SUPPLEMENTAL MATERIAL FOR MANUSCRIPT:

EslB is required for cell wall biosynthesis and modification in Listeria monocytogenes

Jeanine Rismondo^{a,b,#}, Lisa M. Schulz^b, Maria Yacoub^a, Ashima Wadhawan^c, Michael Hoppert^b, Marc S. Dionne^c, Angelika Gründling^{a,#}

^a Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ.

^b Department of General Microbiology, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany

^c Department of Life Sciences, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ.

[#]To whom correspondence should be addressed:

Jeanine Rismondo - jrismon@gwdg.de, Angelika Gründling - a.grundling@imperial.ac.uk

SUPPLEMENTAL TABLES

Table S1: Bacterial strains used in this study

Unique ID	Strain name and resistance	Source						
Escherichia	<i>coli</i> strains							
ANG1264	DH5 α pKSV7; AmpR (1)							
1265	XL1-Blue pKT25; KanR	(2)						
1266	XL1-Blue pKNT25; KanR	(3)						
1267	XL1-Blue pUT18; AmpR	(2)						
1268	XL1-Blue pUT18C; AmpR	(2)						
1269	XL1-Blue pKT25- <i>zip</i> ; KanR	(4)						
1270	XL1-Blue pUT18C-zip; AmpR	(4)						
ANG4243	XL1-Blue pIMK3; KanR	(5)						
ANG4236	XL1-Blue pKSV7- $\Delta eslB$; AmpR	This study						
ANG4647	XL1-Blue pIMK3-eslB; KanR	This study						
ANG5660	XL1-Blue pPL3e-PeslA-eslABC; CamR	This study						
ANG5661	SM10 pPL3e-P _{esl4} -eslABC; KanR CamR	This study						
EJR4	XL1-Blue pKNT25-eslA; KanR	This study						
EJR5	XL1-Blue pKT25-eslA: KanR	This study						
EJR6	XL1-Blue pUT18-eslA; AmpR	This study						
EJR7	XL1-Blue pUT18C-eslA: AmpR	This study						
EJR8	XL1-Blue pKNT25-es/B: KanR	This study						
EJR9	XL1-Blue pKT25-eslB: KanR	This study						
EJR10	XL1-Blue pUT18-eslB: AmpR	This study						
EJR11	XL1-Blue pUT18C-eslB: AmpR	This study						
EJR12	XL1-Blue pKNT25-es/C: KanR	This study						
EJR13	XL1-Blue pKT25-es/C: KanR	This study						
EJR14	CLG190 pUT18-es/C: AmpR	This study						
EJR15	XL1-Blue pUT18C-es/C: AmpR	This study						
EJR39	XL1-Blue pIMK2-mNeonGreen-zanA: KanR	This study						
EJR43	XL1-Blue pKSV7- $\Delta eslC$: AmpR	This study						
EJR54	XL1-Blue pKSV7- $\Delta eslA$: AmpR	This study						
EJR60	S17-1 pIMK2-mNeonGreen-zanA: KanR	This study						
Listeria mon	acvtagenes strains	1110 0000						
ANG1263	10403S: StrenR	(6)						
ANG4275	$10403SA \rho s / B cov$: StrenR	This study						
ANG4678	10403S nIMK 3-eslB: StrenB K anB	This study						
10101070	$10403SAes/B_{(1)}$ nIMK 3-es/B (or short: $10403SAes/B_{(1)}$ compl):	This study						
ANG4688	StrepR KanR	This study						
ANG5662	$10403S\Delta eslB_{(2)}$; StrepR	This study						
ANG5663	$10403S\Delta eslB_{(2)}$ pPL3e-P _{eslA} -eslABC (or short: $10403S\Delta eslB_{(2)}$ compl.): ErmR StrenR	This study						
LJR7	$10403S\Delta eslC$: StrepR	This study						
LIDOI	$10403S\Delta eslC$ pPL3e-P _{eslA} -eslABC (or short: $10403S\Delta eslC$							
LJR21	compl.); ErmR StrepR	This study						
LJR28	10403S pIMK2-mNeonGreen-zapA; StrepR KanR	This study						
LJR29	10403S∆eslB ₍₂₎ pIMK2-mNeonGreen-zapA; StrepR KanR	This study						
LJR33	10403S∆ <i>eslA</i> ; StrepR	This study						
LJR34	$10403S\Delta eslA$ pPL3e-P _{eslA} -eslABC (or short: $10403S\Delta eslC$ compl.); ErmR StrepR	This study						

Number	Name	Sequence
ANG2532	eslB up fw	GCGCGGATCCCCGCAATATGTGAAATTAGTATAAT G
ANG2533	eslB up rev	TTGGAAAAGCCCTTCCCGGTACCATAACCCTCGAT TAAACAT
ANG2534	<i>eslB</i> down fw	TGGTACCGGGAAGGGCTTTTCCAATTGTCTAAAAC GAATTAA
ANG2535	eslB down rev	GCGCTCTAGAGCTCGCGCACTCTCATAAAC
ANG2812	pIMK3-eslB fw	GCGCCCATGGGGTTTAATCGAGGGTTATGGTACC
ANG2813	pIMK3-eslB rev	GCGCGTCGACTTAATTCGTTTTAGACAATTGGAAA
ANG3349	pPL3e-eslABC fw SalI	ACGCGTCGACCTGGATGTGGCGTAAGGG
ANG3350	pPL3e- <i>eslABC</i> rev BamHI	CGCGGATCCCATAACTTTGTCCCGATTGTCC
JR39	Neon_rev	GCCACTACTTGTCTTATAGAGTTCATCCATACCCA
JR40	Neon_ZapA_dw_f	GAACTCTATAAGACAAGTAGTGGCCTAAACGAATT T
JR44	B2H EslA fw XbaI	CTAGTCTAGAAAAAATTCGGAACTTAACTAAAAAG ATG
JR45	B2H EslA rev KpnI	CGGGGTACCGGAATCTCGTAATAATCTATTTATC ATTTG
JR46	B2H EslB fw XbaI	CTAGTCTAGAATTTAATCGAGGGTTATGGTACC
JR47	B2H EslB rev BamHI	CGCGGATCCCAATTCGTTTTAGACAATTGGAAAAG C
JR48	B2H EslC fw XbaI	CTAGTCTAGAAACGACAGAAACAGAAACGATTAA AC
JR49	B2H EslC rev KpnI	CGGGGTACCGGTAAGGATGGAATATTTTTCTTTTC TTC
JR73	p3-mNeon-Zap fw NcoI	CATGCCATGGTTTCGAAAGGAGAGGAGGAGGATAAT
JR74	p3-mNeon-Zap rev SalI	GCGCGTCGACTTAATCTCTTCCTTTAATTCGAGC
LMS155	<i>eslC</i> up fwd	CGCGGATCCAATTTTTCTTCGCCATCGCTTCC
LMS156	eslC down rev	CGGGGTACCCTGCATCATTACCATATAAACGGACG
LMS157	<i>eslC</i> down fwd	CTACATTAATATGCTTCGTTAAATTAGCTTTCAATT CAGC
LMS158	<i>eslC</i> up rev	ATTTAACGAAGCATATTAATGTAGCGTTAAGTCCG ATTGTTAA
LMS159	eslA down rev	CCGGAATTCGCTTCTTTGTTTTTATACCCAGCATTA C
LMS160	eslA up fwd	CGCGGATCCGAGTACACTTAATATTACGCTAAAAA TCACAG
LMS161	eslA up rev	AAAAGATGGACGCGATAGAAGACATTTTCACGGTG C
LMS162	eslA down fwd	TGTCTTCTATCGCGTCCATCTTTTTAGTTAAGTTCC GAA
	EGD-E_ActA_L1	AAGCGAAGGAAGAACCAGGG
	EGD-E_ActA_R1	CCCCTAAAGAGAACACGCCA

Table S2: Primers used in this study

Strain number	Reference	Type ²	Ref ³	Allele ⁴	Frequency ⁵	Average	Annotations	AA change ⁷
	position ¹					Quality ⁶		
ANG4275	2425786-	DEL			100%		lmo2396,	30 aa
$10403S\Delta eslB_{(l)}$	2425875						internalin	deletion
ANG4688	2366318	SNV	С	А	100%	37.04	<i>lmo2342</i> , 16S	Val186Leu
$10403S\Delta eslB_{(l)}$							pseudo	
compl.							uridylate	
							synthase	
ANG5662	_							
$10403 S\Delta eslB_{(2)}$								
ANG5663	2058478	DEL	А	-	100%	36.33	<i>lmo2022,</i> NifS-	His171fs
$10403 S\Delta eslB_{(2)}$							like protein	
compl.							required for	
							NAD	
							biosynthesis	

 Table S3: Identified sequence alterations in L. monocytogenes eslB deletion and complementation strains.

¹ Reference position is based on the position in the *L. monocytogenes* 10403S reference genome (NC 01744).

² Type of mutation: SNV = single nucleotide variant; DEL = nucleotide deletion.

³ Ref indicates base in reference genome.

⁴ Allele indicates base at the same position in the sequenced strain.

⁵ Frequency at which the base change was found in the sequenced strain.

⁶ Average quality score.

⁷ AA change indicates the resulting amino acid change in the protein found in the reference strains as compared to the sequenced strain.

SUPPLEMENTAL FIGURES

Figure S1: Comparison of lysozyme sensitivity and growth of two different *eslB* mutants and a complementation strain. (A) The minimal inhibitory concentration for lysozyme was determined for *L. monocytogenes* strains 10403S (wt), 10403S $\Delta eslB_{(1)}$, 10403S $\Delta eslB_{(2)}$ and 10403S $\Delta eslB_{(2)}$ compl. using a microbroth dilution assay. The results of three independent experiments are shown. For statistical analysis, a one-way ANOVA followed by a Dunnett's multiple comparisons test was used (** $p \le 0.01$). (B-C) Growth analysis of *L. monocytogenes* strains 10403S (wt), 10403S $\Delta eslB_{(1)}$, 10403S $\Delta eslB_{(2)}$ and 10403S $\Delta eslB_{(2)}$ compl. in (B) BHI broth or (C) BHI broth containing 0.5 M sucrose. All cultures were incubated at 37°C and the bacterial growth monitored by determining OD₆₀₀ readings at hourly intervals. The average OD₆₀₀ readings and standard deviations were calculated from three independent experiments and plotted.

Figure S2: The *L. monocytogenes eslB* mutant has a growth defect in BHI medium containing 0.5 M added sugar. *L. monocytogenes* strains 10403S (wt), $10403S\Delta eslB_{(1)}$ and the complementation strain $10403S\Delta eslB_{(1)}$ compl. were grown in BHI broth containing (A) 0.5 M fructose, (B) 0.5 M glucose, (C) 0.5 M maltose or (D) 0.5 M galactose. Strain $10403S\Delta eslB_{(1)}$ compl. was grown in the presence of 1 mM IPTG. All cultures were incubated at $37^{\circ}C$ and bacterial growth was monitored by determining OD₆₀₀ readings at hourly intervals. Average OD₆₀₀ values and standard deviations were calculated from three independent experiments and plotted. Of note, some of the error bars are too small to be seen on the graph.

REFERENCES

- Smith K, Youngman P. 1992. Use of a new integrational vector to investigate compartment-specific expression of the *Bacillus subtilis spoIIM* gene. Biochimie 74:705-11.
- 2. Karimova G, Ullmann A, Ladant D. 2001. Protein-protein interaction between *Bacillus stearothermophilus* tyrosyl-tRNA synthetase subdomains revealed by a bacterial two-hybrid system. J Mol Microbiol Biotechnol 3:73-82.
- 3. Karimova G, Dautin N, Ladant D. 2005. Interaction network among *Escherichia coli* membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187:2233-43.
- 4. Karimova G, Pidoux J, Ullmann A, Ladant D. 1998. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752-6.
- 5. Monk IR, Gahan CG, Hill C. 2008. Tools for functional postgenomic analysis of *Listeria monocytogenes*. Appl Environ Microbiol 74:3921-34.
- Bishop DK, Hinrichs DJ. 1987. Adoptive transfer of immunity to *Listeria* monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J Immunol 139:2005-9.