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Supplementary Methods

Crystallization of GGPD"T in the condition in which the Class | mutants were crystallized.
To investigate if the structural changes observed in the Class | mutants are possibly due to the
crystallization condition or crystal packing, GBPD"T was crystallized in the crystallization condition
in which G6PDP3%L G6PDR*%H, and G6PDW>%°* were crystallized (which will be referred to as
G6PDWT™ crystals). The wild-type crystals obtained in this way were significantly different from
those of the G6PD mutants although only small crystals whose sizes were approximately 5x10x5
um? were obtained, possibly because the crystallization condition was not suited for GGPDW'. The
crystal shape of the G6PD mutants was bipyramid; on the other hand, that of the GGPD"™ crystals
obtained using the mutant-crystallization condition were oval. Besides, the space group of the
crystals of the G6PD mutants was P41212, whereas that for the new G6PD"™ was P6422. Although
we were only able to collect a dataset up to 6.5A from the GGPD"™, as a result of the molecular
replacement using the GEBPDVT™ or GBPDP*% structure as a search model, the LLG and TFZ scores
by Phaser-MR in the PHENIX suite (1) were 155.9 and 16.3, in case of the G6PD"' as a search
model, and 17.4 and 5.9, in case of G6PDP3%L, After the initial refinement, Riee score was 0.379
for GBPDYT and 0.598 for GBPD™% indicating that the G6PD"™ structure is similar to that of the
G6PD"T and does not resemble the GBPDP3%L structure. Therefore, we conclude that the
crystallization condition does not affect the structures of the Class | mutants of G6PD.

Kinetics of catalytic activity of G6PD mutants in the presence of G6P and NADP*.

The keat and Vmax values of G6PDP3%L, G6PDYS0% GEPDR%H, G6PDV3%:, and G6PDM3®'t were
significantly lower than those of G6PDWT (S| Appendix, Table S4). Values of G6PDP3% and
G6PDV3%L were too low to estimate. For GBPD"50% G6PDR3%H and G6PD8', the values were
much lower than those of G6PD"T by factors of 3, 12, and 30, respectively. The Ku (G6P) value of
G6PDY*0% was slightly higher than that of GBPD"'. Although the Ku (G6P) values of G6PDF381
and G6PDR**3 were lower than that of GBPD"', it does not seem to be simply comparable because
the kecat and Vmax values are significantly different. Since the Vmax values of G6PDF%'" and
G6PDR*%3H were quite low, lower G6P concentrations might be enough to saturate the G6P-binding
sites of G6PD*8'- and G6PDR3%3" compared to G6PDWT.
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Fig. S1. Class | clinical mutations in the G6PD dimer structure. The model structure of the
G6PD dimer with NADP* and G6P was made using two G6PD structures containing NADP*
molecules or G6P molecules (PDB IDs: 2BH9 and 2BHL). Class | pathogenic mutations are

shown in pink.
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Fig. S2. Oligomerization state of G6PD. (A) Purified GEGPD"'T, G6PDP3%, G6PD"50%A,
G6PDF3#1L, GBPDR3%H, G6PDV3%4- are analyzed by 15% SDS-PAGE with coomassie brilliant blue
staining. (B) Purified dimer G6PD"T and G6PDP*%\ were analyzed by Superdex 200 Increase
10/300 GL. (C) Molecular weights of GBPD"T and G6PD™*%\ were estimated based on the gel
filtration standard (Bio-Rad). (D) The SEC profile of GBPD"T at different concentrations (0.2~30
mg/ml). The inset shows the SEC profiles of 0.2~2 mg/ml G6PD"". (E) The SEC profile of 5
mg/ml G6PDT and G6PDP3%" with or without G6P. The SEC profile of G6PDT without G6P is
identical to that of 5 mg/ml G6PD"T in the panel D. In panels D and E, the samples were
analyzed with Superdex 200 Increase PC 3.2/300. (F and G) The SEC analyses of GBPDP3%"
and G6PD™T with or without G6P using Superdex 200 10/300 GL.
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Fig. S3. Data processing of the Cryo-EM datasets of the G6PDY™ and G6PDP3%., (A) The
scheme of the data processing of GBPD"'. (B) The Fourier shell correlation (FSC) plots of
G6PDW'. (C) The scheme of the data processing of GBPDP3%L, (D) The FSC plots of GGPDP3%t,
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Fig. S4. SEC-SAXS analysis and CORAL modeling. (A-C) The SEC-SAXS profiles. /(0) (black
open circle) and Ry (blue, green, orange circle) are plotted along with the SAXS image number. (D-
F) I(g) versus q as log-linear plots. (G-/) P(r) functions. (J-L) Guinier plots. Open circles and black
lines indicate experimental data and Guinier fit, respectively. (M-O) Dimensionless Kratky plots.
The dashed lines indicate (qRy)%/(q)//(0) = 1.1 and gRy = 1.73, respectively. (P-R) Porod-
Debye plots. (S) 20 runs of CORAL modeling based on the experimental SAXS curve of
G6PDP3%L were performed. All 20 structures are superimposed. (T) A representative structure of
the CORAL modeling. The models of the two B-strands disordered in the crystal structure are shown
in magenta. (U) The theoretical Kratky plot of the initial model of G6PDP3% is fitted with the
experimental data.
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Fig. S5. Left: Average root mean square deviation (RMSD) of the Ca atom positions in the wild
type G6PD dimer with (top) and without (bottom) the structural NADP* calculated from six
independent MD simulations. The grey shadow shows the standard deviation of the mean of six
independent trajectories. Right: RMSD of the Ca atom positions only in the C-terminal tail (residues
501-513). The comparison between the holo (top) and apo (bottom) form clearly shows the
increased flexibility and the disordered state of the C-terminal tail of the apo form due to the
absence of the structural NADP*. This disordered state of the C-terminal tail is responsible for the
increasing total RMSD of the whole apo dimer at the left side. For the RMSD calculation of the C-
terminal tail, we first removed the translational and rotational motion of all the other atoms not
contained in the C-terminal tail.
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Fig. S6. Top: Representative snapshots from the MD simulations of the in-silico created C-terminal
tail truncated dimer of the wild-type (green) and P396L mutant (blue) (residues 501-513 were
deleted from the wild type X-ray structure before simulation). Bottom: Average root mean square
fluctuations (RMSF) of NADP*’s non-hydrogen atoms taken from six independent MD simulations.
Atom numbers were assigned to characteristic functional groups in NADP*. Atoms involving
phosphate in the wild type and the P396L mutant present the lowest fluctuations because of the
protein's strong electrostatic interactions (see interactions with K366 and K238 in the representative
snapshots at the top). The nicotinamide group and the ribose ring of NADP* display almost twice
larger RMSF for the P396L mutant compared to the wild-type. This considerable fluctuation
difference between the two is due to the mutant induced partial unzipping of the two B-strands and
loss of the interaction to R393 (see S| Appendix, movie S4 and representative snapshots at the
top). Shadows represent one standard deviation of the mean RMSF calculated from six
independent simulations.
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Fig. S7. Catalytic NADP* in the G6PDP3%- and G6PDW™ structures. (A) The catalytic NADP*
binding site in the GBPD™%L structure. Residues of G6PDP*%! around the catalytic NADP* are
shown in blue. (B) The catalytic NADP* binding site in G6PD"T structure. Residues of G6PDWT
around the catalytic NADP* are shown in green. (A and B) The catalytic NADP* are shown in

orange.
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Fig. S8. Structures of G6PDR33H  G6PDV3%*, and G6PDF%%'-_ (A) Overall structure of
G6PDR*%H Two G6PD molecules are shown, one in dark and the other in light blue. (B) Close-up
view of the structural NADP* binding site in GBPDR3%H. The R393H residue is shown in purple.
(C) Close-up view of the G6P binding site in GBPDR%"_ (D) Overall structure of G6PDV3%*-. Two
G6PD molecules are shown in yellow and light yellow. (E) Close-up view of the structural NADP*
binding site in GBPDV3%*-. The V394L residue is shown in light orange. (F) Close-up view of the
G6P binding site in GBPDV3%, (G) Overall structure of GBPD#'-. GEGPD molecules are shown in
cyan and pale cyan, respectively. The purple dotted line and yellow circle indicate a disordered
loop and the location of the F381L residue, respectively. (H) Close-up view of the structural
NADP* binding site in GBPD't, (/) Close-up view of the G6P binding site in GBPD®8'-. (C, F,
and /) The G6P binding site is shown in sky blue. The catalytic NADP~* is shown in orange.
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Fig. S9. Biophysical properties of G6PD38'L, G6PDR*%H, and G6PDV3%", (A, D, and G) The
thermal denaturation curves of the G6PD81t, G6PDR*%H, and G6PDV3%4L with or without NADP*.
(B, E, and H) The derivative values of the thermal denaturation curves in panels A, D, G,
respectively. The error bars indicate the standard deviations (n=4). (C, F, and /) The SEC
analysis of GBPD381L, G6PDR3%H, and G6PDV394t with or without G6P. 0.5 mg/ml G6PD mutants
with or without 1 mM G6P are analyzed using Superdex 200 Increase 10/300 GL.
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respectively. (B) Close-up view of the structural NADP* binding site in G6PD"V5%A, (C) Close-up
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B-factors of GGPD"T (PDB ID: 6E08) and G6PD"5%°* are plotted. Boxed regions indicate of and
af” helices. (F) The thermal denaturation curves of the G6PD"5%°* with or without NADP*. The
bottom panel shows the derivative values of the thermal denaturation curves. The error bars
indicate the standard deviations (n=4).
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Table S1. Data collection and refinement statistics

Supplementary Table S1. Data collection and refinement statistics

G6PDP396L G6PDW509A G6PDR39311 G6PDV394L GéPDl'!SlL

Data collection
Space group P422 P422 P422 P422 P422
Cell dimensions

a,b,c(A) 157.35,157.35, 113.62 15736, 157.36, 113.57  157.44,157.44, 113.02  158.97,158.97, 113.19  158.62, 158.62, 113.91

o, B,y ) 90.00, 90.00, 90.00 90.00, 90.00, 90.00 90.00, 90.00, 90.00 90.00, 90.00, 90.00 90.00, 90.00, 90.00
Resolution (A) 50-3.07 (3.26-3.07) * 50-3.10 (3.29-3.10) 50-3.95 (4.19-3.95) 50-2.95 (3.13-2.95) 50-3.95 (4.19-3.95)
Rsym OT Rmerge 0.114 (1.596) 0.143 (1.772) 0.365 (1.944) 0.108 (1.102) 0.289 (1.591)
1/cI 21.94(1.61) 3475 (2.59) 7.39 (1.59) 1929 2.11) 831 (1.55)
Completeness (%) 99.8 (99.3) 97.2 (99.8) 99.8 (99.5) 99.7 (98.4) 99.6 (99.2)
Redundancy 13.28 (13.64) 42.19 (44.62) 12.86 (13.42) 13.16 (13.59) 10.16 (10.81)
cc,, 0.999 (0.647) 1.000 (0.850) 0.995 (0.702) 0.999 (0.814) 0.999 (0.814)
Refinement
Resolution (A) 49.8-3.07 (3.18-3.07)  47.6-3.10 (3.23-3.10)  47.6-3.95 (4.25-3.95)  39.7-2.95 (3.05-2.95)  48.0-3.95 (4.26-3.95)
No. reflections 27084 25682 12917 30842 13156
Rwork / Rfree 0.203/0.225 0.232/0.240 0.191/0.220 0.209/0.222 0.206/0.224
No. atoms

Protein 3493 3505 3478 3485 3447

Ligand/ion 48 48 48 48 48
B-factors

Protein 94.1 94.7 1323 80.7 122.8

Ligand/ion 812 80.0 122.9 68.5 1189
R.m.s. deviations

Bond lengths (A) 0.004 0.004 0.003 0.004 0.003

Bond angles (°) 0.767 0.802 0.617 0.749 0.623

*Values in parentheses are for highest-resolution shell.
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Table S2. SAXS data collection and analysis of G6PD"T and G6PDP3%"

WT (Dimer) WT (Tetramer) P396L

Data collection parameters
Instrument SSRL BL4-2
Type of Experiment SEC-SAXS
Defining slits size (H mm x V mm) 0.3 x0.30
Detector distance (m) 1.7
Detector Pilatus3 X 1M
Beam energy (keV) 11.0
g range (A~ 1) 0.0072-0.506
Sample cell Quartz capillary (D=~1.2mm)
Temperature (K) 298
Exposure time/frame (s) 1
Frames per SEC-SAXS data set 500
Number of blank images used for averaging 100
Number of sample images used for averaging 5
Image numbers used for averaging 330-334 305-309 375-379
SEC column Superdex 200 Increase PC 3.2/300
HPLC flow rate (mL/min) 0.05
Sample concentration (mg/ml) 5 10 5
SEC injection volume (pL) 15 15 100
Buffer 20 mM Tri-HCI (pH=8.0),

150 mM NacCl
Software employed
Primary data reduction SasTool/SECPipe
Data processing PRIMUS
P(r) analysis GNOM
Atomistic modeling CORAL

Structural parameters
Guinier analysis

1(0)

Ry (A)

Gmin (A1)

qR.range

P(r) analysis
10)

Ry (A)

Dinax (A)
qrange (A™)

0.053 £ 0.00025
37.80£0.27
0.0103
0.39-1.29

0.05
38.89
122.87

0.0103 -0.211

0.18 +0.00047
43.31+0.16
0.00821
0.36-1.30

0.18
43.24
139.74

0.00821 - 0.184

0.14 + 0.00069
36.37+0.28
0.0109
0.40 - 1.28

0.14
37.39
130.00
0.0109 - 0.220
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Porod volume estimate (A%)

Atomistic Modeling (CORAL)

qrange (A™)

Number of repetition

y? range
Predicted R, (A)

Predicted Dpax (A)

187621

0.0109 —0.249
20
1.74-1.90
37.24
126.1

325948

0.00927 - 0.250
20
2.66-3.15
42.48
145.5

178097

0.0125 -0.249
20
0.23-0.34
35.92
154.6
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Table S3. Structural features of wild-type and pathogenic mutants of G6PD

G6P Cﬁfgg‘f Sm‘g‘gﬁ' Et'\r/lén%': C'tetgﬁ'”a' Note Reference PDB ID

the str‘L,lvc-I;::iatthADP" empty empty NADP* ordered ordered 2 6E08

T with the catalytic | empty | NADP* | NADP* | ordered | ordered | N-erminal1-2s 3 2BH9

WT with G6P G6P empty empty ordered | disordered Nléetrrﬂ']”;'t;d% 3 2BHL
R459L occluded NADP* empty disordered disordered 2,4 1QKI, 6E07

P396L occluded NADP* empty disordered | disordered 6VA7

R393H occluded NADP* empty disordered | disordered 6VA9

W509A occluded NADP* empty disordered | disordered 6VAO

V394L occluded NADP* empty disordered | disordered 6VAQ

F381L occluded NADP* empty disordered | disordered 6VA8
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Table S4. Kinetic analysis of the G6PD mutants

Ky NADP* (uM) Ky G6P (uM) Kear (5°) Vimax (UMs™) Kead Ky (UM 1571
WT 429 + 36 225+ 14 1105+ 13 9.29+0.11 4.95+0.35
F381L 440 + 40 109 + 17 355+0.5 0.298 + 0.004 0.343 +£0.056
R393H 403 + 56 161+ 17 90.0+7.9 0.756 + 0.067 0.567 +0.053
V394L ND ND ND ND ND
P396L ND ND ND ND ND
W509A 445 + 59 267+19 368+ 1.5 3.09+0.01 1.39£0.10

ND: not determined
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Movie S1 (separate file). Molecular dynamics simulation of the tetramer G6PD"T without the
structural NADP*.

Movie S2 (separate file). Molecular dynamics simulation of the dimer G6PDT with the structural
NADP*.

Movie S3 (separate file). Molecular dynamics simulation of the dimer G6PD"T without the
structural NADP*.

Movie S4 (separate file). Molecular dynamics simulation of the C-terminal end truncated dimer
G6PDP39¢L showing partial unbinding of structural NADP* and opening of the BN-strand.
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