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Between and within variation of models in impact estimates  
 

To measure the degree of divergence of impact estimates between models, we decompose the total 

variation of impact estimates into between model variation and within model variation using the 

sum of squares method.  

Let 𝑠𝑜
2 represent the total variance of impact estimates from all models for a specific pathogen. 

Then, denote {𝑥1𝑚,  𝑥2𝑚, . . . , 𝑥𝑁𝑚} as the sequence of impact estimates of stochastic samples in the 

model m.  The total variance of impact estimates across stochastic samples N and across the 

different models M is therefore defined as 

so
2 =

1

𝑁𝑀
∑ ∑(𝑥𝑖𝑚 − 𝑥)2

𝑚𝑖

 

 

We  describe the between model variance 𝑠𝐵
2 as the amount of deviation of the model mean 𝑥𝑚 

from the total mean 𝑥 (from all models of the same pathogen) which is denoted as  

 

𝑠𝐵
2 =

1

𝑀
∑(𝑥𝑚 − 𝑥)2

𝑚

 

 

The within variance 𝑠𝑊
2  defined as the amount of deviation of the stochastic samples impact 

estimates 𝑥𝑖𝑚 from the model mean 𝑥𝑚 is therefore denoted as  

 

𝑠𝑊
2 =

1

𝑁𝑀
∑ ∑(𝑥𝑖𝑚 − 𝑥𝑚)2

𝑚𝑖

 

 

 

Given that 𝑠𝑜
2  ≈ 𝑠𝐵

2 + 𝑠𝑊
2 , we calculate the proportion of between model variance 𝑃𝐵

2 as  

𝑃𝐵
2  =

𝑠𝐵
2

𝑠𝑜
2 

 

If the impact estimates between models do not differ greatly from each other, the proportion of 

between model variation 𝑃𝐵
2 will be small (i.e., the within model variation will approach the total 

variation of impact estimates). Since 𝑠𝑜
2  ≈ 𝑠𝐵

2 + 𝑠𝑊
2  , the proportion of within model variation can be 

calculated as 1-𝑃𝐵
2. The proportions of between model variation for each pathogen are presented in 

Table S1.  
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A total of 20 pathogen-specific mathematical models were used by VIMC to produce the vaccine 

impact estimates presented here: two models for each pathogen other than HepB, which had three, 

and yellow fever, which had one. Including multiple models for each pathogen enables some 

assessment of the impact of structural uncertainty in models 

Table (i): Proportion of between model variation of impact estimates across the 98 countries 

considered for calendar view and lifetime view.  Both all ages and under-5s are shown.  There are 

two models for each pathogen, except for HepB which has three and yellow fever which has one.  

Disease Period 

𝑷𝑩
𝟐  Calendar 

view  
𝑷𝑩

𝟐 lifetime 
view 

All <5 All <5 

HepB 2000-2019 0.87 0.85 0.73 0.85 
 2020-2030 0.93 0.85 0.84 0.85 
 2000-2030 0.91 0.85 0.75 0.85 

Hib 2000-2019 0.97 0.97 0.98 0.98 
 2020-2030 0.99 0.99 0.99 0.99 
 2000-2030 0.98 0.98 0.98 0.98 

HPV 2000-2019 0.98 NA 0.32 NA 
 2020-2030 0.99 NA 0.03 NA 
 2000-2030 0.99 NA 0.06 NA 

JE 2000-2019 0.04 0.04 0.01 0.03 
 2020-2030 0.01 0.01 0 0.01 
 2000-2030 0.02 0.02 0.01 0.02 

Measles 2000-2019 0.09 0.08 0.01 0.02 
 2020-2030 0.03 0.02 0.03 0.02 
 2000-2030 0 0 0.01 0 

MenA 2000-2019 0.11 0.01 0.97 0.04 
 2020-2030 0.34 0.08 0.98 0.09 
 2000-2030 0.5 0.11 0.98 0.14 

PCV 2000-2019 0.57 0.57 0.62 0.62 
 2020-2030 0.72 0.72 0.73 0.73 
 2000-2030 0.68 0.68 0.7 0.7 

Rota 2000-2019 0.06 0.06 0.36 0.36 
 2020-2030 0.25 0.25 0.3 0.3 
 2000-2030 0.21 0.21 0.31 0.31 

Rubella 2000-2019 0.39 0.39 0.39 0.39 
 2020-2030 0.38 0.38 0.38 0.38 
 2000-2030 0.38 0.38 0.38 0.38 

YF 2000-2019 0 0 0 0 
 2020-2030 0 0 0 0 
 2000-2030 0 0 0 0 
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Method accounting for coverage clustering and double counting of 

disease burden 
 

It is vital to account for double counting when measuring the total vaccine impact across all diseases 

modelled. The approach adopted in this paper is to account for double counting of mortality or 

morbidity by adjusting the estimated disease burden and the vaccine impact at population or cohort 

clustering according to the number of pathogens against which people are protected. 

Absolute vaccine coverage 

For any given country, we cluster the population into categories defined by the number of 

pathogens against which they are protected.  We conduct this clustering based on the absolute 

vaccine coverage. Two aspects of absolute vaccine coverage levels are considered: absolute vaccine 

coverage by calendar year, and absolute vaccine coverage by year of birth. 

Let 𝑇 and 𝐶 be time and birth cohort,  𝐾 = {1, . . . ,10} be the set of the ten pathogens studied in this 

paper and let 𝐷𝑘 be the vaccination schedule for pathogen 𝑘. Define 𝑣𝑘
0(𝑐, 𝑡, 𝑑𝑘) as coverage of any 

particular vaccination activity 𝑑𝑘 against pathogen 𝑘 in year 𝑡 targeting birth cohort 𝑐, where 𝑘 ∈ 𝐾, 

𝑡 ∈ 𝑇,  𝑐 ∈ 𝐶 and 𝑑𝑘 ∈ 𝐷𝑘.  

The total vaccination coverage 𝑣𝑘
0(𝑐, 𝑡) is defined as a product of 𝑣𝑘

0(𝑐, 𝑡, 𝑑𝑘) depending on 

vaccination schedule 𝐷𝑘, i.e. 

𝑣𝑘
0(𝑐, 𝑡) = 1 − (1 − 𝑚𝑎𝑥𝑑𝑘,𝑖∈𝑟𝑜𝑢𝑡𝑖𝑛𝑒𝑣𝑘

0(𝑐, 𝑡, 𝑑𝑘,𝑖)) ∏ {1 − 𝑣𝑘
0(𝑐, 𝑡, 𝑑𝑘,𝑗)}

𝑑𝑘,𝑗∈𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛

 

 

Assuming 0% (no) correlation for vaccine doses against the same pathogen given at different times   

𝑡, then, absolute vaccine coverage for birth cohort 𝑐 in year 𝑡 against pathogen 𝑘 is derived as 

𝑣𝑘(𝑐, 𝑡) = 1 − ∏ (1 − 𝑣𝑘
0(𝑐, 𝑖))

𝑖≤𝑡

                                                            (1) 

Let 𝑃(𝑐, 𝑡)  be population size for of birth cohort 𝑐 in year 𝑡. Then absolute vaccine coverage against 

pathogen 𝑘 in year 𝑡 is defined as  

𝑣𝑘(𝑡) =
∑ 𝑣𝑘𝑖∈𝐶 (𝑖,𝑡)𝑃(𝑖,𝑡)

∑ 𝑃𝑖∈𝐶 (𝑖,𝑡)
, 

and the absolute vaccine coverage against pathogen 𝑘 for birth cohort 𝑐 is defined as 

𝑣𝑘(𝑐) = 𝑣𝑘(𝑐, 𝑚𝑎𝑥(𝑡)). 
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Clustering of population/cohort by absolute vaccine coverage 

For any country, we clustered the population/cohort by the number of pathogens against which they 

are protected. Here we assumed that the correlation among vaccine doses against different 

pathogens is 100%. This means that people who have received more vaccines against different 

pathogens will be allocated the next vaccine against a different pathogen prior to other people who 

have received fewer vaccines. 

Let  𝑣𝑖̊ represents the absolute vaccine coverage of people who have received 𝑖 vaccines against 𝑖 

pathogens. Then, denote {𝑣1̊(𝑡), 𝑣2̊(𝑡), . . . , 𝑣𝑁̊(𝑡)} as the sequence of positive absolute vaccine 

coverage values in increasing order in year 𝑡; and {𝑣1̊(𝑐), 𝑣2̊(𝑐), . . . , 𝑣𝑁̊(𝑐)} as the sequence of 

positive absolute vaccine coverage values in increasing order for cohort c in year 𝑡.  For simplicity of 

presentation, set  𝑣0̊ = 1 and 𝑣̊𝑁+1 = 0. Therefore, the proportion of people that has received  𝑖 

number of vaccines is 

𝜌𝑖 = 𝑣̊𝑖 − 𝑣̊𝑖+1                                                  (2) 

 

Disease burden among vaccinated population  

To measure vaccine impact, we use estimates of disease burden (deaths and disability-adjusted life 

years (DALYs)) from the counterfactual (no vaccination) scenario and the observed and projected 

vaccination scenario. However, mortality and morbidity from the observed and projected 

vaccination scenario include disease burden from both the vaccinated and unvaccinated 

populations. To account for double counting of disease burden, we therefore disentangle disease 

burden among the vaccinated and unvaccinated populations. 

Denote burden (deaths or DALYs) from disease 𝑖 from the counterfactual and the observed and 

projected vaccination scenarios as  𝐻𝑖
0 and 𝐻𝑖

𝑑, respectively; and further denote as 𝑃𝑙𝑏(𝑐) the 

number of live births, 𝑃(𝑎, 𝑡) the population size at age a and time t, 𝐿𝑒(𝑐) the life expectancy at 

birth for cohort 𝑐, and 𝐿𝑦(𝑎, 𝑡) the remaining life years by age and time.  

The proportion of mortality (deaths) in the counterfactual scenario and that in the observed and 

projected vaccination scenario in year 𝑡 are  

𝑀0
𝑖(𝑡) =

𝐻𝑖
0(𝑡)

∑ 𝑃(𝑎,𝑡)
 and   𝑀𝑑

𝑖(𝑡) =
𝐻𝑖

𝑑(𝑡)

∑ 𝑃(𝑎,𝑡)
.         

The proportion of mortality in the counterfactual scenario and that in the vaccination scenario for 

cohort 𝑐 are  

𝑀0
𝑖(𝑐) =

𝐻𝑖
0(𝑐)

𝑃𝑙𝑏(𝑐)
 and 𝑀𝑑

𝑖(𝑐) =
𝐻𝑖

𝑑(𝑐)

𝑃𝑙𝑏(𝑐)
. 

Similarly, the proportion of morbidity (DALYs) in the counterfactual scenario and in the observed and 

projected vaccination scenario in year 𝑡 are  

𝑀0
𝑖(𝑡) =

𝐻𝑖
0(𝑡)

∑ 𝑃(𝑎,𝑡)
 and   𝑀𝑑

𝑖(𝑡) =
𝐻𝑖

𝑑(𝑡)

∑ 𝑃(𝑎,𝑡)𝐿𝑦(𝑎,𝑡)
. 
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The proportion of morbidity (DALYs) in the counterfactual scenario and in the observed and 

projected vaccination scenario for cohort 𝑐 are  

𝑀0
𝑖(𝑐) =

𝐻𝑖
0(𝑐)

𝑃𝑙𝑏(𝑐)𝐿𝑒(𝑐)
 and 𝑀𝑑

𝑖(𝑐) =
𝐻𝑖

𝑑(𝑐)

𝑃𝑙𝑏(𝑐)𝐿𝑒(𝑐)
. 

 

Let 𝑀0
𝑖 and 𝑀𝑑

𝑖 be the proportion of disease burden in the counterfactual scenario and with-

vaccination scenario from disease 𝑖, respectively.  Denote the denominator in the above formulas 

(for 𝑀0
𝑖(𝑘) and 𝑀𝑑

𝑖(𝑘), 𝑘 = 𝑡, 𝑐) by 𝐷, 𝑖. 𝑒. ∑ 𝑃 (𝑎, 𝑡), ∑ 𝑃 (𝑎, 𝑡)𝐿𝑦(𝑎, 𝑡), or 𝑃𝑙𝑏(𝑐)𝐿𝑒(𝑐). The 

proportion of mortality or morbidity can then be rewritten as   

𝑀0
𝑖 =

𝐻𝑖
0

𝐷
 and 𝑀𝑑

𝑖 =
𝐻𝑖

𝑑

𝐷
, respectively. 

Recalling the definition of absolute vaccine coverage 𝑣𝑖, one has  

𝑀𝑑
𝑖 = (1 − 𝑣𝑖)𝑀0

𝑖 + 𝑣𝑖𝑀𝜈
𝑖, 

where 𝑀𝜈
𝑖 is the proportion of disease burden among population vaccinated against pathogen 𝑖.  

Therefore, the mortality among the vaccinated individuals (𝑀𝜈) is then obtained by  

𝑀𝜈
𝑖 = 𝑀0

𝑖 −
𝑀0

𝑖 − 𝑀𝑑
𝑖

𝑣𝑖
 

If  𝑀𝜈
𝑖 < 0, due to some herd effects, we adjust the proportion of disease burden in the 

counterfactual scenario by  

𝑀0
𝑖 =

𝑀𝑑
𝑖

1 − 𝑣𝑖
 

so that the proportion of disease burden among the vaccinated is zero (𝑀𝜈
𝑖 = 0). 

 

Disease burden accounting for population/coverage clustering and double counting 

Assume that a population is vaccinated with 𝑁 vaccines, and the population is clustered by the 

absolute vaccine coverage with the approach introduced in this context. Denote 𝑆𝑘 as the 

proportion of disease burden among people who have received  𝑘 vaccines𝑆𝑘. Then we have 

𝑆0 = 1 − ∏ (1 − 𝑀0
𝑗)𝑁

𝑗=1  if 𝑘 = 0, and 

𝑆𝑘 = 1 − ∏ (1 − 𝑀𝜈
𝑗) ∏ (1 − 𝑀0

𝑖)𝑁
𝑖=𝑘+1

𝑘
𝑗=1  if 𝑘 ≠ 0. 

The adjusted disease burden in the observed and projected vaccination scenario for people who 

have received  𝑗 vaccines is given by 

𝐻̂𝑑
𝑗 = 𝜌𝑗𝑆𝑗𝐷,  

and the adjusted disease burden in the counterfactual scenario across all 𝑁 diseases is estimated as 

𝐻̂0 = 𝑆0𝐷. 
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Vaccine impact accounting for population/coverage clustering and double counting 

Vaccine impact is obtained by calculating the difference in disease burden between the 

counterfactual and the observed and projected vaccination scenarios. Without consideration of 

vaccine clustering and double counting of disease burden averted, the aggregated vaccine impact 

across diseases is defined by  

𝐴 = ∑(𝐻𝑗
0 − 𝐻𝑑

𝑗)

𝑛

𝑗=1

. 

In contrast, when accounting for double counting and clustering, the aggregated vaccine impact 

across diseases is now defined by 

𝐵 = 𝐻̂0 − ∑ 𝐻̂𝑗
𝑑

𝑁

𝑗=1

. 

We therefore use the formula for 𝐵 above to calculate the aggregated vaccine impact across all 

disease throughout the manuscript. 

 

Uncertainty in total vaccine impact across diseases 

This study involves a total number of 20 models in 10 different diseases. Each model produces 200 

sets of pathogen-specific burden estimates, which are obtained by sampling over model parameter 

uncertainty and running the model for each sampled parameter set. Each model produced 200 sets 

of estimates to account for uncertainty inherent in model estimation and predictions. In addition, 

the number of sets per model were chosen to balance the need to quantify variation and 

computational feasibility in analysing such a quantity of projections. To measure the uncertainty in 

the aggregated vaccine impact across the 10 pathogens, we therefore make use of a bootstrap 

approach under the simplifying assumption that the drivers of uncertainty in each model are 

independent of those in any other model. In each bootstrap sample, we randomly select ten models 

(one model per disease) and for each model we randomly draw a set of estimates from their 200 

model runs and calculate the statistic of interest. This procedure was repeated 100,000 times. The 

method accounting for population clusters and double counting of disease burden, was 

implemented on each of the 100,000 samples. Means, 2·5 and 97·5% quantiles from the 100 000 

generated samples were calculated to get the central estimates and 95% credible intervals. 

Proportion of unvaccinated children 

Diseases such as measles with several vaccine doses are offered through routine first dose (e.g. 

measles-containing vaccine (MCV1), routine second dose (MCV2) and campaigns. ‘Within vaccine 

correlation’ refers to whether these doses for measles are independent or not. ‘Between vaccine 

correlation’ refers to the assumptions for vaccine doses against different pathogens. We explored 

how the proportions of unvaccinated children change for different correlation assumptions within 

and between vaccine doses. The methods of obtaining vaccine coverage in a cohort – for a) a 

particular vaccine with multiple doses and b) for multiple pathogens for multiple doses – by 

assuming 0% correlation and 100% correlation have been explained above by using equations (1) 
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and (2) respectively. The proportion of unvaccinated children in a particular cohort was obtained by 

using equation (2) but for 𝑖 = 0. 

Similar approaches were used for the cases of 0% correlation (as in equation (1)) for both within and 

between vaccines and for 100% (equation (2)) within and between vaccines.  

Figures S5(a)-(c) show proportions of the 2019 birth cohort that have not been vaccinated in each 

country assuming different combinations of between and within vaccine correlations. Assuming 0% 

correlation for both within and between vaccine doses, the proportion of unvaccinated children is 

almost zero in all the countries (Figure S5(a)). The results in this paper are based on the assumption 

of 0% correlation for within vaccine and 100% correlation for between vaccines doses shown in 

Figure S5(b). The proportion of unvaccinated children for this scenario is presented in Figure S5(b).  

 

Figures 

Figure S5. Proportion of unvaccinated children for the 2019 birth cohort in each country, assuming 

doses for a vaccine against a particular pathogen and doses for vaccines against different pathogens 

are (A) both 0% (not) correlated; (B) 0% and 100% correlated, respectively; (C) both 100% correlated. 
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Measles burden estimates comparison among VIMC, IHME and 

WHO.  
 

We compare burden estimates for measles generated from 98 countries in this analysis (VIMC), with 

those from Institute for Health Metrics and Evaluation (IHME) and World Health Organisation 

(WHO).  

IHME measles burden estimates for all ages and under5s were obtained from the Global Burden Of 

Disease 2017 (GBD 2017) database1. WHO measles burden estimates for under5s were obtained 

from the Disease burden and mortality estimates (CHILD CAUSES OF DEATH, 2000–2017)2 Burden 

estimates for all ages from WHO are not presented here since the total number of deaths are only 

available for the years 2000, 2010, 2015 and 2016. 

We carried out two main comparisons:  

- Global: We compare the total number of deaths attributed to measles for 91 low and 

middle-income countries shared in VIMC, IHME, and WHO for the years 2000-2017.  

- PINE countries: We compare the total number of deaths attributed to measles per year from 

2000-2017 in the PINE countries (i.e., Pakistan, India, Nigeria and Ethiopia) for the three 

organisations. 

 

Figure i: Comparison of the total number of deaths attributed to measles among VIMC, IHME and 
WHO across 91 low and middle-income countries for both all ages and under5s for the years 2000-
2017. 
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Figure ii: Comparison of the total number of deaths attributed to measles among VIMC, IHME and 
WHO across the PINE countries for both all ages and under5s for the years 2000-2017 

 

Table ii: Total number of deaths (in thousands) from VIMC, IHME and WHO across PINE and all 91 
countries (Global) for the periods 2000-2010 and 2011-2017. The ranges associated with VIMC 
estimates show 95% credible intervals (2.5 and 97.5 quantiles  

Location Period 
All ages Under5s 

VIMC IHME VIMC IHME WHO 

Global 2000-2010 5500 (3200-7100) 3600 5200 (3100-6600) 2200 3300 

Global 2011-2017 1000 (43-2500) 940 950 (42-2300) 570 970 

ETH 2000-2010 200 (0.65-440) 370 200 (0.53-430) 230 170 

ETH 2011-2017 26 (0-60) 99 26 (0-59) 62 76 

IND 2000-2010 2000 (1500-2500) 940 1800 (1400-2500) 540 830 

IND 2011-2017 300 (0.01-890) 190 240 (0.01-870) 110 210 

NGA 2000-2010 900 (550-1200) 540 880 (540-1200) 330 680 

NGA 2011-2017 100 (0-210) 180 100 (0-190) 110 110 

PAK 2000-2010 210 (130-290) 340 210 (130-280) 190 44 

PAK 2011-2017 34 (0-99) 28 32 (0-94) 15 29 
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Model review process 
 

All VIMC models were reviewed against pre-defined model standards in early 2018. Three pre-

defined minimum standards and seven desirable standards set out the criteria for models’ inclusion 

in VIMC. 

First, models were required to generate required outputs (deaths, cases and DALYs) for all countries 

of interest (up to 98 countries), by year of current age and year of chronological time, and for 

different vaccination coverage scenarios. Second, models were required to use standardised 

demographic data provided by VIMC. Third, models needed to have comprehensive documentation, 

including a full model description to enable replication of the results, details of how the model 

represents key aspects of the natural history and epidemiology of the disease, and details of model 

parameterisation or fitting.  

The seven desirable criteria were: 1) rigorous fitting to epidemiological data (with a preference for 

likelihood-based methods); 2) appropriate model complexity for the data available; 3) suitable data 

used for model fitting (ideally using data from the 98 countries of interest, a full range of data types, 

and data on vaccine efficacy/effectiveness; 4) out-of-sample validation; 5) ability to capture 

quantifiable uncertainty; 6) representation of indirect effects of vaccination (herd immunity) where 

epidemiologically relevant; 7) shared model source code.  

The 2018 reviews were led by the VIMC management group. These reviews have been repeated 

annually against the same standards, but with a move towards light-touch peer reviews.  
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Detailed model descriptions 
 

Hepatitis B - Center for Disease Analysis 

PRoGReSs is a compartmental, deterministic, dynamic disease progression model of Hepatitis B virus 

(HBV) infection. It models the HBV-infected population in a country or region from infection 

(vertically or horizontally acquired) to progression of liver disease and eventually death. Population 

susceptible to HBV infection excludes anyone with a history of at least three doses of HBV vaccine or 

a history of previous exposure to HBV. 

Country- or region-specific inputs of the model are divided into two major groups: demographic and 

epidemiological. Demographic inputs include population, background mortality, births, and male-to-

female sex ratios at birth. Epidemiological inputs include the prevalence of Hepatitis B e antigen 

(HBeAg) among Hepatitis B surface antigen (HBsAg)-positive women of childbearing age, and 

intervention coverage (diagnosis and antiviral treatment of HBV infection in the general population, 

peripartum antiviral treatment of mothers, vaccination of infants (timely birth dose and 3 doses), 

catch-up vaccination, and liver transplantation).  

Country-specific data for all epidemiological inputs are utilized when available which are described in 

the Polaris Observatory dataset 1. When country-specific data is not available, regional averages are 

created from the aforementioned data and applied by GBD (Global Burden of Disease) regions, IMHE 

GBD Codebook 2017 2.  

Other epidemiological inputs are assumed to be constant across all countries or regions: progression 

rates of liver disease (specified by stage, serologic status, sex, and age group); mother-to-child 

transmission rates of HBV (specified by the serologic status of mother and the vaccination status of 

infant); proportions of HBeAg-negative and HBeAg-positive cases with a high viral load; and risk for 

developing a chronic HBV infection. The values and sources of inputs and assumptions of the model 

are described in past publications 1.  

The secant method was used to calculate the sex- and age group-specific distribution of 

quinquennial incident cases of horizontally acquired HBV infection to fit modelled sex- and age 

group-specific HBsAg prevalence to reported prevalence in a given year. 

The primary outputs of the model (stratified by gender and age) are the annual prevalence of HBsAg 

and HBV-related deaths by stage of liver disease, and serologic status (low-viral load, high-viral load, 

and on-treatment). The model has been validated by calibrating the model to historical empirical 

prevalence data, taking into account historical vaccination coverage, and then comparing the 

modelled outputs to more recent empirical prevalence data 1. This validation focused on the HBsAg 

prevalence among those that would have been impacted by vaccination, but also examined HBsAg 

prevalence by other age and sex cohorts. 

The total disease burden of HBV infection is generated by aggregating the low-level outputs 

described above. The key source of uncertainty in the model result from uncertainties in the 

reported prevalence of HBsAg (as described in the calibration procedure above). For the other 

sources of uncertainty, their importance depends on the output being examined. For example, if the 

uncertainty around prevalence among individuals aged 5 years old is being examined then the 

primary driver of uncertainty is the reported prevalence, followed by the mother to child 

transmission probability for the predominant form of prophylaxis. For liver-related deaths it is the 



15 
 

uncertainty around prevalence followed by the uncertainty surrounding disease progression and 

liver related deaths. 

We calculated uncertainty intervals (UIs) and did sensitivity analyses using Crystal Ball release 

11.1.2.3.500. β-PERT distributions were used for all uncertain inputs. Monte Carlo simulation was 

used to estimate 95% UIs, with 200 simulations run per country per scenario. UIs for prevalence 

estimates in all countries were assumed to be independent. The UIs for each country were 

calculated on the basis of published range inputs for prevalence, transmission rates, transition rates, 

and mortality rates. 

 

Hepatitis B – Imperial College London 

This population-level, deterministic, dynamic transmission model stratified the population by age 

and gender 3. The model contains both acute (Severe Acute and Non-severe Acute) and chronic 

(Immune Tolerant, Immune Reactive, Asymptomatic Carrier, Chronic Hepatitis B, Compensated 

Cirrhosis, Decompensated Cirrhosis and Liver Cancer) mutually exclusive disease states. Of the 

chronic states, the Immune Tolerant and the Immune Reactive states are assumed to 

contain HBsAg+ HBeAg+ individuals, which are assumed to be 15 times more infectious than the 

HBsAg+ HBeAg- individuals in the other chronic and acute states 4-6. The model also contains state 

variables for susceptible, recovered/vaccinated individuals. HBV-related deaths can occur from 

the Severe Acute, Compensated Cirrhosis, Decompensated Cirrhosis and Liver Cancer states. 

Infection is spread in the population by both vertical and horizontal transmission, the rates of which 

are informed through fitting. The risk of acute infection becoming chronic is highest in the younger 

age groups and controlled by an exponential function that ranges in value from 88·5% for infants 

that contract HBV at birth from their infected mother to less than 5% risk for acute sufferers that are 

over 30 year of age 7. Background mortality and migration are applied equally to all states. Younger 

age groups are assumed to undergo seroconversion from being HBsAg+ HBeAg+ to HBsAg+ HBeAg- 

at a faster rate than older age groups. In contrast, older age groups are considered at greater risk of 

developing liver cancer than are younger age groups. Transition rates and other model parameters 

such as vaccine efficacies (see next paragraph) are hard-coded into the model, and the number of 

infected cases and deaths is therefore driven by HBsAg and HBeAg prevalence in the population, 

which are controlled by model parameters that are calibrated separately for each country (see 

following paragraph). Since new HBV cases predominantly occur among the younger age groups 

(infants and 1 to 5 year olds), population make-up and fertility rates, which are dictated by the 

demographic data, heavily influence the rate of spread of the disease in the population. 

The model takes into account the effects of the birth-dose (BD) and the infant vaccines on 

populations. The BD vaccine reduces the chances of an infant born to an infected mother contracting 

HBV at birth. The BD vaccine is assumed to be 95% effective in infants of mothers that are HBsAg+ 

HBeAg- and 83% effective in infants of mothers that are HBsAg+ HBeAg+. The infant vaccine is 

assumed to be 95% effective in conferring life-long protection to vaccinated individuals. Individuals 

are assumed to be either unvaccinated or have been given all infant vaccine doses necessary in their 

first six months of life to confer the full protection specified in the model. Herd immunity, 

determined by the proportion of immune individuals in the population, also provides some 

protection to unvaccinated individuals against horizontal transmission.  

The model is calibrated to country-level, age-specific HBsAg+ prevalence data and HBeAg+/HBsAg+ 

prevalence data in pregnant women, which is obtained from the Polaris Observatory in 
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Boulder, Colorado, USA and other sources 8,9. The model parameters that are calibrated include the 

risk of horizontal transmission to susceptible one to five year-olds and the risk of vertical 

transmission from HBsAg+ HBeAg- mothers to their infants at birth. Hence, the model calibrations 

determine the relative strengths of horizontal transmission to young children and vertical 

transmission within each country. Calibration is performed by the Nelder-Mead simplex algorithm 10. 

Uncertainty in the impact of the model was represented by re-running the model with 

independently re-sampled parameter values for: (i) the underlying transmission rates between 

children under five years and the probability of transmission from mother to child (each value 

induced in the fitting is multiplied by a factor that is sampled randomly in the uniform distribution 

between 0.8 and 1.2), (ii) the efficacy of the vaccine in reducing the acquisition of infection 

(sampling randomly in the uniform distribution between 95% and 100%), and (iii) the efficacy of the 

birth dose in reducing acquisition of infection for those born to HbeAg+, HbsAg+ mothers (sampling 

randomly in the uniform distribution between 70% and 90%). 

Other data sources include demographic data (female and male population sizes of one-year age 

group, total immigration, female fertility rates of five-year age groups, sex ratio of infants, female 

and male life expectancy of five-year age groups, female and male mortality rates of five-year age 

groups) from the United Nations World Population Prospects (UNWPP) 2017 Revision and infant and 

BD vaccine coverage data from the WHO/UNICEF Estimates of National Immunization 

Coverage (WUENIC) and Gavi, the Vaccine Alliance. These data are provided in the form of annual 

estimates on Montagu (VIMC’s digital delivery platform).  

Uncertainty in model estimates are due to uncertainties in the prevalence data that are used in the 

model calibration, as well as uncertainties in demographic data, historical coverage data and vaccine 

efficacies. The model structure is regularly updated to reflect the latest understanding of the natural 

history of HBV. 

 

Hepatitis B – Goldstein 

The model was developed by Susan Goldstein, Fangjun Zhou, Stephen Hadler, Beth Bell, Eric Mast 

and Harold Margolis at the US Centers for Disease Control and Prevention (CDC) 11. It is a static 

deterministic model that estimates the global burden of hepatitis B and the impact of hepatitis B 

immunization programs. The model examines the mortality outcomes due to hepatitis B virus (HBV) 

infection, including deaths of fulminant hepatitis, and deaths of liver cirrhosis and hepatocellular 

carcinoma as results of chronic hepatitis B.  

The model assumes infections occur in three age periods with different probabilities of developing 

symptomatic infections and progressing to chronic hepatitis B, which are: perinatal period, early 

childhood period (under 5 years), and the period over 5 years of age.  

The rate of perinatal infection was determined by the prevalence of hepatitis B surface antigen 

(HBsAg) and hepatitis B e antigen (HBeAg) among pregnant women. Infants born to HBsAg positive 

and HBeAg positive mothers had a 90% chance of perinatal infection, while infants born to HBsAg 

positive and HBeAg negative mothers had a 10% chance of perinatal infection. The rate of infection 

in early childhood was determined by the prevalence of antibody to hepatitis B core antigen (anti-

HBc) at age 5 after excluding perinatal infections, and the rate of infections between age 5 and 30 

was determined by anti-HBc prevalence at 5 and 30 years of age. The prevalence at 30 years of age 

was assumed to have reached its peak in lifetime. A literature review was conducted on the 

prevalence of the hepatitis B seromarkers worldwide, and countries were grouped into 15 strata 
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with stratum-specific prevalence based on the reported prevalence in literature and the geographic 

proximity of the countries.  

The model assumes 99% of the infants infected perinatally were asymptomatic during the acute 

infection phase, and 90% progressed to chronic hepatitis B, regardless of whether they were 

symptomatic or not. The model assumed 90% of children infected horizontally before the age of 5 

had asymptomatic infection and 70% progressed to chronic hepatitis B. After the age of five, the 

chance of progressing to chronic hepatitis B was much lower: 70% of infections that occurred after 

the age of 5 were asymptomatic and only 6% progressed to chronic hepatitis B. Of the acute 

symptomatic infections, the risks of developing fulminant hepatitis B were 0·1% for perinatal 

infections, and 0·6% for horizontal infections. The case-fatality rate of fulminant hepatitis was 70% 

for all ages. Starting from 20 years of age, a small percentage of chronically infected persons (0·5% 

annually) seroconverted from HBsAg positive to negative, and were no longer at risk of 

complications related to chronic hepatitis B.  

Liver cirrhosis and hepatocellular carcinoma account for the majority of hepatitis B deaths 

worldwide. The age-specific liver cirrhosis mortality rates were derived from mortality statistics from 

the United States and Taiwan (China). The age-specific hepatocellular carcinoma incidence was 

derived by fitting a polynomial function to data from populations with high HBV prevalence, 

including Alaska Natives, China, the Gambia and Taiwan (China). Given the low survival rates of 

hepatocellular carcinoma, the death rate of hepatocellular carcinoma was assumed to be the same 

as the incidence. The rates were adjusted by the prevalence of HBeAg in each country: populations 

who were HBeAg positive had 6 times higher the risk of developing hepatocellular carcinoma. The 

background all-cause mortality rates were from the life table published in the United Nations World 

Population Prospects.  

The lives saved by hepatitis B vaccine were calculated as the difference between predicted deaths of 

hepatitis B in an unvaccinated cohort and a vaccinated cohort born in a certain year in one country. 

The vaccination coverages, namely the coverage of the timely birth dose (HepB birth dose within 24 

hours of birth) and the coverage of the complete series of at least three doses of hepatitis B vaccine 

(HepB3) were from the WHO-UNICEF Estimates of National Immunization Coverage of the past 

years, and the coverage projection provided by the VIMC secretariat. 95% of infants who received 

the timely birth dose were assumed to be protected from perinatal infection, and 95% of infants 

who received the complete series of hepatitis B vaccine (indicated by HepB3 coverage) were 

assumed to be protected from horizontal infection in their lifetime. The model does not include herd 

immunity, or the effect of partial vaccination series.  

The model used a sensitivity-to-parameters test, rather than a true uncertainty test. It was run with 

a spread of six parameters that are normally distributed around the original values, with a range of 

+/- 5%. Two vaccine efficacy parameters (for HepB3 and birth dose respectively) were originally set 

to 0.95 and then varied together (with the same value for both) between 0.9 and 1.0, normally 

distributed. These were not country-specific. Four prevalence parameters (HBsAg prevalence, HBeAg 

prevalence, anti-HBc prevalence at age 5, anti-HBc prevalence at age 30) all had country group-

specific central values, and were varied in unison by +/- 5% around their central values. 

 

Hib, PCV and Rotavirus – Johns Hopkins University 

The Lives Saved Tool (LiST) is a deterministic linear mathematical model for estimating the health 

impact of changes in health intervention coverage in low- and middle-income countries (LMICs) 
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described in Walker, Tam, and Friberg 12. LiST is a publicly available module within the Spectrum 

suite, a policy modeling system comprised of several software components. LiST contains over 80 

health interventions, including vaccines, and has been used for over a decade to assist in public 

health decision-making and program evaluation. Evidence-based interventions included in the model 

have been demonstrated to reduce stillbirths, neonatal deaths, deaths among children aged 1-59 

months, maternal mortality or risk factors.  

The model describes fixed relationships between inputs (intervention coverage) and outputs (cause-

specific mortality or risk factor prevalence) specified in terms of the effectiveness of the intervention 

for reducing the probability of that outcome under the assumptions that 1) country-specific 

mortality rates and cause of death structure will not change dynamically, 2) changes in mortality 

occur in response to changes in intervention coverage, and 3) distal factors, such as improvements in 

wealth, affect mortality by increasing intervention coverage or reducing risk factors.  

The model is built on an underlying demographic projection derived from the United Nations 

Population Division (UNPD) and age structure for children (0-1, 1-5, 6-11, 12-23, 24-59 months) 

which serves as a theoretical cohort. Each model uses country-specific inputs of demographic 

growth 13, under-five mortality rates 14, and cause of death structure 15,16. Together, these values are 

used to calculate cause-specific mortality and the potential deaths averted by increasing coverage of 

interventions. LiST attributes lives saved to changes in coverage of specific interventions, attributing 

impact first to preventative and then curative interventions, ordered sequentially from 

periconception, through pregnancy, delivery, followed by the specific age group. By using cause-

specific efficacy and applying each intervention to the residual deaths remaining after the previous 

intervention, LiST ensures that double counting is avoided, and the potential impact of multiple 

interventions is not erroneously inflated. 

Estimates of intervention efficacy are derived from existing reviews, many of which were published 

in five journal supplements 17-21. National and subnational level impact estimates modelled by LiST 

have been validated against measured mortality reduction in various LMIC settings and for various 

packages of interventions 8,22-27. 

LiST is used to generate estimates of cases and deaths averted for 0, 1, 2, 3 and 4 years of age due to 

coverage scale-up of pneumococcal conjugate vaccines (PCV), Hemophilus influenza type b (Hib) 

vaccine, and rotavirus vaccines. Deaths and cases are calculated separately in LiST. Incidence of 

diseases (number of cases per child per year) is used instead of cause-specific mortality as a baseline 

input to calculate cases. Cases and deaths averted by vaccination were calculated by applying 

estimates of scale-up in coverage in each of the countries. The model accounts for impact of other 

interventions in each country that could lower the risk of pneumonia, meningitis, or diarrhea 

incidence (e.g. clean water and sanitation), or reduce mortality from pneumonia, meningitis, or 

diarrhea (e.g. antibiotic treatment) using country-specific coverage of interventions drawing 

primarily on data from the Demographic and Health Survey (dhsprogram.com) and/or Multiple 

Indicator Cluster Survey (mics.unicef.org). The specific associations between interventions, risk 

factors, and mortality within LiST can be accessed via an interactive tool (LiSTVisualizer.org). Deaths 

and cases averted were calculated holding coverage of all other interventions constant. 

The LiST uncertainty bounds are produced using a Monte Carlo approach. For each of the key 

assumptions in the model we have developed distributions around those values. These include 

efficacy of interventions, mortality rates, causes of death, relative risks of risk factor for mortality 

and incidence for severe pneumonia, meningitis and diarrhea. In general, beta distributions were 

used for effectiveness of interventions, correlated normal distribution for mortality rates, Dirichlet 
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distribution for death causes, and log-normal distribution for relative risks. Further information 

regarding rationale for sampling distributions can be provided upon request.  

For the estimates presented here we were told to only vary efficacy of interventions in our 

uncertainty analysis. So, for each scenario we did 1,000 runs where efficacy values of all 

interventions were varied for each run based on a random draw from the distribution around the 

efficacy value of that intervention. The distribution of model outputs from the 1,000 runs were then 

used to produce the uncertainty bounds, which here were set to capture 95% of the distribution of 

results. 

PCV-specific assumptions 

LiST generates estimates of pneumococcal pneumonia and meningitis cases and deaths averted and 

non-pneumonia non-meningitis deaths averted by the coverage scale-up of PCV. The potential 

envelope of deaths averted by PCV was derived by applying a proxy for the proportion of pneumonia 

(proportion of S. pneumoniae among chest x-ray positive episodes of pneumonia: 32·96%) and 

meningitis (proportion of S. pneumoniae among severe bacterial meningitis cases: African meningitis 

A belt 46%; other 52%) deaths due to S. pneumoniae in the pre-vaccine era to the country-specific 

estimates of pneumonia and meningitis mortality 28,29. Country-specific incidence of severe 

pneumonia pre-vaccine introduction was derived from an analysis by Rudan and colleagues 28. The 

country-specific incidence of bacterial meningitis was calculated using the proportions of bacterial 

meningitis deaths due to S. pneumoniae and Hib from Davis et al 29, the S. pneumoniae case-fatality 

rates from O’Brien et al 30, and Hib case-fatality rates from Watt et al 31, divided by the total 

population 1-59 months of age. The proportion of pneumonia and meningitis cases and deaths 

averted was calculated by applying the 3-dose coverage of PCV scaled by the 58% efficacy of PCV in 

preventing all serotypes of invasive pneumococcal disease 32 to the fraction of deaths due to S. 

pneumoniae. The model includes only the direct effect of complete three-dose vaccination coverage. 

Hib vaccine-specific assumptions 

LiST generates estimates of Hib pneumonia and meningitis cases and deaths averted by the coverage 

scale-up of Hib vaccine. The potential envelope of deaths averted by Hib vaccine was derived by 

applying proxy estimates of proportion of pneumonia (proportion of Hib among chest x-ray positive 

episodes of pneumonia: 21·6%) and meningitis (proportion of Hib among severe bacterial meningitis 

cases: African meningitis A belt 40%; other 46%) deaths due to Hib in the pre-vaccine era to the 

country-specific estimates of pneumonia and meningitis mortality 28,29. The same country-specific 

estimates of the incidence of severe pneumonia and meningitis for the PCV impact analysis were 

used. The proportion of pneumonia and meningitis cases and deaths averted was calculated by 

applying the three-dose coverage of Hib scaled the 93% efficacy of Hib in preventing invasive Hib 

disease 33 to the fraction of deaths due to Hib. The model includes only the direct effect of complete 

three-dose vaccination coverage. 

Rotavirus vaccine-specific assumptions 

LiST generates estimates of rotavirus diarrhea cases and deaths averted by the coverage scale-up of 

rotavirus vaccine. The potential envelope of deaths averted by rotavirus vaccine was derived by 

applying region-specific estimates of the proportion of rotavirus among severe diarrhea cases and 

deaths in the pre-vaccine era to the country-specific estimates of diarrhea mortality 34. Region-

specific estimates of the incidence of severe diarrhea were derived from the same source. The 

proportion of diarrhea cases and deaths averted was calculated by applying the complete dose 

coverage of rotavirus vaccine scaled by the region-specific efficacy of rotavirus vaccine in reducing 
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severe rotavirus gastroenteritis 35 to the fraction of deaths due to rotavirus. The model includes only 

the direct effect of complete rotavirus vaccination coverage. 

 

Hib, PCV and Rotavirus – London School of Hygiene and Tropical Medicine (LSHTM) 

UNIVAC (universal vaccine decision support model) is an Excel-based static cohort model with a 

finely disaggregated age structure (weeks of age <5 years, single years of age 5-99 years). A detailed 

description of the model and the methods for estimating vaccine impact are available in Clark et al. 
36,37. As a decision-support model, the primary purpose of UNIVAC is to provide national Ministries of 

Health in low- and middle-income countries (LMICs) with a framework to estimate the potential 

impact and cost-effectiveness of alternative vaccine policy options (www.paho.org/provac-toolkit). 

In the context of the Vaccine Impact Modelling Consortium (VIMC), UNIVAC was used to generate 

transparent desk-based estimates of the impact (% reduction in cases, clinic visits, hospitalisations, 

lifelong sequelae, deaths and DALYs) of three vaccines (haemophilus influenza type b - Hib, 

pneumococcal and rotavirus) over the period 2000-2030 in 98 LMICs (UNIVAC version 1.2.70, 

January 2018). 

Interpolated 1-year time and age estimates 13 were used to calculate the number of life-years 

between birth and age 5·0 years for each of the 31 births cohorts (2000-2030) in each of the 98 

countries. Life-years <5 yrs were multiplied by rates of disease cases and deaths (per 100,000 aged 

<5 yrs) to estimate numbers of cases and deaths expected to occur without vaccination between 

birth and age 5·0 years. The rates of disease cases and deaths due to Hib and Pneumococcal were 

based on estimates generated by Wahl et al 38 for the year 2015. For Hib, these included estimates 

for non-severe Hib pneumonia, severe Hib pneumonia, Hib meningitis and Hib non-pneumonia/non-

meningitis (NPNM) in children aged <5 years. For Pneumococcal, they included estimates for non-

severe Pneumococcal pneumonia, severe Pneumococcal pneumonia, Pneumococcal meningitis and 

severe Pneumococcal non-pneumonia/non-meningitis (NPNM) in children aged <5 years. In addition, 

the model includes cases of Pneumococcal acute otitis media (AOM) based on estimates by the CDC 
39 and Monasta et al 40. A large proportion of the total Pneumococcal disease cases estimated by the 

model represent Pneumococcal AOM. For both Hib and Pneumococcal infections, the risk of 

meningitis sequelae was estimated from a systematic review and meta-analysis by Edmond et al 41. 

For rotavirus, country-specific estimates of rotavirus deaths <5 years were based on three 

independent sources of international burden estimates, recently compared in Clark et al 42. 

Estimates of rotavirus disease cases (non-severe and severe) were based on systematic reviews and 

meta-analyses by Bilcke et al 43 and Fischer Walker et al 34. Granular rotavirus disease age 

distributions (by week of age <5 years) were based on a recent systematic review and statistical 

analyses by Hasso-Agopsowicz et al 44. 

Historical time-series estimates of pneumonia and diarrhoea deaths have declined in the absence of 

vaccination 16. To avoid over-stating the impact of vaccination, we assume the disease-specific 

mortality rate will decrease without vaccination at the same rate as the overall under-five mortality 

rate 13. For consistency, we make the same assumption for Hib/Pneumococcal meningitis and NPNM. 

We do not assume any decline in the incidence of disease cases, so case fatality ratios (CFRs) decline 

in each successive year. 

Life expectancy estimates by age and year 13 were used to calculate YLLs (years of life lost due to 

premature mortality) from the age/year of disease death. YLDs (years of life with disease) were 
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calculated by multiplying disability weights by the average duration of illness. DALYs (YLLs + YLDs) 

were attributed to the year of disease onset. 

For all three vaccines, estimates of vaccination impact were restricted to children aged <5 years. The 

impact was calculated by multiplying the expected number of disease events (cases, clinic visits, 

hospitalisations, deaths) in each week of age <5 years, by the expected coverage of vaccination in 

each week of age (adjusted for realistic vaccine delays/timeliness) and the expected efficacy of 

vaccination in each week of age (adjusted for the waning vaccine protection). The model accounted 

for partial vaccination by calculating the incremental impact of each dose of vaccination in each 

week of age. Rotavirus was modelled as a two-dose vaccine co-administered with DTP1 and DTP2 

without age restrictions. Hib and Pneumococcal vaccines were modelled as a three-dose vaccine co-

administered with DTP1, 2 and 3. For each vaccine, coverage projections by country and year were 

provided by Gavi, the Vaccine Alliance, over the period 2000-2030, via VIMC’s digital delivery 

platform. Estimates of the timeliness of vaccination (coverage by week of age) were based on the 

timeliness of DTP1, 2 and 3 reported in USAID Demographic and Health Surveys (DHS) 

(dhsprogram.com) and Multiple Indicator Cluster Surveys (MICS) (mics.unicef.org). Methods for 

estimating vaccine timeliness have been described previously in Clark and Sanderson 45. For Hib 

vaccination, dose-specific efficacy was based on a global systematic review and meta-analysis of 

RCTs by Griffiths et al 33. For rotavirus, vaccine efficacy by dose and duration of follow-up (year 1 and 

year 2) was based on a meta-analysis of RCTs by Patel et al 46. For Pneumococcal, efficacy against all 

serotypes of pneumococcal disease (vaccine type and non-vaccine type) was based on a global meta-

analysis by Lucero et al 47. 

UNIVAC is not a transmission dynamic model, and thus excludes indirect effects (both positive and 

negative). This is likely to lead to substantial under-estimates of impact in some countries, 

particularly for Hib vaccine. More detailed validation against real-world post-introduction evidence 

of impact is needed. However, the available data in many of the countries included in this desk-

based analysis are insufficient to allow validation of modelled estimates (against real-world 

estimates of post-introduction vaccine impact) and/or parameterisation of a country-specific 

transmission dynamic model.  As such, there is a good deal of uncertainty in the predicted estimates 

for many countries.  

For simplicity, the parameters were assumed to be independent and were sampled from PERT-Beta 

distributions 48. For each parameter, the best available central input estimate represented the mean 

of the distribution and the low and high input estimates represented the range. Each vaccine 

scenario was run 200 times. The following parameters were varied in each probabilistic run: (a) 

population size by single year of age; (b) annual disease incidence rate aged <5 years; (c) annual 

disease mortality rate aged <5 years; and, (d) vaccine efficacy. 

 

HPV – Harvard University 

The Center for Health Decision Science companion model is a flexible tool that has been developed 

to reflect the main features of HPV vaccines, and to project the potential impact (health and 

economic consequences) of HPV vaccination at the population level in settings where data are very 

limited 49. The model is constructed as a static cohort simulation model based on a structure similar 

to a simple decision tree and is programmed using Microsoft® Excel and Visual Basic for Applications 

(Microsoft Corporation, Redmond, WA). The model tracks a cohort of girls at a target age (e.g. 9 
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years) through their lifetimes, comparing health and cost outcomes with and without HPV 

vaccination programs.  

Unlike more complex empirically-calibrated micro-simulation models 50-52, the companion model 

does not fully simulate the natural history of HPV infection and cervical carcinogenesis. Instead, 

based on simplifying assumptions (i.e. duration and stage distribution of, and mortality from, 

cervical cancer), which rely on insights from analyses performed with the micro-simulation model, 

and using the best available data on local age-specific incidence of cervical cancer and HPV 16,18 

type distribution and assumed vaccine efficacy and coverage, the model estimates reduction in 

cervical cancer risk at different ages. By applying this reduction to country-specific, age-structured 

population projections incorporating background mortality 13, the model calculates averted cervical 

cancer cases and deaths, and transforms them into aggregated population health outcomes, years of 

life saved and disability-adjusted life years (DALYs) averted. DALYs are calculated using the approach 

adopted by the Global Burden of Disease (GBD) study 53.  

The companion model captures the burden of HPV infection by estimating the number of cervical 

cancer cases caused by HPV infection based on epidemiological data obtained from various sources 
49. In the absence of vaccination, women may develop HPV infections and cervical cancer based on 

epidemiologic estimates specific to each country. The model assumes that age-specific cervical 

cancer incidence, average age of sexual debut, and the level of other risk factors remain constant 

over the time horizon of the model. It assumes that girls are fully immunized and that girls 

effectively immunized against HPV16/18 can be infected with non-16/18 type HPV (e.g., no cross-

protection is assumed). Vaccine-induced immunity is assumed to be lifelong. All assumptions are 

varied in sensitivity analyses. 

Three key parameters were identified for probabilistic sensitivity analysis (PSA): HPV-16/18 type 

distribution, vaccine efficacy, and age-specific cervical cancer incidence. Each parameter was 

assigned a beta distribution for probabilistic sampling, with the bounds determined by: (1) empirical 

data for type distribution; (2) an assumed 75% lower bound from the 100% base case/upper bound 

for vaccine efficacy; and (3) confidence intervals estimated from cervical cancer registry data from 

India for incidence. Of five identified focus countries – Democratic Republic of Congo, Ethiopia, India, 

Nigeria, and Pakistan – the parameter sets for the country identified with the widest uncertainty 

(i.e., Nigeria) were transformed into relative multipliers and extrapolated to the remaining countries 

in the analysis. 

 

HPV – LSHTM 

The Papillomavirus Rapid Interface for Modelling and Economics (PRIME) is a static, proportional 

impact model that can estimate the impact of HPV vaccination on cervical cancer cases and deaths, 

as well as the cost-effectiveness of vaccination programmes, in 179 countries 54.  

The PRIME model was developed in collaboration with the World Health Organization (WHO), with 

inputs from investigators at Laval University and Johns Hopkins University as well as LSHTM. It is 

designed to estimate the impact and cost-effectiveness of HPV vaccination in low- and middle-

income countries (LMICs). In addition to its application in the Vaccine Impact Modelling Consortium 

(VIMC) it is used to support vaccination planning at a country-level. It has been validated against 17 

published studies using HPV vaccine economic models set in LMICs 54. It was also endorsed by the 

WHO’s expert advisory committee, the Immunization and Vaccines Implementation Research 

Advisory Committee (IVIR-AC) to provide a conservative estimate of the cost effectiveness of 
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vaccinating girls prior to sexual debut. The Excel-based version of the model and documentation are 

publicly accessible at http://primetool.org/ for use by country program managers and planners to 

facilitate country-specific decision-making in LMICs. The R package of the model (prime) is available 

upon request and has additional functionality such as multiple cohorts and probabilistic sensitivity 

analysis. It can be used for research, global analyses and to generate the vaccine impact estimates 

used by VIMC.  

Data inputs include country and age-specific cervical cancer incidence, prevalence, and mortality 

among females. The model estimates vaccination impact in terms of reduction in age-dependent 

incidence of cervical cancer and mortality in direct proportion to vaccine efficacy against HPV 16/18, 

vaccine coverage and HPV type distribution. It assumes that vaccinating girls prior to infection with 

HPV types 16 and 18 fully protects them from developing cervical cancer caused by HPV 16 and 18, 

in accordance with vaccine trials 55. The model assumes a two-dose schedule with perfect timeliness 

at the target ages given in the coverage estimates. Herd effects are not considered meaning that the 

vaccine impact estimates produced are conservative. The impact of vaccinating multiple age cohorts 

is estimated by using the most conservative assumption that 9-14 year old girls who have sexually 

debuted are not protected, although these assumptions do not change the overall impact estimates 

significantly 56.  

Probabilistic sensitivity analysis was conducted by varying incidence and mortality estimates of 

cervical cancer from GLOBOCAN database of the International Agency for Research on Cancer. They 

were varied uniformly by ± 20% and ± 50% of the mean estimates for each country of high and low 

data quality respectively. 

 

JE – University of Oxford 

This deterministic dynamic model uses a basic catalytic model for the force of infection (FOI), in 

which individuals become infected and are then immune. Vaccination is modelled as a removal of 

susceptibles from the susceptible class. As humans are dead-end hosts for Japanese encephalitis (JE), 

infection comes from animal reservoirs via mosquitoes. This simple model successfully captures the 

natural history and transmission dynamics of JE.  

A systematic review of all published studies and publicly available JE surveillance data was 
undertaken to collate a dataset of age-stratified case data. The FOI model is fit to age-stratified 
national surveillance data that were publicly available and data identified via a systematic review of 
age-stratified JE case data 57. Data from a total of 10 countries and 17 studies was used, which gave 
estimates of a wide range of force of infection parameters, as expected for the wide geographical 
locations. The model is fit in a Bayesian framework using RStan. This gave distributions for the FOI 
estimates for all locations in which data is available. For areas in which data was not available we 
extrapolated from areas in which it was, using the WHO groupings of transmission intensity 59. In 
order to generate uncertainty in the case burden estimates, all model parameters were sampled 
from the posterior distributions of the FOI estimates. In addition, the symptomatic rate was sampled 
from uniform distribution (0·002, 0·004) 60 and the proportion of these symptomatic cases that died 
was from uniform distribution (0·2, 0·3). There is limited information collated currently on these 
proportions so uniform distributions were used. On-going work is estimating the distributions of 
these currently. The distributions were assumed to be independent. More detail on model and 
model parameters is available 57. The vaccine was assumed to be 100% effective, and protection 
lifelong.  
Disease burden was generated from the ‘bottom up’: i.e. from infection rates applying parameters 

governing the proportion of infections that are symptomatic and the proportion that die (case 
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fatality ratio).  The key uncertainties which affect disease burden estimates are the method of 

extrapolation of FOI from areas in which there is data to areas in which there is not. Spatial 

modelling work is on-going to improve this extrapolation and to make estimates on smaller spatial 

scales. The case fatality ratio is also uncertain, and further work undertaking a systematic review of 

this is ongoing. 

 

JE – University of Notre Dame 

A stochastic model of Japanese encephalitis virus (JEV) transmission with a constant force of 

infection (FOI) was used to estimate the burden of JE and the potential impact of vaccination in JE-

endemic countries. JEV is a mosquito-transmitted, zoonotic pathogen that requires an animal host 

for ongoing transmission, given humans are believed to be a dead-end host 61. Therefore, JE 

incidence is limited to geographic regions where there are suitable hosts and vectors to sustain both 

ongoing transmission in animal hosts and spill-over to humans. To estimate the number of JEV 

infections the model first estimates the number of people at risk of infection and then estimates the 

transmission intensity in each country. JE burden (including cases, deaths, and DALYs) was then 

estimated from the number of JEV infections. 

To identify the areas suitable for sustained JEV transmission, and the size of the population living in 

at-risk areas, a spatial analysis of the risk factors associated with JEV was conducted. Potential JEV-

endemic areas were identified using large-scale spatiotemporal datasets related to suitable climate 

conditions for the vector species, suitable habitat conditions for the vector, and the presence of 

potential zoonotic hosts. Transmission was assumed to occur only in areas occupied by the primary 

vector, Culex tritaeniorhynchus 62, or where the annual minimum temperature exceeded 20˚C and 

annual precipitation exceeded 150 cm. Suitable habitat conditions included areas with rice 

cultivation or nearby wetlands, excluding urban areas 63. Within these suitable areas, people were 

considered at risk of infection if the density of domestic pigs or fowl exceeded 1 per km (with 

uncertainty represented by varying the animal threshold from 0-10 per km) 64. Risk maps were 

validated using seroprevalence and surveillance data. 

Next, the FOI in each country was estimated from age-specific incidence data using a catalytic 

model. FOI represents the per-capita rate at which susceptible individuals are infected. Age-specific 

incidence data was obtained from a literature search, restricted to studies conducted in areas with 

no history of vaccination (or prior to documented vaccination) to simplify the estimation process. 

For several countries where no age-specific incidence data was available, FOI estimates were drawn 

from the posterior estimate of a neighbouring country. FOI estimates for each study were estimated 

using a maximum likelihood approach, using the observed numbers of JE cases per age class in each 

year. Study-specific FOI values were estimated using a Bayesian framework via a Markov chain 

Monte Carlo (MCMC) approach implemented in the software package STAN. The FOI was given an 

uninformative truncated normal prior with a mean of zero and a standard deviation of ten. The 

probability of asymptomatic infection and the case fatality ratio for symptomatic infections (see 

below) were assumed to be independent of the FOI.  

The annual number of JEV infections for a given study area were then calculated from the FOI 

estimate and the size of the at-risk population. In the absence of vaccination, the number of 

infections in age class was calculated by multiplying the age-specific probability of infection by the 

number of at-risk individuals in the age class.  
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Vaccination reduced the number of at-risk individuals in each targeted age class based on provided 

coverage estimates. The number of JE cases and deaths were then estimated from the number of 

JEV infections based on the proportion of infections that are symptomatic or fatal. The distribution 

of encephalitis cases C observed from I JEV infections was modelled assuming the asymptomatic to 

symptomatic (A:S) ratio is represented by a gamma distribution with shape parameter = 3·58 and a 

rate parameter = 0·011. This distribution produces an A:S ratio with a median of 295:1 (95% CI: 83:1 

to 717:1), similar to the range of published estimates 61. The case fatality ratio (CFR) from JE, D, was 

assumed to follow a Beta distribution with parameters α = 1·88, β = 3·50, resulting in a median 

symptomatic CFR of 0·33 (95% CI: 0·05-0·75), which reflects the large uncertainty in this parameter 
61. The annual burden of JE at the national-level was calculated using disability-adjusted life years 

(DALYs) with disability weights taken from the Global Burden of Disease 2016 report 65. 

 

Measles – LSHTM 

The Dynamic Measles Immunization Calculation Engine (DynaMICE) is a dynamic age-stratified 

population model of measles transmission dynamics to estimate the public health impact and cost-

effectiveness of routine vaccination programmes and supplementary immunisation activities (SIAs) 

in low- and middle-income countries 66. It was originally developed for work with the World Health 

Organization and received inputs from investigators at Harvard University and Montreal University 

as well as LSHTM. It was subsequently used to inform vaccine impact projections for Gavi, the 

Vaccine Alliance and the Bill & Melinda Gates Foundation. The model provides a flexible framework 

that can be adapted to different countries with the aim to study several vaccination scenarios based 

on available data sources. For example, the model has been adapted to characterise measles 

transmission and dynamics in India, based on measles data from the Million Death Study 67, as well 

as to quantify the impact of adding interventions to measles SIAs in India by interfacing with the 

Lives Saved Tool (LiST) 68.  

As measles is a highly transmissible childhood infection, disease dynamics are inextricably linked to 

population structure and demographic parameters. To enable precision in the estimation of disease 

burden and the contact processes that drive transmission, the model is age-stratified to include 

weekly age groups from birth to 3 years of age, and yearly age-groups from 3-100 years of age. The 

underlying epidemic model is a compartmental SIR model, where individuals can either be 

susceptible (S) to measles, infected (I) or recovered (R) with life-long immunity. After a certain 

duration of maternal immunity, births replenish the pool of susceptibles that in the absence of 

vaccination fuel periodic outbreaks of measles driven by the magnitude of the birth rate and the 

strength of seasonality in transmission parameters. Susceptibles get infected through contact with 

infected individuals, with mixing determined by age-dependent contact patterns. The contact matrix 

used for this exercise is the POLYMOD contact matrix for Great Britain 69 as it was best able to 

reproduce transmission dynamics across a range of countries, but this can be updated to represent 

local population age structure. Following infection, individuals either recover and gain lifelong 

immunity, or die as described by country-specific age-dependent case fatality ratios (CFRs).  

Routine vaccination is modelled through first- and second-dose measles-containing vaccine (MCV1 

and MCV2) schedules (corrected for the right cohorts) with the additional option of including SIAs. 

Vaccines are assumed to be “all or nothing” with effectiveness equal to 84% for the first dose among 

children under the age of one year, 93% for the first dose among children over the age of one year, 

and 99% for both doses 70, with life-long vaccine-induced immunity.  
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A probabilistic sensitivity analysis was run by varying vaccine take and mortality parameters. There 

are three different vaccine take parameters in the model (first dose given at less than 12 months, 

first dose given at more than 12 months of age, and second dose), and each of those was allowed to 

vary by drawing parameters from a uniform distribution allowing for 5% difference in take. Mortality 

was varied by drawing parameters from a uniform distribution allowing for 25% difference in 

mortality (so, generating numbers between 0.75-1.25 which then multiplied the original CFR value).  

  

Measles – Pennsylvania State University 

The PSU measles model is a semi-mechanistic, age-structured, discrete time-step, annual SIR model. 

Unlike conventional SIR models, which describe dynamics at the scale of an infectious generation 

(TSIR REF) 71 or finer (basic REF) 72, it models the aggregate number of cases over one-year time 

steps.  While this is coarse relative to the time scale of measles transmission, it matches the annual 

reporting of measles cases available for all countries since approximately 1980 for all countries 

through the WHO Joint Reporting Form (JRF). To account for the fine-scale dynamics that are being 

summed over a full year, the model describes the number of infections (Ii,t) in country i and year t, 

and age class a as an increasing function of the fraction, pi,t , of the population susceptible in age 

class a at the start of year t, Si,t: 

𝐸[𝐼𝑎,𝑖,𝑡] = 𝑝𝑖,𝑡 ∗ 𝑆𝑎,𝑖,𝑡 , 

where 𝐸[∙] indicates the expectation and 𝑝𝑖,𝑡 is a country and year specific annualized attack rate 

modeled as: 

𝑝𝑖,𝑡 = 𝑖𝑛𝑣𝑙𝑜𝑔𝑖𝑡(−𝛽0,𝑖 + 𝛽1,𝑖 ∗
∑ 𝑆𝑖,𝑡𝑎

𝑁𝑖,𝑡
+ 𝑒𝑡) , 

where invlogit() indicates the inverse logit function, Ni,t is the total population size in country i and 

year t over all age classes, and et is a Gaussian random variable with mean 0 and variance 𝜎2. The 

parameters 𝛽0,𝑖 , 𝛽1,𝑖, and 𝜎2 are fit to each country independently using a state-space model fitted 

to observed annual cases reported through the JRF from 1980-2016 as described by Eilertson et al 73. 

Historical population and vaccination coverage values are provided by WHO as described by Simons 

et al 74. 

The number of susceptible individuals in each single-year age class a (a=2,…, 25) is equal to the 

number not infected in the previous year, nor immunized through supplemental immunization 

activities (SIAs). The number susceptible is further deprecated by the crude death rate. The efficacy 

of doses administered through SIAs is assumed to be 99%. The number of susceptible individuals in 

age class a=1 is assumed to be 50% of the annual live birth cohort; this assumes that all children 

have protective maternal immunity until 6 months of age. Age class a=2 and a=m is assumed to 

receive a first and second dose (respectively) of routine measles vaccination before the start of the 

time step; thus the number susceptible is further reduced by the product of the coverage and the 

efficacy. Efficacy is assumed to be 85% and 93% for the first dose in countries delivering at 9m and 

12m of age, respectively, and assumed to be 99% for the second dose.  

Deaths are calculated by applying an age- and country-specific case fatality ratio (CFR) to each 

country. CFRs for cases below 59 months of age for all countries were taken from Wolfson et al 75; 

CFR for cases above 59 months of age are assumed to be 50% lower than those applying to under-

5s. 
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Forward simulations of this model assume random variation in the annual attack rate according to 

the parameter 𝜎2.  Further, each forward simulation draws 𝛽0,𝑖 , 𝛽1,𝑖 at random from the joint 95% 

interval estimate of each parameter. Future vaccination coverage values, for routine and SIAs, are 

assumed known and future birth and death rates are assumed known.  

 

MenA – University of Cambridge 

This model is a compartmental transmission dynamic model of Neisseria meningitidis  group A 

(NmA) carriage and disease to investigate the impact of immunisation with a group A meningococcal 

conjugate vaccine, known as MenAfriVac, as published in 2015 76. The model is age-structured (1 

year age groups up to age 100) with continuous ageing between groups. Model parameters were 

based on the available literature and African data wherever possible, with the model calibrated on 

an ad-hoc basis as described below.   

The population is divided into four states, which represent their status with respect to meningitis 

infection. Individuals may be susceptible, carriers, ill or recovered and in each of these states be 

vaccinated or unvaccinated, with vaccinated individuals having lower risks of infection (carriage 

acquisition) and disease (rate of invasion). We assume that both carriers and ill individuals are 

infectious and can transmit the bacteria to susceptible individuals. The model captures the key 

features of meningococcal epidemiology, including seasonality, which is implemented by forcing the 

transmission rate, the extent of which varies stochastically every year.    

Since only a small proportion of infected individuals develop invasive disease, disease-induced 

deaths are not included in the model. From each compartment there is a natural death rate from all 

causes. Carriage prevalence and disease incidence varies with age, and the model parameterises 

these distributions using a dataset from Niger 77; the case:carrier ratio consequently varies with age. 

The duration of 'natural immunity' is an important driver of disease dynamics in the absence of 

vaccination but good data on this parameter is lacking; instead prior estimates are used 78. 

The model assumes that mass vaccination campaigns occur as discrete events whereas routine 

immunisation takes place continuously. After vaccination, individuals are assumed to be protected 

for an average of 10 years, consistent with experience with other meningococcal conjugate vaccines 

and observations of persisting protection to at least 5 years in trial participants 79. Vaccine efficacy 

against carriage and disease is 90%. 

Disease surveillance is not comprehensive across the meningitis belt, so disease burden is uncertain 

in several countries. The model therefore classifies the countries into three categories, based on the 

incidence levels using historical data. This classification defines the transmission dynamic 

parameters. The model generates estimates of case incidence, to which a 10% case-fatality ratio 80,81 

is applied to estimate mortality. To estimate DALYs it is assumed that 7·2% of survivors have major 

disabling sequelae 41 with a disability weight of 0·26.  

Countries were stratified into high and medium risk, and different infection risk applied based on 

this stratification. As there was insufficient information to define infection risk on a country-by-

country basis, the approach/stratification was agreed with experts in the WHO meningitis team. For 

countries only partly within the meningitis belt, only the (subnational) area at risk was included. For 

example, in Ghana only the northern regions were included. Areas outside of the meningitis belt 

were not included. 
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To produce estimates on the impact of vaccination, 200 simulation runs were generated by 

stochastically varying the baseline transmission rate to reflect between-year climactic or other 

external variability. Although each individual simulation reflects the reality of irregular and periodic 

epidemics, as visually compared to time series from Chad and Burkina Faso and analysis of inter-

epidemic periods, the resulting averaged estimates give a fairly stable expected burden of disease 

over time. Uncertainty in other model parameters is currently not quantified. 

 

MenA – Kaiser Permanente Washington 

This model is a stochastic, age-structured, compartmental model of the transmission of serogroup A 

Neisseria meningitidis (MenA) 82. Model compartments track hosts’ status with respect to MenA 

exposure (as Susceptible, Colonized, and Invasive Disease) and adaptive immunity to 

infection/disease (as High, Low, or No immunity). Exposure to MenA through colonization leads to 

the “low immunity” state, in which individuals are still susceptible to colonization but have a 

reduced risk of developing invasive disease if colonized. MenA colonization among individuals with 

low immunity leads to a “high immunity” state, which is highly protective against both colonization 

and disease.  

Model parameters are defined, where possible, from published data 82. Estimates of the age-specific 

force of infection were obtained by fitting the model to longitudinal studies of the prevalence of 

MenA colonization in Burkina Faso 83; model fitting was through an iterative numeric algorithm. 

After estimating parameters for the age-specific force of infection, the age-specific per-carrier rate 

of progression to invasive disease was estimated by fitting the model to longitudinal data on the 

incidence of MenA disease in Burkina Faso 82 and the expected age distribution of MenA cases 77.  

In the simulations, mortality burden estimates are obtained in a “bottom-up” manner, in that case 

fatality ratios (CFRs) 77,84-89 are applied to simulated case counts. 

For estimating the impact of serogroup A polysaccharide conjugate vaccine (MenAfriVac), two 

versions of the model were developed – a “Base” model, in which vaccination was assumed to be 

equivalent to naturally-induced “high immunity”, and a “Vaccination-Plus” model, in which 

vaccination is assumed to be superior to natural immunity, based on estimates of vaccine 

effectiveness and serum bactericidal antibody (SBA) concentrations 90. Subsequent model validation 

has shown that the Vaccination-Plus model better captured the dynamics of NmA in Burkina Faso 

following mass vaccination campaigns with MenAfriVac, and only the Vaccination-Plus model is used 

in the present work 91. 

Countries were stratified based on risk (hyper-endemic vs. not), and different forces of infection 

used based on risk group. For countries only partly within the meningitis belt, the model was 

restricted to the area at risk. 

Variability in infections rates is represented by randomly sampling values for the force of infection 

parameters within ±20% of their estimated values; new values are sampled annually to reflect 

annual variation in climate or other external factors. Mean estimates of incidence are obtained from 

100 iterations of the stochastic model using a different random seed for each run. Probabilistic 

sensitivity analysis (PSA) is used to characterise uncertainty in the age-specific CFR and vaccine 

effectiveness (VE) against colonization and disease. For this, 200 iterations of the model are run, 

with randomly sampled values for CFR and VE in each iteration. Sampling distributions for CFR and 

VE were defined based on estimated CFR and VE from previously published studies 82,91. Values for 

other model parameters were held fixed at their estimated value from model fitting. Other key 
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sources of uncertainty not presently included in PSA are the expected duration of vaccine-induced 

protection and the force of infection in countries for which NmA surveillance data are lacking. 

 

Rubella – Public Health England 

This is an age and sex-structured, deterministic, compartmental model of the transmission dynamics 

of rubella 92-94. The population is stratified into those with maternal immunity (lasting 6 months), 

susceptible, pre-infectious (infected but not yet infectious), infectious and immune, using annual age 

bands and a “Realistic Age Structure”95. Country-specific birth and age-specific death rates were fixed 

at 2010 levels and calculated from UN population survival data for 2010-15 96 respectively.  The 

supplement to reference 92 provides the model’s differential equations. 

The force of infection (rate at which susceptibles are infected) changes over time and is calculated 

using the number of infectious individuals and the effective contact rate (rate at which infectious and 

susceptible individuals come into effective contact).  Contact is described using the following matrix 

of “Who Acquires Infection From Whom”: 

(
𝛽1 0.7𝛽2

0.7𝛽2 𝛽2
) 

The effective contact rate differs between <13 and ≥13 year olds, with its relative size based on contact 

survey data 97.  𝛽1 and 𝛽2 are calculated from the average force of infection in <13 and ≥13 year olds, 

estimated from age-stratified rubella seroprevalence data, which had been collected before rubella 

containing vaccine (RCV) was introduced 93.  Seroprevalence data were available for 28 countries (see 
94).  For countries lacking seroprevalence data, we used data from countries in the same WHO region 
93,94.  Confidence intervals (CI) on the force of infection were calculated using 1000 bootstrap-derived-

seroprevalence datasets 93,94.   

Country-specific numbers of congenital rubella syndrome (CRS) cases in year y during 2001-2080 

were calculated by summing the number of CRS cases born each day to women aged 15-49 years. As 

assumed elsewhere 92-94,98, infection during the first 16 weeks of pregnancy carries a 65% risk of the 

newborn having CRS.  The number of CRS deaths in year y was calculated by multiplying the number 

of CRS cases born in year y by the assumed case fatality rate (30%).  The number of DALYs for cases 

in year y was calculated by multiplying the number of CRS cases in year y by the corresponding DALY 
99, which was based on the country-specific World Bank Income group for 2017 100.  Both the DALYs 

and the assigned World Bank income group remained fixed over time.   

Confidence intervals on the outputs for each setting were calculated as the 95% range of the outputs 

obtained by running the model using 200 combinations of 5 randomly-sampled parameters.  The 

parameters were the pre-vaccination force of infection which was used to calculate the contact 

parameters (see above), the risk of a child being born with CRS if his/her mother had been infected 

during pregnancy, the CRS-related case-fatality rate, the vaccine coverage and the vaccine efficacy.  

The pre-vaccination force of infection was sampled from 1000 bootstrap-derived force of infection 

estimates, obtained by fitting catalytic models to bootstrap-derived seroprevalence data for that 

setting, or, if that setting lacked seroprevalence data, from bootstrap-derived force of infection 

estimates from countries in the same WHO region as the country of interest 93,94.  The remaining 

parameters were randomly sampled from distributions reflecting their plausible range, as implied by 

published studies, wherever possible92.  The sampling was conducted assuming that the parameters 

were independent.  
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Rubella – Johns Hopkins University 

This is a discrete-time stochastic age-structured compartmental rubella transmission model, building 

from previous work describing rubella dynamics 101,102. The key feature of the model is a matrix that 

at every time-step defines transitions from every combination of epidemiological stage (maternally 

immune ‘M', susceptible ‘S', infected ‘I', recovered ‘R', and vaccinated ‘V', taken to indicate the 

effectively vaccinated) and age group (1 month age groups up to 20 years old, then 1 year age groups 

up to 100 years old) to every other possible combination of epidemiological stage and age group. The 

discrete time-step was set to about two weeks (i.e., 24 time steps in a year), the approximate 

generation time of rubella. 

People are born either directly into the ‘susceptible’ class or move there as the passively-acquired 

‘maternal immunity’ wanes over the first year of life. As individuals age, they can be exposed to either 

vaccination, which if successful moves them permanently into the ‘vaccinated’ class, or to natural 

infection, moving them to ‘infected’ for a time-step (or rubella generation) then permanently into the 

‘recovered’ class. In addition to these epidemiological transitions, there are demographic transitions 

including birth, death, and ageing. 

Vaccination coverage was adjusted based on the assumptions that repeated vaccination activities are 

not completely independent and a portion of the population may always remain inaccessible to 

vaccination. The age- and time-specific proportion inaccessible were assumed to correspond those 

not covered by DTP vaccination, as reported by the WUENIC DTP routine vaccination rate estimates 
103. Duration of maternal immunity 104 and vaccine efficacy 105 were assumed from published literature 

and are constant across time and country.   

Country-specific transmission to individuals in age group a from individuals in age group j for each 

time-step t is defined by 𝛽𝑎,𝑗,𝑡 = 𝛽𝑎,𝑗,
̅̅ ̅̅ ̅(1 + 𝛼 𝑐𝑜𝑠(2𝜋𝑡)), where 𝛽𝑎,𝑗

̅̅ ̅̅ ̅ is mean transmission from 

individuals in age group j to age group a, and 𝛼 is a parameter controlling the magnitude of seasonal 

fluctuations (assumed 0·15 101 and constant over time and country). Mean transmission from 

individuals in age class j to age class a, 𝛽𝑎,𝑗
̅̅ ̅̅ ̅, was estimated by rescaling population-adjusted age-

contact rates (time constant and country-specific 106) to reflect the assumed basic reproductive 

number (R0) of rubella. R0 distributions were country-specific and estimated by fitting a dampened 

exponential model 107 with likelihood-based MCMC to published rubella immunoglobulin G (IgG) 

seroprevalence data. Model parameters (i.e., R0) were fit to empirical data, however the large 

transmission model itself is not directly fit to data. Model uncertainty includes process uncertainty for 

all epidemiological and demographic transition and uncertainty on the value of R0.  

Age- and time-specific CRS cases were estimated from each country’s model output by multiplying 

the age-specific number of susceptible individuals, the sex ratio of the population, the age-specific 

fertility rate, the probability of becoming infected over 16 week period, and finally the probability of 

CRS following rubella infection during the first 16 weeks of pregnancy (estimated 0·59 108-112). Fetal 

and child deaths were estimated directed from the number of CRS cases as 9·3 per 100 live births, 

and 1·4 per 100 live births, respectively 113. 

The model includes process and parameter stochasticity.  All epidemiological and demographic 

processes at each discrete time point are drawn from either a Binomial or Poisson distribution. 

Parameter stochasticity is based solely on uncertainty in the country-specific rubella basic 

reproductive number, where in each simulation (i.e., 200 simulations for each country) has a unique 
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basic reproductive number value drawn from a normal distribution with country-specific log mean 

and standard deviation. 

 

Yellow Fever – Imperial College London 

The Imperial College yellow fever transmission model is a static force of infection (FOI) 

epidemiological model which was originally published by Garske et al 114. The model is fitted at the 

first administrative level or province level for the 34 countries considered endemic for yellow fever 

in Africa. In each administrative unit, the force of infection is assumed to be constant across the 

observation period and across age groups. This is analogous to assuming that all yellow fever 

transmission occurs as a result of spillover events from the sylvatic reservoir. As a result, this model 

variant includes no herd immunity effects. 

The model is estimated from multiple data sources which inform separate components. A 

generalised linear model, based on environmental covariates, is informed by presence/absence of 

yellow fever reports between 1984 and 2017 at province level. Reports of yellow fever are based on 

outbreak reports published by the WHO and on cases reported in the Yellow Fever Surveillance 

Database (YFSD) managed by WHO-AFRO, to which 21 countries in West and Central Africa 

contribute 115,116. The environmental covariates include temperature, enhanced vegetation index, 

land cover classifications, rainfall estimates and altitude 117-120. The regression model provides 

estimates of the probability of yellow fever reports across the endemic zone. 

These estimates are then translated to the number of infections by further fitting to data obtained 

from 15 serological surveys performed in 14 countries in East and Central Africa 121-125. In each survey 

location, a static, age-independent force of infection is fitted. This is also informed by estimates of 

demography and vaccination coverage including historic vaccination campaigns 126-129.  

Model components are estimated within a Bayesian framework with adaptive Markov Chain Monte 

Carlo sampling. In the case of the serological surveys, a log-transform is used to ensure efficient 

mixing. All estimation was performed in R and convergence of the chains was checked visually. To 

produce the burden estimates, 200 samples of the posterior predictive distributions of the FOI in 

each province were taken which we then use to calculate the incidence of infections in each 

province. The model was validated with external serological surveys conducted in three countries 130. 

We use published values of the proportion of infections which are severe and of the CFR to calculate 

the burden of disease. These proportions, estimated by Johansson, Vasconcelos, and Staples 131, are 

that 12% [5%, 26%] of infections are severe and that 47% [31%, 62%] of severe infections result in 

death. However, these estimates remain uncertain since the disease is notoriously misdiagnosed and 

under-reported. Another area resulting in uncertainty in burden estimates is the heterogeneity in 

data availability, specifically serological surveys which are not currently available in West Africa. The 

result of these uncertainties is that burden estimates in West African countries have wide credible 

intervals and that the burden in general is dominated by that in CFR estimates. 
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Table iii. Comparison of vaccine related parameters and model types for models of the same 
pathogen. The pathogen name is given in the first row and column of each table with the different 
modelling groups’ names in the subsequent columns in the first row. 

HepB  Goldstein Center for Disease 

Analysis 

 Imperial College 

London 

Vaccine efficacy  Birth dose: 95%  

Second dose: 95% 

Third dose: 95%  

For infants born to 

mothers with high 

viral load: - 20% for 

timely birth dose, 

71% for 3 doses with 

no birth dose and 

88% for timely birth 

dose with three 

doses for developing 

chronic HepB. 

Efficacy against 

developing acute 

infection is 10% for 

timely birth dose, 

67% for 3 doses 

without birth dose 

and 86% timely birth 

dose with 3 doses 

 Birth dose: 83% if 

mother is HBeAg+; 

95% if mother is 

HBeAg-, HBsAg+ 

 

Infant vaccine (all 

three doses): 95%  

Vaccine duration Lifelong Lifelong for infants 

receiving timely 

birth dose with 

follow-up 3 doses or 

receiving three 

doses. 

  

 Lifelong 

Case fatality 

ratio 

70% from 

fulminant hepatitis 

0·335% for 0-14 

years 

0·45% for 15 years 

and above (these are 

deaths only from 

fulminant hepatitis 

B) 

 Age dependant 

varying from a 

minimum to 

maximum of 21·2 – 

58·1% 

Type of model / 

Herd effects 

Static /no herd 

effects 

Dynamic / herd 

effects included 

 Dynamic / herd 

effects included 

 
 

Hib  Johns Hopkins University LSHTM 

Vaccine efficacy  93% after third dose (full course of 

three doses assumed) 

First dose: 59%, 

Second dose: 92%, 
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Third dose: 93%  

Vaccine duration Until age 5 as the model only 

considers up to 5 years 

No vaccine waning 

Case fatality ratio N/A – uses overall <5 mortality 

envelope and disease specific 

mortality estimates 

Country-specific estimates based 

on Wahl et al 38. 

Type of model / Herd 

effects 

Static / no herd effects Static / no herd effects 

 

HPV  Harvard University LSHTM 

Vaccine efficacy  100% with full dose schedule. 

Partial course not modeled 

100% 

Vaccine duration Lifelong with full dose schedule Lifelong when doses given 6 

months apart 

Case fatality ratio 80% Age and country specific 

Type of model / Herd 

effects 

Static / no herd effects Static / no herd effects 

 

 

JE  University of Oxford University of Notre Dame 

Vaccine efficacy  100% (single dose) 99·3% (single dose) 

Vaccine duration Lifelong Lifelong 

Case fatality ratio 20 – 30% (for symptomatic cases) 32·9% (95% CI: 5·1%-75·0%) 

Type of model / Herd 

effects 

Dynamic / no herd effects Dynamic /no herd effects 

 

Measles LSHTM Pennsylvania State University 

Vaccine efficacy  First dose: 85% when given before 

1 year and 95% when given after 1 

year. 

After two doses: 98% 

85% when dose is administered at 

9 months, 93% when administered 

at 12 months and 99% thereafter 

Vaccine duration Lifelong Lifelong 

Case fatality ratio Age and country specific 75. These 

will be changed to time-varying 

CFRs informed by Portnoy et al 132 

Age and country specific 75 with 

CFRs for age above 59 months 

assumed to be 50% lower than 

those below 59 months 
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Type of model / Herd 

effects 

Dynamic / herd effects included Dynamic / herd effects included 

 

MenA University of Cambridge Kaiser Permanente Washington 

Vaccine efficacy  90% against disease 

90% against carriage 

75% against colonization 

100% against invasive disease for 

the first stage of waning.  

For the second stage it was 

25% against effective colonization 

and 

90% against disease. 

Vaccine duration 10 years 45 years 

Case fatality ratio 10% Age dependant varying from a 

minimum to maximum 8·6 – 12·2%.  

Type of model / Herd 

effects 

Dynamic / herd effects included Dynamic / herd effects included 

 

 

PCV Johns Hopkins University LSHTM  

Vaccine efficacy  58%  First dose: 29%, 

Second dose: 58%, 

Third dose: 58% 

Vaccine duration Until age 5 as the model only 

considers up to 5 years 

No vaccine waning 

Case fatality ratio N/A – uses overall <5 mortality 

envelope and disease specific 

mortality estimates 

Country-specific estimates based 

on Wahl et al 38 

Type of model / Herd 

effects 

Static / no herd effects Static / no herd effects 

 

Rota Johns Hopkins University  LSHTM 

Vaccine efficacy  Region specific: 

87·9% Asia,  

87·9% North Africa, 

49·7% Southern Africa, West Africa 

and East Africa, 

Varies by number of doses, under-

five mortality strata and duration 

of follow-up 46  
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82% Eastern Europe, 

81% Latin America. 35  

Vaccine duration Until age 5 as the model only 

considers up to 5 years  

Efficacy decreases over time to be 

consistent with the year 1 and year 

2 estimates 46 

Case fatality ratio N/A – uses overall <5 mortality 

envelope and disease specific 

mortality estimates 

Country-specific estimates based 

on three sources of international 

estimates 42.  

Type of model / Herd 

effects 

Static / no herd effects Static / no herd effects 

 

Rubella Public Health England Johns Hopkins University 

Vaccine efficacy  95% (varied 85-99%) Age dependent with a maximum of 

97% 

Vaccine duration Lifelong Lifelong 

Case fatality ratio 30% 9·3% for fetal death 

1·4% for children 

Type of model / Herd 

effects 

Dynamic / herd effects Dynamic / herd effects 

 

 

YF Imperial College London 

Vaccine efficacy  97·5% (95% CI: 82·9-99·7%) 

Vaccine duration Lifelong 

Case fatality ratio 47% (95% CI: 31 - 62%) 

Type of model / Herd 

effects 

Static / no herd effects 
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Sensitivity of impact estimates to projected coverage  
 

We performed a sensitivity analysis to show how impact estimates differ under different coverage 

assumptions. We compare the impact ratios (deaths averted/fully vaccinated people) under the 

reported and projected coverage scenario used in this study, and the impact ratios calculated under 

an alternative coverage scenario called best-case, which assumes 90% of routine coverage (or 

historical highest if greater than 90%), and a one-off campaign with 90% coverage for the 2020-2030 

period. The comparison was done for the PINE countries, Ethiopia (ETH), India (IND), Nigeria (NGA) 

and Pakistan (PAK).    

Best-case coverage scenario:  

- Routine coverage: was assumed to be 90% (or historical highest if greater than 90%) 
- Campaign coverage: a one-off campaign assumed to be 90% 

 

Table iv: Estimated total deaths averted per thousand individuals vaccinated across the 2020-2030 
period in all ages under the reported and projected  coverage and best-case coverage scenarios. 
Estimates for both calendar year and year of birth views are shown. Not all pathogens are endemic 
to all the PINE countries, hence the NA values.  

Disease Scenario 
Calendar year view Lifetime view 

ETH IND NGA PAK ETH IND NGA PAK 

HepB Default 0.4 0.2 1.6 0.5 7.4 3.5 24.6 5.8 

  Best-case 0.2 0.2 1.1 0.2 4.6 3.2 19.9 3.3 

Hib Default 3.2 2.1 3.5 2.9 3.2 2.1 3.7 2.9 

  Best-case 3.2 2.1 3.7 2.9 3.2 2.1 3.8 2.9 

HPV Default 0.1 0 0 0 14.4 12.1 13.2 4.4 

  Best-case 0.1 0.1 0 0 14.4 12.1 13.3 4.4 

JE Default NA 0.2 NA 0 NA 0.4 NA 0.1 

  Best-case NA 0.3 NA 0.1 NA 0.4 NA 0.1 

Measles Default 12.6 7.7 17.2 5.2 15.2 7.7 19.1 5.9 

  Best-case 16.3 7.5 22.5 7.6 17.1 7.5 22.5 7.7 

MenA Default 0.7 NA 0.9 NA 1.3 NA 1.3 NA 

  Best-case 0.9 NA 0.6 NA 1.1 NA 1 NA 

PCV Default 2.9 1.9 3.4 2.9 2.9 2 3.7 2.9 

  Best-case 2.9 2 3.7 2.9 2.9 2 3.7 2.9 

Rota Default 0.5 0.4 2.1 0.6 0.5 0.4 2.4 0.6 

  Best-case 0.5 0.4 2.3 0.6 0.5 0.4 2.4 0.6 

Rubella Default 0.1 0.2 NA 0 0.1 0.2 NA 0.1 

  Best-case 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.1 

YF Default 0.1 NA 1.5 NA 0.7 NA 9.4 NA 

  Best-case 0.5 NA 5.1 NA 0.8 NA 10.2 NA 
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Tables 
 

Table S1. List of 98 low and middle income countries included in the analysis, including the 73 countries 

currently eligible for Gavi support. WHO region corresponds to the WHO Regional Offices in Africa (AFRO), 

Eastern Mediterranean (EMRO), Europe (EURO), South East Asia (SEARO) and Western Pacific (WPRO). 

 

Country 

code 

Country name Gavi 73 WHO 

region 

AFG Afghanistan TRUE EMRO 

AGO Angola TRUE AFRO 

ALB Albania FALSE EURO 

ARM Armenia TRUE EURO 

AZE Azerbaijan TRUE EURO 

BDI Burundi TRUE AFRO 

BEN Benin TRUE AFRO 

BFA Burkina Faso TRUE AFRO 

BGD Bangladesh TRUE SEARO 

BIH Bosnia and Herzegovina FALSE EURO 

BLZ Belize FALSE PAHO 

BOL Bolivia TRUE PAHO 

BTN Bhutan TRUE SEARO 

CAF Central African Republic TRUE AFRO 

CHN China FALSE WPRO 

CIV Cote d'Ivoire TRUE AFRO 

CMR Cameroon TRUE AFRO 

COD Democratic Republic of the Congo TRUE AFRO 

COG Congo TRUE AFRO 

COM Comoros TRUE AFRO 

CPV Cabo Verde FALSE AFRO 

CUB Cuba TRUE PAHO 

DJI Djibouti TRUE EMRO 

EGY Egypt FALSE EMRO 

ERI Eritrea TRUE AFRO 

ETH Ethiopia TRUE AFRO 
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FJI Fiji FALSE WPRO 

FSM Federated States of Micronesia FALSE WPRO 

GEO Georgia TRUE EURO 

GHA Ghana TRUE AFRO 

GIN Guinea TRUE AFRO 

GMB Gambia TRUE AFRO 

GNB Guinea-Bissau TRUE AFRO 

GTM Guatemala FALSE PAHO 

GUY Guyana TRUE PAHO 

HND Honduras TRUE PAHO 

HTI Haiti TRUE PAHO 

IDN Indonesia TRUE SEARO 

IND India TRUE SEARO 

IRQ Iraq FALSE EMRO 

KEN Kenya TRUE AFRO 

KGZ Kyrgyzstan TRUE EURO 

KHM Cambodia TRUE WPRO 

KIR Kiribati TRUE WPRO 

LAO Laos TRUE WPRO 

LBR Liberia TRUE AFRO 

LKA Sri Lanka TRUE SEARO 

LSO Lesotho TRUE AFRO 

MAR Morocco FALSE EMRO 

MDA Moldova TRUE EURO 

MDG Madagascar TRUE AFRO 

MHL Marshall Islands FALSE WPRO 

MLI Mali TRUE AFRO 

MMR Myanmar TRUE SEARO 

MNG Mongolia TRUE WPRO 

MOZ Mozambique TRUE AFRO 

MRT Mauritania TRUE AFRO 

MWI Malawi TRUE AFRO 
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NER Niger TRUE AFRO 

NGA Nigeria TRUE AFRO 

NIC Nicaragua TRUE PAHO 

NPL Nepal TRUE SEARO 

PAK Pakistan TRUE EMRO 

PHL Philippines FALSE WPRO 

PNG Papua New Guinea TRUE WPRO 

PRK North Korea TRUE SEARO 

PRY Paraguay FALSE PAHO 

PSE Palestine FALSE PAHO 

RWA Rwanda TRUE AFRO 

SDN Sudan TRUE EMRO 

SEN Senegal TRUE AFRO 

SLB Solomon Islands TRUE WPRO 

SLE Sierra Leone TRUE AFRO 

SLV El Salvador FALSE PAHO 

SOM Somalia TRUE EMRO 

SSD South Sudan TRUE AFRO 

STP Sao Tome and Principe TRUE AFRO 

SWZ Swaziland FALSE AFRO 

SYR Syria FALSE EMRO 

TCD Chad TRUE AFRO 

TGO Togo TRUE AFRO 

TJK Tajikistan TRUE EURO 

TKM Turkmenistan FALSE EURO 

TLS Timor-Leste TRUE SEARO 

TON Tonga FALSE WPRO 

TUN Tunisia FALSE EMRO 

TUV Tuvalu FALSE WPRO 

TZA Tanzania TRUE AFRO 

UGA Uganda TRUE AFRO 

UKR Ukraine TRUE EURO 
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UZB Uzbekistan TRUE EURO 

VNM Viet Nam TRUE WPRO 

VUT Vanuatu FALSE WPRO 

WSM Samoa FALSE WPRO 

XK Kosovo FALSE EURO 

YEM Yemen TRUE EMRO 

ZMB Zambia TRUE AFRO 

ZWE Zimbabwe TRUE AFRO 

 

 

Table S2. Number of countries eligible for Gavi support for routine vaccinations for each pathogen and each 

year from 2000 to 2018. MCV2: measles-containing vaccine, second dose; PCV3: pneumococcal conjugate 

vaccine 3rd dose; RCV2: rubella-containing vaccine, second dose. 

 

Year HepB Hib3 HPV JE MCV2 MenA PCV3 RCV2 Rota Rubella YF 

2000 8 0 0 0 0 0 0 0 0 0 0 

2001 23 1 0 0 0 0 0 0 0 0 1 

2002 41 6 0 0 0 0 0 0 0 0 6 

2003 43 6 0 0 0 0 0 0 0 0 9 

2004 45 6 0 0 0 0 0 0 0 0 14 

2005 50 13 0 0 0 0 0 0 0 0 14 

2006 54 14 0 0 0 0 0 0 0 0 14 

2007 56 18 0 0 1 0 0 0 0 0 14 

2008 58 28 0 0 2 0 0 0 1 0 16 

2009 63 48 0 0 2 0 0 0 2 0 16 

2010 64 56 0 0 2 0 2 0 4 0 16 

2011 63 58 0 0 2 0 15 0 5 0 16 

2012 66 61 0 0 6 0 19 0 10 0 16 

2013 68 67 0 0 8 0 30 0 15 0 16 

2014 68 67 2 0 13 0 42 0 32 1 16 

2015 68 68 2 0 17 0 53 0 37 12 16 

2016 68 68 3 1 19 1 55 0 40 13 18 

2017 67 67 13 2 20 8 57 21 43 21 16 

2018 67 67 17 4 22 11 59 22 48 24 17 
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Table S3(a): Estimated total DALYs averted (in millions) by vaccination and DALYs averted per thousand 

individuals vaccinated in different time periods across the 98 countries considered, stratified by pathogen. 

Both all age and under-5 DALYs averted are shown. The values are mean estimates and ranges are 95% 

credible intervals (2.5 and 97.5 quantiles). Estimates quoted to two significant figures.  

Disease Time DALYs averted (millions) DALYs averted 

per 1000 

vaccinated 

individuals 

DALYs averted 

(millions), < 5 

DALYs averted 

per 1000 

vaccinated 

individuals, <5 

HepB 2000-2019 61 (13-160) 35 (7.7-90) 29 (4.6-99) 17 (2.7-58) 

HepB 2020-2030 130 (29-230) 77 (17-140) 24 (4.3-80) 15 (2.6-49) 

HepB 2000-2030 190 (42-380) 56 (12-120) 53 (8.9-180) 16 (2.6-54) 

Hib 2000-2019 100 (45-160) 170 (73-250) 100 (45-160) 170 (73-250) 

Hib 2020-2030 140 (47-220) 160 (56-260) 140 (47-220) 160 (56-260) 

Hib 2000-2030 240 (94-370) 160 (64-260) 240 (94-370) 160 (64-260) 

HPV 2000-2019 0.0011 (0.00051-0.0021) 0 (0-0) 0 (0-0) 0 (0-0) 

HPV 2020-2030 0.58 (0.27-0.93) 1.8 (0.8-2.8) 0 (0-0) 0 (0-0) 

HPV 2000-2030 0.58 (0.27-0.93) 1.1 (0.5-1.8) 0 (0-0) 0 (0-0) 

JE 2000-2019 8.5 (0.54-18) 19 (1.1-39) 6.1 (0.39-13) 21 (1.3-43) 

JE 2020-2030 18 (1.4-38) 40 (3.1-81) 10 (0.75-21) 22 (1.7-46) 

JE 2000-2030 27 (1.9-55) 29 (2.2-60) 16 (1.1-33) 22 (1.5-44) 

Measles 2000-2019 2100 (1500-2700) 450 (330-560) 2100 (1500-2600) 510 (380-640) 

Measles 2020-2030 1500 (550-1900) 600 (210-720) 1500 (590-1800) 590 (230-710) 

Measles 2000-2030 3600 (2300-4500) 500 (320-610) 3600 (2400-4400) 540 (360-660) 

MenA 2000-2019 4.6 (0.76-9.6) 17 (2.8-37) 1.3 (0.17-2.7) 9.8 (1.3-20) 

MenA 2020-2030 8.8 (3.3-17) 35 (13-67) 2.5 (0.82-4.4) 9.7 (3.2-18) 

MenA 2000-2030 13 (9-22) 26 (17-43) 3.8 (2.3-5.8) 9.8 (6-15) 

PCV 2000-2019 40 (20-68) 160 (84-280) 40 (20-68) 160 (84-280) 

PCV 2020-2030 110 (47-200) 150 (67-290) 110 (47-200) 150 (67-290) 

PCV 2000-2030 150 (67-270) 160 (71-290) 150 (67-270) 160 (71-290) 

Rota 2000-2019 9.9 (6.5-14) 55 (36-74) 9.9 (6.5-14) 55 (36-74) 

Rota 2020-2030 39 (23-56) 53 (32-75) 39 (23-56) 53 (32-75) 

Rota 2000-2030 49 (30-69) 53 (33-75) 49 (30-69) 53 (33-75) 

Rubella 2000-2019 8.7 (6.3-15) 6.1 (4.4-11) 8.7 (6.3-15) 7.1 (5.2-12) 

Rubella 2020-2030 29 (19-49) 13 (8.6-22) 29 (19-49) 13 (8.8-22) 
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Rubella 2000-2030 38 (26-63) 10 (7-17) 38 (26-63) 11 (7.5-18) 

YF 2000-2019 77 (26-160) 200 (68-420) 32 (9.8-66) 150 (46-310) 

YF 2020-2030 130 (41-270) 500 (160-1100) 34 (10-73) 130 (41-290) 

YF 2000-2030 210 (67-430) 320 (100-670) 66 (20-140) 140 (43-300) 

Total 2000-2019 2400 (1800-3000) 240 (180-290) 2300 (1700-2900) 260 (200-330) 

Total 2020-2030 2100 (1100-2700) 210 (110-260) 1900 (950-2300) 190 (99-240) 

Total 2000-2030 4600 (3200-5500) 230 (150-270) 4200 (2900-5000) 230 (160-280) 

 

 

Table S3(b): Estimated total deaths averted (in thousands) by vaccination and deaths averted per thousand 

individuals vaccinated in annual birth cohort ranges across the 98 countries considered, stratified by pathogen. 

Both lifetime and under-5 deaths averted are shown. The values are mean estimates and ranges are 95% 

credible intervals (2.5 and 97.5 quantiles). Estimates quoted to two significant figures. . 

Disease Birth 

cohorts 

Deaths averted (1000s) Deaths 

averted per 

1000 

vaccinated 

individuals 

Deaths averted 

(1000s), < 5 

Deaths 

averted per 

1000 

vaccinated 

individuals, <5 

HepB 2000-2019 22000 (15000-32000) 13 (8.8-19) 300 (63-1100) 0.2 (0-0.6) 

HepB 2020-2030 16000 (10000-25000) 9.8 (6.2-15) 230 (61-820) 0.1 (0-0.5) 

HepB 2000-2030 38000 (25000-52000) 11 (7.5-16) 530 (130-2000) 0.2 (0-0.6) 

Hib 2000-2019 1700 (760-2600) 2.8 (1.1-4.1) 1700 (760-2600) 2.8 (1.1-4.1) 

Hib 2020-2030 2000 (730-3200) 2.4 (0.9-3.7) 2000 (730-3200) 2.4 (0.9-3.7) 

Hib 2000-2030 3700 (1500-5800) 2.6 (1-3.9) 3700 (1500-5800) 2.6 (1-3.9) 

HPV 2000-2019 3000 (2400-3500) 16 (12-18) 0 (0-0) 0 (0-0) 

HPV 2020-2030 4000 (3500-4500) 12 (11-14) 0 (0-0) 0 (0-0) 

HPV 2000-2030 7000 (6100-7900) 14 (11-16) 0 (0-0) 0 (0-0) 

JE 2000-2019 180 (19-450) 0.4 (0-1) 64 (5.3-160) 0.2 (0-0.5) 

JE 2020-2030 220 (23-560) 0.5 (0.1-1.2) 89 (8.3-230) 0.2 (0-0.5) 

JE 2000-2030 400 (43-1100) 0.4 (0-1.1) 150 (13-390) 0.2 (0-0.5) 

Measles 2000-2019 34000 (27000-45000) 7.2 (5.7-9.4) 34000 (26000-44000) 8.2 (6.5-11) 

Measles 2020-2030 24000 (10000-31000) 9.3 (4-13) 23000 (10000-31000) 9.1 (4.2-12) 

Measles 2000-2030 58000 (39000-76000) 8 (5.4-11) 57000 (40000-75000) 8.5 (6-12) 

MenA 2000-2019 240 (130-390) 0.9 (0.5-1.5) 24 (7.5-43) 0.2 (0.1-0.3) 
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MenA 2020-2030 190 (83-320) 0.7 (0.3-1.3) 33 (14-57) 0.1 (0.1-0.2) 

MenA 2000-2030 430 (220-690) 0.8 (0.4-1.3) 58 (36-87) 0.1 (0.1-0.2) 

PCV 2000-2019 710 (360-1300) 2.9 (1.5-5) 710 (360-1300) 2.9 (1.5-5) 

PCV 2020-2030 1600 (730-3000) 2.3 (1.1-4.3) 1600 (730-3000) 2.3 (1.1-4.3) 

PCV 2000-2030 2400 (1000-4300) 2.5 (1.1-4.5) 2400 (1000-4300) 2.5 (1.1-4.5) 

Rota 2000-2019 180 (110-250) 1 (0.6-1.4) 180 (110-250) 1 (0.6-1.4) 

Rota 2020-2030 600 (370-840) 0.8 (0.5-1.1) 600 (370-840) 0.8 (0.5-1.1) 

Rota 2000-2030 780 (480-1100) 0.8 (0.5-1.2) 780 (480-1100) 0.8 (0.5-1.2) 

Rubella 2000-2019 80 (38-200) 0.1 (0-0.1) 80 (38-200) 0.1 (0-0.2) 

Rubella 2020-2030 260 (130-590) 0.1 (0.1-0.3) 260 (130-590) 0.1 (0.1-0.3) 

Rubella 2000-2030 340 (180-780) 0.1 (0-0.2) 340 (180-780) 0.1 (0.1-0.2) 

YF 2000-2019 6000 (1900-12000) 16 (5-32) 590 (180-1300) 2.8 (0.9-5.7) 

YF 2020-2030 4600 (1500-9400) 18 (5.9-37) 530 (160-1200) 2.1 (0.7-4.4) 

YF 2000-2030 11000 (3400-22000) 17 (5.5-34) 1100 (340-2400) 2.4 (0.7-5) 

Total 2000-2019 66000 (53000-80000) 6.4 (5.2-7.8) 37000 (29000-47000) 4.2 (3.4-5.4) 

Total 2020-2030 52000 (37000-64000) 5.2 (3.7-6.3) 28000 (15000-36000) 2.9 (1.6-3.7) 

Total 2000-2030 120000 (93000-150000) 5.8 (4.5-7) 65000 (48000-83000) 3.5 (2.7-4.5) 

 

 

Table S3(c): Estimated total DALYs averted (in millions) by vaccination and deaths averted per thousand 

individuals vaccinated in annual birth cohort ranges across the 98 countries considered, stratified by pathogen. 

Both lifetime and under-5 DALYs averted are shown. The values are mean estimates and ranges are 95% 

credible intervals (2.5 and 97.5 quantiles). Estimates quoted to two significant figures.  

Disease Birth 

cohorts 

DALYs averted 

(millions) 

DALYs averted 

per 1000 

vaccinated 

individuals 

DALYs averted 

(millions), < 5 

DALYs averted 

per 1000 

vaccinated 

individuals, <5 

HepB 2000-2019 870 (520-1400) 510 (300-800) 32 (5.4-110) 18 (3.2-62) 

HepB 2020-2030 700 (390-1100) 430 (230-610) 25 (4.3-81) 15 (2.7-49) 

HepB 2000-2030 1600 (910-2400) 470 (270-690) 57 (9.8-190) 17 (2.8-56) 

Hib 2000-2019 110 (48-180) 180 (76-280) 110 (48-180) 180 (76-280) 

Hib 2020-2030 140 (47-220) 160 (56-260) 140 (47-220) 160 (56-260) 

Hib 2000-2030 250 (96-400) 170 (65-270) 250 (96-400) 170 (65-270) 

HPV 2000-2019 67 (55-77) 350 (280-410) 0 (0-0) 0 (0-0) 
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HPV 2020-2030 110 (96-120) 330 (290-370) 0 (0-0) 0 (0-0) 

HPV 2000-2030 170 (150-200) 340 (290-380) 0 (0-0) 0 (0-0) 

JE 2000-2019 19 (1.5-39) 42 (3.4-85) 7.5 (0.49-16) 25 (1.7-53) 

JE 2020-2030 23 (1.9-47) 49 (4.2-100) 10 (0.77-21) 23 (1.7-47) 

JE 2000-2030 41 (3.4-84) 45 (3.7-92) 18 (1.2-37) 24 (1.7-49) 

Measles 2000-2019 2200 (1600-2700) 470 (340-570) 2200 (1600-2700) 530 (390-650) 

Measles 2020-2030 1600 (600-1900) 610 (230-740) 1500 (640-1800) 600 (250-710) 

Measles 2000-2030 3800 (2300-4600) 520 (320-620) 3700 (2400-4500) 560 (360-670) 

MenA 2000-2019 13 (8.4-20) 50 (32-75) 1.7 (0.54-3) 13 (4-22) 

MenA 2020-2030 11 (5.8-18) 43 (23-71) 2.5 (1-4.2) 9.9 (4.2-17) 

MenA 2000-2030 24 (14-37) 46 (28-71) 4.2 (2.7-6.3) 11 (7-17) 

PCV 2000-2019 47 (22-82) 190 (94-340) 47 (22-82) 190 (94-340) 

PCV 2020-2030 110 (48-210) 160 (68-300) 110 (48-210) 160 (68-300) 

PCV 2000-2030 160 (70-290) 170 (75-310) 160 (70-290) 170 (75-310) 

Rota 2000-2019 12 (7.1-17) 64 (39-93) 12 (7.1-17) 64 (39-93) 

Rota 2020-2030 40 (24-57) 54 (33-77) 40 (24-57) 54 (33-77) 

Rota 2000-2030 51 (32-74) 56 (34-80) 51 (32-74) 56 (34-80) 

Rubella 2000-2019 8.7 (6.3-15) 6.1 (4.4-11) 8.7 (6.3-15) 7.1 (5.2-12) 

Rubella 2020-2030 29 (19-49) 13 (8.6-22) 29 (19-49) 13 (8.8-22) 

Rubella 2000-2030 38 (26-63) 10 (7-17) 38 (26-63) 11 (7.5-18) 

YF 2000-2019 260 (83-530) 670 (210-1400) 38 (11-79) 180 (55-370) 

YF 2020-2030 220 (70-450) 850 (270-1800) 36 (11-77) 140 (44-300) 

YF 2000-2030 480 (150-970) 740 (240-1600) 74 (22-160) 160 (49-330) 

Total 2000-2019 3500 (2600-4300) 340 (260-420) 2400 (1700-2900) 270 (200-330) 

Total 2020-2030 2900 (1900-3500) 290 (190-350) 1900 (1000-2300) 200 (100-240) 

Total 2000-2030 6400 (4600-7700) 320 (230-380) 4300 (2900-5100) 230 (160-280) 
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Table S4(a): Estimated total deaths averted (in thousands) by vaccination and deaths averted per thousand 
individuals vaccinated in different time period ranges across the 73 Gavi countries, stratified by pathogen. 
Both all age and under-5 deaths averted are shown. The values are mean estimates and ranges are 95% 
credible intervals (2.5 and 97.5 quantiles). Estimates quoted to two significant figures. 

 

Disease Time Deaths averted 

(1000s) 

Deaths 

averted per 

1000 

vaccinated 

individuals 

Deaths averted 

(1000s), < 5 

Deaths averted 

per 1000 

vaccinated 

individuals, <5 

HepB 2000-2019 380 (110-810) 0.2 (0.1-0.5) 160 (38-590) 0.1 (0-0.3) 

HepB 2020-2030 1100 (290-2100) 0.6 (0.2-1.2) 160 (44-560) 0.1 (0-0.3) 

HepB 2000-2030 1400 (410-2500) 0.4 (0.1-0.7) 320 (85-1200) 0.1 (0-0.3) 

Hib 2000-2019 1500 (700-2300) 2.4 (1.1-3.5) 1500 (700-2300) 2.4 (1.1-3.5) 

Hib 2020-2030 1900 (700-3100) 2.3 (0.8-3.6) 1900 (700-3100) 2.3 (0.8-3.6) 

Hib 2000-2030 3500 (1400-5300) 2.4 (1-3.6) 3500 (1400-5300) 2.4 (1-3.6) 

HPV 2000-2019 0.013 (0-0.031) 0 (0-0) 0 (0-0) 0 (0-0) 

HPV 2020-2030 7.4 (1.4-15) 0 (0-0) 0 (0-0) 0 (0-0) 

HPV 2000-2030 7.4 (1.4-15) 0 (0-0) 0 (0-0) 0 (0-0) 

JE 2000-2019 26 (2.3-62) 0.1 (0-0.1) 11 (1.1-29) 0 (0-0.1) 

JE 2020-2030 75 (7.9-200) 0.2 (0-0.4) 34 (4-110) 0.1 (0-0.2) 

JE 2000-2030 100 (9.8-260) 0.1 (0-0.3) 45 (5-130) 0.1 (0-0.2) 

Measles 2000-2019 31000 (25000-41000) 6.6 (5.2-8.6) 31000 (24000-41000) 7.5 (6-9.8) 

Measles 2020-2030 22000 (9000-30000) 8.8 (3.6-12) 22000 (9700-29000) 8.6 (3.7-12) 

Measles 2000-2030 54000 (37000-70000) 7.4 (5.2-9.6) 53000 (38000-69000) 8 (5.9-11) 

MenA 2000-2019 73 (12-160) 0.3 (0-0.6) 19 (2.4-38) 0.1 (0-0.3) 

MenA 2020-2030 140 (52-270) 0.5 (0.2-1.1) 33 (11-59) 0.1 (0-0.2) 

MenA 2000-2030 210 (130-360) 0.4 (0.3-0.7) 52 (32-81) 0.1 (0.1-0.2) 

PCV 2000-2019 600 (310-1000) 2.5 (1.3-4.1) 600 (310-1000) 2.5 (1.3-4.1) 

PCV 2020-2030 1600 (710-2900) 2.2 (1-4) 1600 (710-2900) 2.2 (1-4) 

PCV 2000-2030 2200 (1000-3900) 2.3 (1.1-4.1) 2200 (1000-3900) 2.3 (1.1-4.1) 

Rota 2000-2019 150 (97-200) 0.8 (0.5-1.1) 150 (97-200) 0.8 (0.5-1.1) 

Rota 2020-2030 580 (360-810) 0.8 (0.5-1.1) 580 (360-810) 0.8 (0.5-1.1) 

Rota 2000-2030 730 (460-1000) 0.8 (0.5-1.1) 730 (460-1000) 0.8 (0.5-1.1) 

Rubella 2000-2019 48 (25-130) 0 (0-0.1) 48 (25-130) 0 (0-0.1) 

Rubella 2020-2030 220 (110-540) 0.1 (0.1-0.2) 220 (110-540) 0.1 (0.1-0.2) 

Rubella 2000-2030 270 (140-660) 0.1 (0-0.2) 270 (140-660) 0.1 (0-0.2) 

YF 2000-2019 1300 (450-2800) 3.5 (1.1-7.1) 500 (150-1100) 2.3 (0.7-4.9) 
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YF 2020-2030 2300 (740-4800) 9 (2.8-19) 510 (150-1100) 2 (0.6-4.2) 

YF 2000-2030 3600 (1100-7500) 5.7 (1.8-12) 1000 (310-2200) 2.1 (0.7-4.5) 

Total 2000-2019 35000 (28000-45000) 3.5 (2.7-4.4) 34000 (27000-44000) 3.9 (3.1-4.9) 

Total 2020-2030 30000 (16000-38000) 3 (1.7-3.8) 27000 (14000-35000) 2.8 (1.5-3.5) 

Total 2000-2030 66000 (49000-83000) 3.2 (2.5-4.1) 61000 (46000-77000) 3.3 (2.5-4.2) 

 

 

Table S4(b): Estimated total DALYs averted (in millions) by vaccination and DALYs averted per thousand 

individuals vaccinated in different time period ranges across the 73 Gavi countries, stratified by pathogen. 

Both all age and under-5 DALYs averted estimates are shown. The values are mean estimates and ranges are 

95% credible intervals (2.5 and 97.5 quantiles). Estimates quoted to two significant figures. 

Disease Time DALYs averted 

(millions) 

DALYs averted 

per 1000 

vaccinated 

individuals 

DALYs averted 

(millions), < 5 

DALYs averted 

per 1000 

vaccinated 

individuals, <5 

HepB 2000-2019 35 (7.4-82) 20 (4.2-48) 16 (2.7-55) 9.6 (1.6-32) 

HepB 2020-2030 82 (18-140) 50 (11-80) 17 (3-54) 10 (1.8-33) 

HepB 2000-2030 120 (25-220) 34 (7.5-64) 33 (5.8-110) 9.9 (1.7-33) 

Hib 2000-2019 100 (43-150) 160 (70-240) 100 (43-150) 160 (70-240) 

Hib 2020-2030 130 (45-210) 160 (54-250) 130 (45-210) 160 (54-250) 

Hib 2000-2030 230 (90-360) 160 (61-250) 230 (90-360) 160 (61-250) 

HPV 2000-2019 0.0011 (0.00051-

0.0021) 

0 (0-0) 0 (0-0) 0 (0-0) 

HPV 2020-2030 0.58 (0.27-0.93) 1.8 (0.8-2.8) 0 (0-0) 0 (0-0) 

HPV 2000-2030 0.58 (0.27-0.93) 1.1 (0.5-1.8) 0 (0-0) 0 (0-0) 

JE 2000-2019 2.7 (0.21-5.6) 6 (0.5-13) 1.2 (0.1-2.6) 4 (0.4-8.7) 

JE 2020-2030 7.9 (0.69-17) 17 (1.5-37) 3.8 (0.37-9.4) 8.5 (0.8-21) 

JE 2000-2030 11 (0.87-23) 12 (1-25) 5 (0.46-12) 6.7 (0.6-16) 

Measles 2000-2019 2000 (1400-2500) 420 (310-520) 2000 (1400-2500) 480 (360-590) 

Measles 2020-2030 1500 (520-1800) 570 (200-690) 1400 (560-1800) 560 (220-680) 

Measles 2000-2030 3400 (2200-4200) 470 (300-580) 3400 (2200-4100) 510 (340-620) 

MenA 2000-2019 4.6 (0.76-9.6) 17 (2.8-37) 1.3 (0.17-2.7) 9.8 (1.3-20) 

MenA 2020-2030 8.8 (3.3-17) 35 (13-67) 2.5 (0.82-4.4) 9.7 (3.2-18) 

MenA 2000-2030 13 (9-22) 26 (17-43) 3.8 (2.3-5.8) 9.8 (6-15) 

PCV 2000-2019 39 (19-66) 160 (82-270) 39 (19-66) 160 (82-270) 
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PCV 2020-2030 110 (46-200) 150 (66-280) 110 (46-200) 150 (66-280) 

PCV 2000-2030 150 (66-270) 150 (69-280) 150 (66-270) 150 (69-280) 

Rota 2000-2019 9.5 (6.3-13) 53 (35-71) 9.5 (6.3-13) 53 (35-71) 

Rota 2020-2030 39 (23-55) 52 (32-74) 39 (23-55) 52 (32-74) 

Rota 2000-2030 48 (30-68) 52 (32-73) 48 (30-68) 52 (32-73) 

Rubella 2000-2019 5.3 (3.9-9.2) 3.7 (2.7-6.4) 5.3 (3.9-9.2) 4.4 (3.2-7.4) 

Rubella 2020-2030 24 (16-45) 11 (7.5-20) 24 (16-45) 11 (7.5-20) 

Rubella 2000-2030 29 (21-54) 8 (5.7-15) 29 (21-54) 8.5 (6-16) 

YF 2000-2019 77 (26-160) 200 (68-420) 32 (9.8-66) 150 (46-310) 

YF 2020-2030 130 (41-270) 500 (160-1100) 34 (10-73) 130 (41-290) 

YF 2000-2030 210 (67-430) 320 (100-670) 66 (20-140) 140 (43-300) 

Total 2000-2019 2300 (1700-2800) 220 (170-270) 2200 (1600-2700) 250 (180-300) 

Total 2020-2030 2000 (1000-2500) 200 (100-250) 1800 (900-2200) 180 (93-230) 

Total 2000-2030 4200 (3000-5100) 210 (140-250) 3900 (2800-4700) 210 (150-260) 

 

 

Table S4(c): Estimated total deaths averted (in thousands) by vaccination and deaths averted per thousand 
individuals vaccinated in different annual birth cohort ranges across the 73 Gavi countries, stratified by 
pathogen. Both lifetime and under-5 deaths averted are shown. The values are mean estimates and ranges are 
95% credible intervals (2.5 and 97.5 quantiles). Estimates quoted to two significant figures. 
 

Disease Birth 

cohorts 

Deaths averted (1000s) Deaths 

averted per 

1000 

vaccinated 

individuals 

Deaths averted 

(1000s), < 5 

Deaths 

averted per 

1000 

vaccinated 

individuals, <5 

HepB 2000-2019 13000 (8200-19000) 7.5 (4.7-11) 180 (48-630) 0.1 (0-0.4) 

HepB 2020-2030 12000 (6800-21000) 7.2 (4.2-13) 170 (45-570) 0.1 (0-0.3) 

HepB 2000-2030 25000 (15000-40000) 7.4 (4.5-12) 350 (95-1200) 0.1 (0-0.4) 

Hib 2000-2019 1700 (730-2500) 2.7 (1.1-4) 1700 (730-2500) 2.7 (1.1-4) 

Hib 2020-2030 1900 (700-3100) 2.3 (0.8-3.6) 1900 (700-3100) 2.3 (0.8-3.6) 

Hib 2000-2030 3600 (1400-5600) 2.5 (1-3.8) 3600 (1400-5600) 2.5 (1-3.8) 

HPV 2000-2019 3000 (2400-3500) 16 (12-18) 0 (0-0) 0 (0-0) 

HPV 2020-2030 4000 (3500-4500) 12 (11-14) 0 (0-0) 0 (0-0) 

HPV 2000-2030 7000 (6100-7900) 14 (11-16) 0 (0-0) 0 (0-0) 
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JE 2000-2019 89 (8.8-220) 0.2 (0-0.5) 14 (1.5-39) 0 (0-0.1) 

JE 2020-2030 120 (13-310) 0.3 (0-0.7) 37 (4.4-120) 0.1 (0-0.3) 

JE 2000-2030 210 (22-530) 0.2 (0-0.6) 52 (5.7-150) 0.1 (0-0.2) 

Measles 2000-2019 33000 (25000-43000) 6.9 (5.4-8.9) 32000 (25000-42000) 7.8 (6-11) 

Measles 2020-2030 23000 (9700-30000) 8.9 (3.7-12) 22000 (10000-29000) 8.8 (4-12) 

Measles 2000-2030 56000 (37000-72000) 7.6 (5.2-9.8) 54000 (38000-71000) 8.2 (5.9-11) 

MenA 2000-2019 240 (130-390) 0.9 (0.5-1.5) 24 (7.5-43) 0.2 (0.1-0.3) 

MenA 2020-2030 190 (83-320) 0.7 (0.3-1.3) 33 (14-57) 0.1 (0.1-0.2) 

MenA 2000-2030 430 (220-690) 0.8 (0.4-1.3) 58 (36-87) 0.1 (0.1-0.2) 

PCV 2000-2019 700 (350-1200) 2.9 (1.5-4.9) 700 (350-1200) 2.9 (1.5-4.9) 

PCV 2020-2030 1600 (720-3000) 2.3 (1-4.2) 1600 (720-3000) 2.3 (1-4.2) 

PCV 2000-2030 2300 (1000-4200) 2.4 (1.1-4.4) 2300 (1000-4200) 2.4 (1.1-4.4) 

Rota 2000-2019 170 (100-240) 0.9 (0.6-1.3) 170 (100-240) 0.9 (0.6-1.3) 

Rota 2020-2030 590 (360-830) 0.8 (0.5-1.1) 590 (360-830) 0.8 (0.5-1.1) 

Rota 2000-2030 760 (470-1100) 0.8 (0.5-1.2) 760 (470-1100) 0.8 (0.5-1.2) 

Rubella 2000-2019 48 (25-130) 0 (0-0.1) 48 (25-130) 0 (0-0.1) 

Rubella 2020-2030 220 (110-540) 0.1 (0.1-0.2) 220 (110-540) 0.1 (0.1-0.2) 

Rubella 2000-2030 270 (140-660) 0.1 (0-0.2) 270 (140-660) 0.1 (0-0.2) 

YF 2000-2019 6000 (1900-12000) 16 (5-32) 590 (180-1300) 2.8 (0.9-5.7) 

YF 2020-2030 4600 (1500-9400) 18 (5.9-37) 530 (160-1200) 2.1 (0.7-4.4) 

YF 2000-2030 11000 (3400-22000) 17 (5.5-34) 1100 (340-2400) 2.4 (0.7-5) 

Total 2000-2019 55000 (44000-67000) 5.4 (4.2-6.5) 35000 (27000-45000) 4 (3.2-5) 

Total 2020-2030 46000 (33000-59000) 4.6 (3.2-5.8) 27000 (15000-35000) 2.8 (1.6-3.5) 

Total 2000-2030 100000 (78000-130000) 5 (3.9-6.1) 62000 (46000-78000) 3.4 (2.5-4.2) 
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Table S4(d): Estimated total DALYs averted (in millions) by vaccination and DALYs averted per thousand 

individuals vaccinated in different annual birth cohort ranges across the 73 Gavi countries, stratified by 

pathogen. Both lifetime and under-5 DALYs averted estimates are shown. The values are mean estimates and 

ranges are 95% credible intervals (2.5 and 97.5 quantiles). Estimates quoted to two significant figures. 

Disease Birth 

cohorts 

DALYs averted 

(millions) 

DALYs averted 

per 1000 

vaccinated 

individuals 

DALYs averted 

(millions), < 5 

DALYs 

averted per 

1000 

vaccinated 

individuals, <5 

HepB 2000-2019 510 (270-720) 290 (160-420) 32 (5.4-110) 18 (3.2-62) 

HepB 2020-2030 510 (250-830) 310 (150-510) 25 (4.3-81) 15 (2.7-49) 

HepB 2000-2030 1000 (530-1600) 300 (150-460) 57 (9.8-190) 17 (2.8-56) 

Hib 2000-2019 110 (46-170) 180 (73-270) 110 (48-180) 180 (76-280) 

Hib 2020-2030 130 (45-210) 160 (54-250) 140 (47-220) 160 (56-260) 

Hib 2000-2030 240 (92-380) 160 (62-260) 250 (96-400) 170 (65-270) 

HPV 2000-2019 67 (55-77) 350 (280-410) 0 (0-0) 0 (0-0) 

HPV 2020-2030 110 (96-120) 330 (290-370) 0 (0-0) 0 (0-0) 

HPV 2000-2030 170 (150-200) 340 (290-380) 0 (0-0) 0 (0-0) 

JE 2000-2019 8.3 (0.64-17) 18 (1.3-37) 7.5 (0.49-16) 25 (1.7-53) 

JE 2020-2030 12 (1-25) 26 (2.3-54) 10 (0.77-21) 23 (1.7-47) 

JE 2000-2030 20 (1.7-41) 22 (1.8-44) 18 (1.2-37) 24 (1.7-49) 

Measles 2000-2019 2100 (1500-2600) 440 (320-530) 2200 (1600-2700) 530 (390-650) 

Measles 2020-2030 1500 (570-1800) 580 (220-710) 1500 (640-1800) 600 (250-710) 

Measles 2000-2030 3600 (2200-4300) 490 (300-590) 3700 (2400-4500) 560 (360-670) 

MenA 2000-2019 13 (8.4-20) 50 (32-75) 1.7 (0.54-3) 13 (4-22) 

MenA 2020-2030 11 (5.8-18) 43 (23-71) 2.5 (1-4.2) 9.9 (4.2-17) 

MenA 2000-2030 24 (14-37) 46 (28-71) 4.2 (2.7-6.3) 11 (7-17) 

PCV 2000-2019 46 (22-80) 190 (91-330) 47 (22-82) 190 (94-340) 

PCV 2020-2030 110 (47-210) 160 (66-290) 110 (48-210) 160 (68-300) 

PCV 2000-2030 160 (69-290) 160 (73-300) 160 (70-290) 170 (75-310) 

Rota 2000-2019 11 (6.8-16) 62 (38-90) 12 (7.1-17) 64 (39-93) 

Rota 2020-2030 39 (24-57) 53 (32-76) 40 (24-57) 54 (33-77) 

Rota 2000-2030 50 (31-73) 55 (34-79) 51 (32-74) 56 (34-80) 

Rubella 2000-2019 5.3 (3.9-9.2) 3.7 (2.7-6.4) 8.7 (6.3-15) 7.1 (5.2-12) 
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Rubella 2020-2030 24 (16-45) 11 (7.5-20) 29 (19-49) 13 (8.8-22) 

Rubella 2000-2030 29 (21-54) 8 (5.7-15) 38 (26-63) 11 (7.5-18) 

YF 2000-2019 260 (83-530) 670 (210-1400) 38 (11-79) 180 (55-370) 

YF 2020-2030 220 (70-450) 850 (270-1800) 36 (11-77) 140 (44-300) 

YF 2000-2030 480 (150-970) 740 (240-1600) 74 (22-160) 160 (49-330) 

Total 2000-2019 3000 (2200-3600) 290 (220-350) 2200 (1600-2700) 260 (190-310) 

Total 2020-2030 2600 (1600-3200) 260 (160-320) 1800 (950-2200) 190 (98-230) 

Total 2000-2030 5600 (4000-6700) 280 (190-330) 4000 (2800-4800) 220 (150-260) 
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Legends for Excel files 
 

The following table legends describe the data in the Excel files with the corresponding file name as 

Table S-.xlsx. The two files are Table S5.xlsx and Table S6.xlsx each with sheets (a-l) showing 

estimates for different combinations of view (calendar year, year of birth), age (all ages, under 5s), 

and time period (2000-2019, 2020-2030, 2000-2030). 

 

Table S5(a). Total deaths averted from all pathogens in each of the 98 countries among all age 

groups for 2000-2019 time periods, by calendar view (calendar year). The values are mean estimates 

and ranges are 95% credible intervals (2.5 and 97.5 quantiles).  

 

Table S5(b). Total deaths averted from all pathogens in each of the 98 countries among all age 

groups for 2020-2030 time periods, by calendar view (calendar year). The values are mean estimates 

and ranges are 95% credible intervals (2.5 and 97.5 quantiles). 

 

Table S5(c). Total deaths averted from all pathogens in each of the 98 countries among all age 

groups for 2000-2030 time periods, by calendar view (calendar year). The values are mean estimates 

and ranges are 95% credible intervals (2.5 and 97.5 quantiles).   

 

Table S5(d). Total deaths averted from all pathogens in each of the 98 countries among all age 

groups for 2000-2019 time periods, by cohort view (year of birth). The values are mean estimates 

and ranges are 95% credible intervals (2.5 and 97.5 quantiles).  

 

Table S5(e). Total deaths averted from all pathogens in each of the 98 countries among all age 

groups for 2020-2030 time periods, by cohort view (year of birth). The values are mean estimates 

and ranges are 95% credible intervals (2.5 and 97.5 quantiles).   

 

Table S5(f). Total deaths averted from all pathogens in each of the 98 countries among all age 

groups for 2000-2030 time periods, by cohort view (year of birth). The values are mean estimates 

and ranges are 95% credible intervals (2.5 and 97.5 quantiles).  

 

Table S5(g). Total deaths averted from all pathogens in each of the 98 countries among the under 5s 

age group for 2000-2019 time periods, by cohort view (year of birth).  The values are mean 

estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles). 

 

Table S5(h). Total deaths averted from all pathogens in each of the 98 countries among the under 5s 

age group for 2020-2030 time periods, by calendar view (calendar year). The values are mean 

estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles).  

 

Table S5(i). Total deaths averted from all pathogens in each of the 98 countries among the under 5s 

age group for 2000-2030 time periods, by calendar view (calendar year). The values are mean 

estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles).  

 

Table S5(j). Total deaths averted from all pathogens in each of the 98 countries among the under 5s 

age group for 2000-2019 time periods, by cohort view (year of birth).  The values are mean 

estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles). 
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Table S5(k). Total deaths averted from all pathogens in each of the 98 countries among under 5s age 

group for 2020-2030 time periods, by cohort view (year of birth). The values are mean estimates and 

ranges are 95% credible intervals (2.5 and 97.5 quantiles). 

 

Table S5(l). Total deaths averted from all pathogens in each of the 98 countries among under 5s age 

group for 2000-2030 time periods, by cohort view (year of birth). The values are mean estimates and 

ranges are 95% credible intervals (2.5 and 97.5 quantiles).   
 

 

 
Table S6(a). Deaths averted per 1000 vaccinated individuals by pathogen for each country among all 
age groups for 2000-2019 time periods, by calendar view (calendar year). The values are mean 
estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles).  
 

Table S6(b). Deaths averted per 1000 vaccinated individuals by pathogen for each country among all 

age groups for 2020-2030 time periods, by calendar view (calendar year). The values are mean 

estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles).   

 

Table S6(c). Deaths averted per 1000 vaccinated individuals by pathogen for each country among all 

age groups for 2000-2030 time periods, by calendar view (calendar year). The values are mean 

estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles).  

 

Table S6(d). Deaths averted per 1000 vaccinated individuals by pathogen for each country among all 

age groups for 2000-2019 time periods, by cohort view (year of birth). The values are mean 

estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles).  

 

Table S6(e). Deaths averted per 1000 vaccinated individuals by pathogen for each country among all 

age groups for 2020-2030 time periods, by cohort view (year of birth). The values are mean 

estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles).  

 

Table S6(f). Deaths averted per 1000 vaccinated individuals by pathogen for each country among all 

age groups for 2000-2030 time periods, by cohort view (year of birth). The values are mean 

estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles).  

 

Table S6(g). Deaths averted per 1000 vaccinated individuals by pathogen for each country among 

the under 5s age group for 2000-2019 time periods, by calendar view (calendar year).  The values are 

mean estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles). 

 

Table S6(h). Deaths averted per 1000 vaccinated individuals by pathogen for each country among 

the under 5s age group for 2020-2030 time periods, by calendar view (calendar year). The values are 

mean estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles). 

 

Table S6(i). Deaths averted per 1000 vaccinated individuals by pathogen for each country among the 

under 5s age group for 2000-2030 time periods, by calendar view (calendar year). The values are 

mean estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles). 
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Table S6(j). Deaths averted per 1000 vaccinated individuals by pathogen for each country among the 

under 5s age group for 2000-2019 time periods, by cohort view (year of birth). The values are mean 

estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles).  

 

Table S6(k). Deaths averted per 1000 vaccinated individuals by pathogen for each country among 

the under 5s age group for 2020-2030 time periods, by cohort view (year of birth). The values are 

mean estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles). 

 

Table S6(l). Deaths averted per 1000 vaccinated individuals by pathogen for each country among the 

under 5s age group for 2000-2030 time periods, by cohort view (year of birth). The values are mean 

estimates and ranges are 95% credible intervals (2.5 and 97.5 quantiles). 
 

 

 
Table S7(a). Deaths averted per 1000 live births for each country among all age groups for 2019 birth 
cohorts. The values are mean estimates and ranges are 95% credible intervals (2.5 and 97.5 
quantiles).  
 

Table S7(b). Deaths averted per 1000 live births for each country among all age groups for 2000-
2019 birth cohorts. The values are mean estimates and ranges are 95% credible intervals (2.5 and 
97.5 quantiles).  
 

Table S7(c). Deaths averted per 1000 live births for each country among all age groups for 2020-
2030 birth cohorts. The values are mean estimates and ranges are 95% credible intervals (2.5 and 
97.5 quantiles).  
 

Table S7(d). Deaths averted per 1000 live births for each country among all age groups for 2000-
2030 birth cohorts. The values are mean estimates and ranges are 95% credible intervals (2.5 and 
97.5 quantiles).  
 

Table S7(e). Deaths averted per 1000 live births for each country among under 5s age groups for 
2019 birth cohorts. The values are mean estimates and ranges are 95% credible intervals (2.5 and 
97.5 quantiles).  
 

Table S7(f). Deaths averted per 1000 live births for each country among under 5s age groups for 
2000-2019 birth cohorts. The values are mean estimates and ranges are 95% credible intervals (2.5 
and 97.5 quantiles).  
 

Table S7(g). Deaths averted per 1000 live births for each country among under 5s age groups for 
2020-2030 birth cohorts. The values are mean estimates and ranges are 95% credible intervals (2.5 
and 97.5 quantiles).  
 

Table S7(h). Deaths averted per 1000 live births for each country among under 5s age groups for 
2000-2030 birth cohorts. The values are mean estimates and ranges are 95% credible intervals (2.5 
and 97.5 quantiles).  
  



62 
 

Figures 

 

 
 
Figure S1 (a): Disease burden estimates in deaths by calendar year from 2000 to 2030 across all 98 

countries for under-5s. Continuous red and blue lines show no vaccination and default vaccination 

coverage scenarios, respectively for the under 5s.  
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Figure S1(b): Disease burden estimates in DALYs by calendar year from 2000 to 2030 across all 98 
countries for all ages. Continuous red and blue lines show no vaccination and default vaccination 
coverage scenarios, respectively, for all ages.  
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Figure S1(c): Disease burden estimates in DALYs by calendar year from 2000 to 2030 across all 98 
countries for under-5s. Continuous red and blue lines show no vaccination and default vaccination 
coverage scenarios, respectively, for under 5s.  
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Figure S2: DALYs averted from 2000 to 2030 in the 98 countries: A) by calendar year (summing 

across all ages) and pathogen; B) by year of birth (summing across lifetime) and pathogen; C) 

proportion of lifetime DALYs due to the 10 pathogens in the no-vaccination counterfactual that are 

predicted to be averted by vaccination, by country across 2000-2018 birth cohorts. 
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Figure S3 (a): Deaths averted from 2000 to 2030 in the 98 countries among the under 5s: A) by 

calendar year (summing across all ages) and pathogens; B) by year of birth (summing across lifetime) 

and pathogens. 

 

 

 

Figure S3 (b): DALYs averted from 2000 to 2030 in the 98 countries among the under 5s: A) by 

calendar year (summing across all ages) and pathogens; B) by year of birth (summing across lifetime) 

and pathogens. 
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Figure S4 (a). Proportion of pathogen-specific deaths each year that would be prevented by 

vaccination by calendar year (blue) and year of birth (red). Solid lines show central estimates, shaded 

areas the 95% credible region. 
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Figure S4 (b). Proportion of pathogen-specific DALYs each year that would be prevented by 

vaccination by calendar year (blue) and year of birth (red). Solid lines show central estimates, shaded 

areas the 95% credible region. 

 


