AAGGATGGCTGAAGCGATGAC					
Adcy8	Sigma	For: TTGGGCTTCCTACACCTTGACT					
		Rev: CGGTAGCTGTATCCTCCATTGAG					
Gjd2	Sigma	For: GATTGGGAGGATCCTGTTGAC					
		Rev: AGGGCTAGGAAGACAGTAGAG					
Ins1	Sigma	For: GTCGGTGGGCATCCAGTAA					
		Rev: AATGACCTGCTTGCTGATGGT					
Ins2	Sigma	For: GAAGTGGAGGACCCACAAGT					
		Rev: GATCTACAATGCCACGCTTC					
Cox6a2	Sigma	For: GCCCAGCAAGATTCTGTGATG					
		Rev: TCTGGATGTCGGGTAAGGCAT					
G6pc2	Sigma	For: ACTCCACAGAAAGGACCAGG					
		Rev: GTCATGGTAACAGCTGCCCT					
Ascl1	Sigma	For: TCGTTGGCGAGAAACACTAA					
		Rev: AGGAACAAGAGCTGCTGGAC					
Ero1LB	Sigma	For: TGCTGTCAATGTCACATAAGC					
		Rev: AACTGCTTGTCACCCTGAGC					
Pkib	Sigma						
1 100	Oigina						

		Rev: GATTGTGGAAAAGCGTGTGGT
Rgs4	Sigma	For: GAGTGCAAAGGACATGAAACATC
	_	Rev: TTTTCCAACGATTCAGCCCAT
Ucn3	Sigma	For: AAGCCTCTCCCACAAGTTCTA
	_	Rev: GAGGTGCGTTTGGTTGTCATC
Stx1a	Sigma	For: AAGATTGCCGAAAACGTGGAG
		Rev: TGCTCAATGCTCTTTAGCTTGG
Snap25	Sigma	For: CAACTGGAACGCATTGAGGAA
		Rev: GGCCACTACTCCATCCTGATTAT
Vamp2	Sigma	For: GCTGGATGACCGTGCAGAT
		Rev: GATGGCGCAGATCACTCCC
PPIA	Sigma	For: AAGACTGAGTGGTTGGATGG
	0	Rev: ATGGTGATCTTCTTGCTGGT
GJD2	Sigma	For: ATCGGGAGGATCCTGTTGAC
	0	Rev: GAGTAGGTGATGAAGCAAAGACTG
PDX1	Sigma	For: TGCTAGAGCTGGAGAAGGAG
		Rev: TTGATGTGTCTCTCGGTCAA
CACNA1G	Sigma	For: GCTTCGGAACCGATGCTTC
		Rev: TCCTCGTTCTCTGTCTGGTAAT
CACNA1H	Sigma	For: TCTTCTTCTGCCTCGGTCA
	0	Rev: CACGCAGTTGAGCATGATT
CACNA1I	Sigma	For: GGAGCTGATCCTCATGTCCC
		Rev: CACGGGTTGCACACCATCT
CACNA1A	Sigma	For: GATTTTAGCCACCATCATAGCGA
		Rev: CCAGCCGTTCAGACATCGG
CACNA1C	Sigma	For: TCCAGAAGATGATTCCAACG
	_	Rev: ATTGGGGTGAAAGAGGAGTC
CACNA1D	Sigma	For: CGCGAACGAGGCAAACTATG
	_	Rev: TTGGAGCTATTCGGCTGAGAA
CACNA1A	Sigma	For: GATTTTAGCCACCATCATAGCGA
		Rev: CCAGCCGTTCAGACATCGG
SCN1B	Sigma	For: GTCTACCGCCTGCTCTTCTTC
		Rev: TGGATGCCATGTCTCTGTTG
SCN3A	Sigma	For: TTCACTAATGCCTGGTGCTG
		Rev: CCGAGTTCTGAGTAGCCAAGAG
SCN3B	Sigma	For: ATTGTTTCCCCTGGCTTCTC
		Rev: AGGGCACTTCCACACACAC
SCN8A	Sigma	For: AGCACCATCCTATGACACCAC
		Rev: TGGCTATGAGCTTCAGGAAC
SCN9A	Sigma	For: TCATCTTTGGGTCATTCTTCAC
		Rev: ACCCCAGCTTTTTCATTGC
TaqMan [™] probes		
Gapdh	Fisher Scientific	Mm99999915_g1
Gjd2	Fisher Scientific	Mm00439121_m1
PPIA	Fisher Scientific	Hs03045993_gH
MAFA	Fisher Scientific	Hs04419862_g1
NEUROG3	Fisher Scientific	Hs00360700_g1
		·

Supplementary Table 2: Primer sequences and probe IDs.