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Supporting Information Text

A. Additional Background. Exploitation of social media and digital communications by world powers to achieve their political objectives (1—
18) at unprecedented scales, speeds, and reach presents a rising threat, especially to democratic societies (1, 3, 5, 6, 19-21). Situational
awareness of influence campaigns and a better understanding of the mechanism behind social influence (4, 22) provide necessary capabilities
for potential responses (2, 7, 23). In other applications, social influence can even be harnessed to promote knowledge and best practices in
public policy settings for social good (24).

B. Narrative Detection Using Topic Modeling. Tweets were collected that are potentially relevant to a representative scenario in which
actual IO accounts were expected to be active: the 2017 French election. A large dataset containing both English and French language corpora
was created from this collection. From these corpora, 15 English language topics and 30 French topics are generated automatically using a
topic modeling algorithm (25). The set of generated English topics includes several relevant to the French election as well as topics on U.S.
politics and other world events. A selection of the English topics is shown in Table S1. The first topic relates to unsubstantiated financial
allegations; this is the topic used for network discovery in the main paper. The generated French topics are predominantly focused on the
French election, including a French language version of unsubstantiated financial allegations. A subset of these topics is shown in Table S2.
Note that in both tables and the sequel, the notation ‘:emoji_symbol:’ specifies an emoji symbol.

C. 10 Account Classifier and Feature Engineering. The data used to train and test the IO classifier includes 3,151 known IO accounts
released by Twitter and 15,000 randomly selected accounts from three subsets of the targeted collection dataset: accounts that tweeted on the
French election in English, accounts that tweeted on the French election in French, and topic- and language-neutral accounts. Each subset
contributes 5,000 accounts to the training dataset. Multiple feature categories are used: account behavior features, language features across all
content, and features derived from the content itself. The origin of these accounts from Twitter’s dataset is illustrated in Fig. S1.

C.1. Heuristics for Semisupervised Learning. Because the quantity of known IO accounts is relatively small, a semisupervised training strategy
based on Snorkel (26) is employed. In this approach, training data from known truth are augmented with weakly labeled training data provided
by heuristic “labeling functions” (Table S3), and the learning model learns and incorporates labeling function inaccuracies. Our Snorkel
labeling functions are based on reported characteristics of IO account behavior, content, and metadata (27-30). These Snorkel heuristics were
then refined by applying them to a small validation set. One hundred accounts were randomly selected out of the 5,000 that tweeted on the
French election in English. An attempt was made to label each account as either a real person or an IO account by examining their Twitter
profile and current tweets. However, many accounts were either suspended or difficult to determine with confidence to which category they
belong. Of these 100 randomly chosen accounts, 24 were labeled as IO accounts, 31 were labeled non-10, and the remaining were discarded
from the validation set.

Though 9-15% of all Twitter accounts are estimated to be bots (31), it is possible that the charged topics analyzed in the main paper contain
a higher proportion of bots and possible IO accounts. To account for this possibility in classifier training, all accounts that have a 70% or
higher likelihood of being 10-like, according to Snorkel, are labeled as 1O accounts, and accounts below the 70% threshold are labeled as
non-IO accounts. This results in roughly 30% of the training accounts on the French election and 15% of the topic-neutral accounts being
labeled IO accounts. The proportions of each training data subset that falls above the threshold is given for three different points in Table S4.

C.2. Classifier Design Comparisons. Classifier design is conducted by comparing the relative performance of four different classifier models,
Random Forest (32), Logistic Regression, xgBoost (33), and SVM (34), and two dimensionality reduction approaches, Extra-Trees (35)
and SVD. The performance of the all classifier design combinations over a grid of classifier parameters is evaluated via averaged cross
validation over twenty 90 : 10 splits. Cross validation is performed both over 10% of all training data (Fig. S3) and after discarding all accounts
that were labeled as 10-like by Snorkel heuristics (Fig. S2). Of the eight combinations and for both methods of cross validation, the best
performing method is composed of dimensionality reduction using the Extra-Trees method followed by a Random Forest classifier (Figs.
S2, S3). We compare the P-R and ROC curves for Random Forest, Extra-Trees across the two methods of cross validation in Figs. S4 and S5,
respectively. The standard deviation from cross-validation is shown in Fig. S4, in which it is seen that the maximum standard deviation
for when all data is used is 1.6%, and 3.2% when Snorkel positives are omitted. Although xgBoost with Extra-Trees performs as well as
the Random Forest, Extra-Trees classifier when the validation set includes 10% of all training data, it performs significantly worse when
the Snorkel-labeled IO accounts are discarded from the validation set. Further, examination of the performance of xgBoost, Extra-Trees on
accounts in the narrative networks shows that the classifier scores tend to be skewed towards extremes, rather than being distributed more
evenly across the interval [0, 1] (Fig. S8).

To assess the necessity of using Snorkel heuristics in our semisupervised learning approach, we compute classifier performance without
Snorkel labeling functions. As expected in this learning problem with limited truth data, we observe that when the classifier is trained on a
deterministic combination of 3,151 positive examples and 15,000 negative examples, there is strong evidence of classifier overfitting whereby
the classifier simply learns the boundary between these two classes. Consequentially, the classical, supervised classifier learns previously
observed IO behavior and is unable to recognize new IO accounts. This overfitting is observed both in Fig. S6 and Table S9, in which the
English narrative network (main paper, Fig. 8) is labeled as entirely non-10-like with the exception of the three known IO accounts within this
network. Furthermore, in contrast to the balanced principal classifier features obtained using a semisupervised approach (Tables S6-S8), the
features of the strictly supervised classifier are dominated by largest component of the training data (Fig. S1). For example, the most important
supervised classifier feature is the Serbian language, and 8 out of the top-10 content features are related to Serbia, all corresponding to the fact
that 55% of our training data is comprised of Twitter’s Serbian IO dataset. We conclude from both classifier design principles and these results
that a semisupervised approach is necessary to avoid overfitting in the IO classifier problem.
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C.3. Sensitivity Analysis and Performance Statistics. Snorkel is used to provide additional, semisupervised training data by labeling 10
positives. A Snorkel score is computed for each account, and in the main paper, all accounts that exceed a score of 70% are treated as IO
truth within classifier training. This 70% threshold is determined by both a sensitivity analysis that compares classifier performance across
a range of metrics: precision—recall (P-R) at a fixed classifier score threshold (0.6 based on Fig. S9), area-under-the-PR-curve (AUPRC),
the equal-error rate (EER, Table S5), and the fraction of training accounts that are labeled positively by Snorkel (Table S4). Performance is
comparable across the three bracketed thresholds considered—50%, 70%, and 90%—though the 50% threshold has the worst performance
for most of the statistics. Retaining all training data within cross-validation sets (contra omitting Snorkel positives) is most consistent with
the objective of measuring classifier performance on actual accounts within a narrative network. The relative performance comparisons of
Table S5 (using all data) and Table S4 show that a 70% threshold has the best AUPRC, best recall, with a small (0.5-1.5%) trade-off in EER
and precision, and also the fraction of IO accounts at this threshold is consistent with published estimates of bot activity as discussed in C.1.

C.4. Feature Engineering. The 10 classifier is trained on three categories of features: account behavior, languages used in tweets, and all 1-
and 2-grams that appear more than 15 times across all account tweets in the training set. Initially, the feature set is composed of 17 behavioral
features, 60 language features, and 1.8 million 1- and 2-grams. To limit the per account content used to generate these content features, a
maximum of 10,000 randomly selected tweets are chosen from each account. The total number of tweets used in the English and French
classifier is 40,155,545.

The standard machine-learning dimensionality reduction step is used to improve classifier performance in problems like this one that
have a very large feature space relative to the number of training samples. Grid search optimization is used to determine the best-performing
dimensionality reduction approach, and the relative importance of each feature. In the dataset used in the main paper, the Extra-Trees
algorithm is used to reduce the feature space to 10 behavioral features (Table S6), 30 languages (Table S7), and 500 1- and 2-grams (Table S8).
Additionally, the behavioral, language, and 1-and 2-gram feature spaces are each reduced independently of each other to ensure adequate
representation by each feature category.

C.5. Classifier Scores versus Account Status. As noted in section C.2, the Random Forest with Extra Trees combination is the best performing
classifier model. Its optimality is further justified upon examination of the distribution of the classifier scores across accounts in the French
narrative network (Fig. S7). The accounts are divided by current (March 2020) status as reported by the Twitter API: active, suspended, and
deleted. The suspended and deleted accounts are skewed toward higher classifier scores, showing a correlation between accounts detected by
the classifier and behavior that results in suspension from Twitter.

Although both the Random Forest/Extra-Trees and xgBoost/Extra-Trees classifiers have near-identical performance in Fig. S3, the latter’s
performance on the French narrative network is not nearly as promising. In Fig. S8, the classifier scores over the French narrative network tend
towards extremes for all three account status categories, in stark contrast to the more realistic distribution seen in Fig. S7.

C.6. Validation of Community-Based Proxy Truth. As discussed in the main paper, section Classifier Performance Comparisons, membership
in the “Macron allegations” community of the French narrative network (main paper, Fig. 6) is used as a proxy for known 1O accounts
where independent truth is unavailable. To establish the narratives used by accounts in the Macron allegations community, topic modeling is
performed on tweets from accounts in the community over the week preceding the media blackout (28 April to 5 May 2017). A selection of the
generated topics is given in Table S10. Three representative tweets from each topic are shown in Table S11, which illustrate the stance of
accounts within this community. Topic modeling is performed on the tweets in the pro-Macron and pro-Abstention communities over the same
time period. A selection from those topics is given in Table S12 and Table S13, respectively.

To validate this proxy assumption and quantify its accuracy in the absence of the underlying truth, we hypothesize that: 1) the Macron
allegations narrative is used by actual IO accounts in the 2017 French election; and 2) the distribution of known IO accounts is higher in 10
narrative networks. The first hypothesis is confirmed by numerous independent news reports (14, 19, 20, 36) and direct observation (3, 16, 21, 37—
40). Though we do not have the ability to independently establish the validity of the second hypothesis, we can show that the validity of our
results are consistent with this hypothesis.

The distribution of our classifier scores is computed across both the “Macron allegations” and “pro-Macron”/“pro-abstention” communities
in the French narrative network (Fig. S9). There is a distinct disparity between these histograms. Classifier scores of accounts in the Macron
allegations community are relatively small at lower (non-IO-like) scores, and rise sharply to very high relative frequencies above a classifier
score of 0.6—the expected range of 10-like scores. In contrast, classifier scores across the other communities are more evenly distributed and
slightly skewed towards lower (non-IO-like) scores, also expected for narrative network communities dominated by pro-Macron activity.

D. Network Potential Outcome Framework for Causal Inference. Interference takes place in causal inference when the treatment applied
to one unit affects the outcomes of other units due to their interactions and influence. An example of rising importance is treating individuals
on a social network. This section introduces the mathematical framework of causal inference under network interference (41), used in the
main paper, section Impact Estimation. Network potential outcomes are the fundamental quantity used to capture various types of causal
effects such as network impact in Eq. [1] of the main paper. Realistically, many network potential outcomes will be unobserved and a complete
randomization over the different treatment exposures is infeasible, making the estimation of the causal estimands challenging. Bayesian
imputation of the missing network potential outcomes provides a natural conceptual solution. Theory for this imputation is developed based
on the critical assumptions of unconfounded treatment assignment and an unconfounded influence network, leading to the key ignorability
condition for the treatment exposure mechanism. Driven by this theory, a rigorous design and analysis procedure is proposed for causal
inference under network interference.

D.1. Introduction. Interference, in the context of causal inference, refers to the situation when the outcome of a “unit” is affected not only by its
own treatment, but also by the treatment of other units. Interference on a network of influence, known as network interference, is of rising
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importance. Common examples are experiments and observational studies on a social network where treatment effects propagate through
peer influence, spread of know’ledge, or social benefits, etc. This phenomenon is also known as spillover effects and social contagions. The
application areas are numerous, e.g., public health, education, and policy (42-45); social media and marketing (46-49); network security (4, 50);
and economics (51-53).

Traditionally, interference has been viewed as a nuisance in causal experiments, and earlier works propose experimental designs that render
the interference effects ignorable on restricted, simple block structures (54, 55). More recent work detects and estimates interference effects on
networks, many of them building on Rubin’s potential outcome framework (56, 57). To detect network interference effects, Bowers et al. (58)
propose hypothesis testings using potential outcome models with specific primary and peer effects, and Athey et al. (59) propose exact p-value
tests by constructing artificial experiments on the original experimental units such that the null hypothesis is sharp. To estimate network
interference effects, Aronow and Samii (60) propose inverse probability weighting when the probability of the specific exposure condition
can be computed, Ugander et al. (61) develop a cluster randomization approach that leads to a closed-form solution on the probabilities of
specific neighborhood exposures, and Sussman and Airoldi (62) propose exclusion restrictions on the potential outcomes and derive design
conditions that lead to unbiased estimators. Li and Wager demonstrate practicality of non-parametric estimators of average primary and peer
effects through random graph asymptotic analysis (63).

Social confounders present another source of challenge for causal inference under network interference. Early work by Manski (53)
demonstrates unidentifiability of the peer effects in the presence of social confounders under linear outcome models. Recent works in causal
inference show that confounding social covariates lead to unidentifiability and biased estimates of causal effects (64), especially on social
networks (65, 66), and how longitudinal studies (67, 68) and design of experiment for specific peer effects (69) provide a way forward.

D.2. Definitions. The key quantities are the potential outcomes of each unit in the study under different treatment conditions. They serve as the
basic building blocks for causal inference in the potential outcome framework. Most existing works assume an absence of interference and
a simple binary treatment assignment, which is the Stable Unit Treatment Value Assumption (SUTVA) (70). Under SUTVA, the potential
outcomes for each unit i are a function of its own treatment and are denoted as Y;(Z;), where Z; is a binary indicator for whether the treatment is
assigned to unit i. The potential outcomes of all N units in an experiment, Y, can be partitioned into two vectors of N components: Y (0) for
all outcomes under control and Y (1) for all outcomes under treatment. Y can also be partitioned according to whether it is observed. In an
experiment, a unit is either under control or under treatment. Therefore, half of all potential outcomes are observed, denoted as Yo,s. The other
half of the potential outcomes are unobserved, denoted as Y. As a result, causal inference is fundamentally a missing data problem, with a
rich body of work on rigorous design and analysis for estimating and imputing the missing outcomes (57).

Under network interference, the potential outcome definitions need to be generalized to encompass the different treatment exposure
conditions via the network, starting with the units:

Definition 1 (Finite Population on a Network of Influence). The study takes place on a finite population of N units where their influence on
each other is represented as a N X N influence matrix A. Each element of the influence matrix, A;; € R, represents the strength of influence
unit i has on unit j. One may visualize this population network as a graph, G = (V, &), of which the node set V consists of the units of the
study (|'V| = N) and the edge set & represents the none-zero entries of the influence matrix A.

The outcomes of each unit not only depend on its own treatment but also on exposure to treatments on other units propagated through the
influence network.

Definition 2 (Network Potential Outcomes). Under network interference, the outcomes of a unit i, change according to its exposure to the
treatment on the finite population Z, through the network of influence A. The network potential outcomes of i are denoted as Y(Z, A).

Sometimes, it is clearer to denote the treatment on certain units separately. For example, one may want to denote the treatment on unit i itself.
In such cases, the following notational convention is adopted: Y;(Z, A) = Y;(Z;, Z_;, A), where Z_; is the treatment vector excluding the ith
element.

Definition 3 (Network Potential Outcome Sets). The entire set of network potential outcomes for unitiis Y; = {Y(Z = z, A = a) } for all
z € Z, a €A where Z is the set of all possible assignments on the closed neighborhood of i and A is the set of all possible influence networks
on the closed neighborhood of i. The set of all network potential outcomes on the finite population with N units is Y = {Y,Y,,...,Yy} Y
can also be partitioned based on whether it is observed. In an experiment, for each unit, only one of the numerous possible neighborhood
treatment in Z is realized. The set of observed network potential outcomes, typically of size N, is denoted as Y qos. Most of the network
potential outcomes will be unobserved. The set of unobserved outcomes, its size depending on the size of each unit’s closed neighborhood, is
denoted as Y .

Lastly, covariates X on the network potential outcome units play a vital role in principled design and analysis for estimating and imputing
the unobserved outcomes. For k-dimensional covariates on the units, the matrix X has N X k elements. Under the scope here, the treatment
vector Z is limited to binary indicators for treatment versus control, but can be easily generalized for multi-level treatments.

D.3. Causal Estimands Using Network Potential Outcomes. The network potential outcomes serve as the building blocks for defining
appropriate causal estimands to answer various causal questions under network interference. In addition to the causal estimand in main paper,
Eq. [1], this section gives more example causal estimands, each focusing on quantifying the effect of a particular kind of exposure to treatment.
Many more causal estimands may be defined using the network potential outcomes, but these demonstrate the flexibility of the network
potential outcomes in expressing causal quantities under network interference.
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Primary Causal Effect Estimands: If the primary treatment causal effect is the quantity of interest (i.e., want to separate it from the peer
influence effects), an appropriate set of conditional causal estimands for each unit i are:

§(2)=YiZi=1,21=2A)-Yi(Z=0,Z_;=2A) (1]

where z € Z_;, is a member of the set of all possible assignments on Z_;. This set of conditional estimands capture the causal effect of the
treatment on unit i conditioning on a particular treatment assignment z on the other units. This estimand focuses on the causal effect of
receiving the treatment itself, by fixing the exposure through the influence network (i.e., the peer effect). In the absence of any exposure to
treatment on peers, &;(0), the classical (i.e., under SUTVA) unit level causal effect, Y;(1) — Y;(0), is recovered. If one wants to estimate the
average primary treatment causal effect on unit 7 under all possible neighborhood treatment, the causal estimand becomes:

av 1
&= 57 D, 6@ 2]
zeZ
For a population of size N, the average primary treatment causal effect on the population is simply:
-ave 1 -ave
&= N Z & [3]
i=I:N

k Treated Neighbor Causal Effect Estimands: If the peer influence effect is the focus of interest, a natural quantity to consider is the causal
effect of having & of the neighbors of unit 7 treated. Assuming unit i has at least k neighbors, an appropriate set of conditional causal estimands
are:

|N,-|)"

0ix(z) = ( k

Z YiZi=2,Z=2A)-Y(Z;=2,2Z_;=0,A) [4]
zeZk

where z € {0, 1} are the possible assignments on unit i, N_; the open neighborhood of i, and Z* the set of all treatment assignments where
exactly k of i’s neighbors are treated (i.e., 3, Zx , = k). This set of conditional estimands capture the average causal effect on unit i for having
k of its neighbors treated, while conditioning the treatment assignment z on i itself. Similar to the previous example, the k treated neighbor

causal effect averaged over unit i’s own treatment can be expressed in the following estimand:
ave — 1
S =5 D du (5]
z={0,1}

The population here is a bit more nuanced, because not all units have at least k£ neighbors and therefore can not possibly receive such peer
treatment. Therefore, the population average effect should only be averaged over the units that have at least k neighbors. Defining V5, to be
the set of units with at least k£ neighbors, the average k treated neighbor causal effect on the population is:

1
6&V€ = ?ve [6]
C vl ; ‘

The idea of capturing causal peer effects based on the number of neighbors being treated has been proposed by other work. Ugander et al. (61)
define a similar condition called the “absolute k-neighborhood exposure” where unit i meets this neighborhood treatment condition if i is
treated and at least k of i’s neighbors are treated. Adopting Ugander et al.’s peer treatment condition gives the following estimand for unit i:

[5

1=k

v
D 2 VZi= L2 =2 A= YiZ = 1,Z=0,A) (7]
=k zeZ!

et}

One may want to know the causal effect of having a certain fraction of the neighbors treated (e.g., 30% of the neighbors treated), instead of
the absolute number of neighbors. Ugander et al. (61) define a version of such treatment condition called the “fractional g-neighborhood
exposure”. A causal estimand for fractional neighborhood treatment can be defined by simply mapping the fractional criterion to an absolute
number for each unit i. For example, a ¢% neighborhood treatment for unit i could map to a k neighbor treatment with k = [%IN,,-M. In any
case, the individual k treated neighbor causal estimand in equation (4) serves as the basic building block for these types of neighborhood
treatment causal estimands.

Influence Network Manipulation Causal Estimands: Sometimes, one may be able to manipulate the influence network to achieve the
desired outcome. Causal effects of network manipulation can be expressed using network potential outcomes as building blocks. This may
seem counterintuitive at first because the influence network itself is not a ”treatment”. However, under network interference, the influence
network leads to exposure to treatment on peers, so manipulating the influence network alters the “’social treatment”. The influence network
and the treatment assignment together can be viewed as an assignment of “’social treatment”. Consider the causal estimand below on the
average total effect of manipulating the influence network from A to A’, given a particular treatment assignment z,:

1
(aR) =5 Y V(2 =2 A)-Y(Z=z2A) (8]

i€l:N
This estimand may quantify the effect of weakening the disinformation network through account suspension and warning. This estimand

highlights the flexibility and expressiveness of the network potential outcomes as the basic building block for causal inference under network
interference.
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D.4. Bayesian Imputation of Missing Outcomes and Unconfoundedness Assumptions. Under network interference, most of the potential
outcomes in the causal estimands will be unobserved. Furthermore, a complete randomized assignment of the different exposures to
neighborhood treatment is typically infeasible, as the structure of the influence network impacts each unit’s chance to receive a certain exposure
(71). These make the estimation of causal estimands challenging under network interference. A natural solution is to perform Bayesian
imputation of missing potential outcomes. Also known as the Bayesian predictive inference for causal effects, this method has been well
established for causal inference in the absence of interference (i.e., SUTVA holds) (72, 73).

As the potential outcomes serve as the building blocks for each causal estimand, computing the posterior distribution of the unobserved
potential outcomes also gives the posterior distribution of any causal estimands. In the regular case under SUTVA, the posterior distribution of
interest is P(Ynis| X, Z, Yobs). Inference of the unobserved potential outcomes from the observed potential outcomes, the unit covariates X,
and the treatment assignment vector Z, is typically done with a potential outcome model. Modeling and inference of this posterior distribution
is greatly simplified when the treatment assignment mechanism can be ignored (i.e., Z can be dropped from the posterior). Rubin shows how
the unconfounded treatment assignment assumption leads to this ignorability (72, 73).

In the case under network interference, the posterior distribution is on the expanded sets of network potential outcomes and includes the
influence network: P(Y ;5| X, Z, A, Yops). Similar to the regular case under SUTVA, this posterior can also be greatly simplified when the
neighborhood treatment mechanism can be ignored (i.e., both Z and A can be dropped from the posterior). This section shows how the
assumptions of unconfounded treatment assignment and unconfounded influence network lead to this more extended ignorability. Under
network interference, although Bayesian imputation of the missing network potential outcomes offers a practical solution, the procedure needs
to respect the key unconfoundedness assumptions in order to avoid incorrect causal estimates.

Assumption 1 (Unconfounded Treatment Assignment Assumption Under Network Interference). Conditional on the relevant unit covariates
X and the influence network A, the treatment assignment Z is independent from the potential outcomes Y :

P(Z|X,AY) = P(Z|X, A). [9]

This assumption can be met in real-world experiments through complete randomization of Z or including possible confounders in the
conditional unit covariates X . Sometimes, experiments on a social network target units with certain network characteristics for treatment, in
order to achieve a desirable overall outcome. For example, a researcher may target the most influential units (e.g., high degree nodes) in order
to maximize peer influence effects. Assumption 1 holds under such treatment assignment strategies because the treatment Z only depends on
the influence network, A, and relevant unit covariates X . This paper estimates the impact of each unit as a potential source (i.e., being treated),
so the treatment assignment does not depend on the potential outcomes, satisfying Assumption 1.

Assumption 2 (Unconfounded Influence Network Assumption Under Network Interference). Conditional on the relevant unit covariates X,
the influence network A is independent from the potential outcomes Y :

P(AIX,Y) = P(A]X). [10]

This assumption is met if the formation of the influence network has no correlation with the potential outcomes. However, this is often
not true in real-world experiments (66). Intuitively, correlation between the potential outcomes and the influence network may arise from
certain characteristics of a unit that are correlated with both its outcomes as well as its relationships with other units on the network. Activity
level and group memberships are examples of such characteristics. For example, an account’s node degree on the retweet network may be
positively correlated with its potential outcomes (i.e., tweet count on the IO narrative) because hubs in the influence network may tweet more in
general. Similarly, an account’s membership to an IO community may be positively correlated with its potential outcomes. Therefore, meeting
Assumption 2 will likely require including such confounding characteristics in the conditional unit covariates X . A method to achieve this will
be formally proposed in Theorem 2, but first, we introduce the ignorability condition.

Theorem 1 (Ignorable Treatment Exposure Mechanism Under Network Interference). If the unconfounded treatment assignment assumption
and the unconfounded influence network assumption are both met, the treatment exposure mechanism is ignorable and does not enter the
posterior distribution of the missing potential outcomes:

P(Y 1is| X, Z, A, Yops) = P(Y is] X, Yops)- [11]
Theorem 1 is proved via factorization and application of Assumptions 1 and 2:

P(Z|X,A Y)P(Y|X, A)
[P(Z1X, A, Y)P(Y|X, A) dY s
_ P(ZIX,APY|X,A)

" P(ZIX,A) [P(YIX, A)dY
_ P(YIX,A)

© [P(YIX, A)dY s

= P(Yiis| X, A, Yobs)

_ P(AIX,Y)P(Y|X)

[ PAIX,Y)P(Y|X) dY i

_ P(AIX)P(Y]X)

"~ P(AIX) [ POYIX) dY mis

P(Y sl X, Z, A, Yops) =
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_ PYIX)
[ POYIX)dY wis
= P(Ymiley Yobs)~ [12]

Finally, Assumption 2 can be satisfied by conditioning on network parameters through parametric modeling.

Theorem 2 (Unconfounded Influence Network by Conditioning on Network Parameters). The unconfounded influence network assumption in
Assumption 2, P(A|X,Y) = P(A|X), is met if:

1. The distribution of the influence network A can be characterized by a model Hg with nodal parameters X and population parameters
O¢: A ~ Hs(Xg, Oc); ~

2. The potential outcomes Y correlate with the influence network A only through a subset of the nodal parameters X € X and population
parameters Og € Og;

3. The unit covariates X contain these network parameters X and ©g.

Theorem 2 leverages the assumption that the influence network A can be characterized by a model with nodal (i.e., unit-specific)
parameters X (e.g., expected degree, community membership, position in the latent space, etc.) and population parameters O (e.g.,
inter-community interaction, sparsity, etc.). Most if not all of the currently well-known network models in the network inference community
can be described in this way, including the latent space models (74), the latent class models such as the membership blockmodels (75-77),
degree distribution models (78, 79), and the graphon (80). Typically, only a subset of the nodal parameters, X, may be correlated with the
potential outcomes, like the unit-specific characteristics such as activity level and community membership in the IO narrative influence network.
Some of the population parameters, G, like sparsity, may be correlated with the potential outcomes as well. Intuitively, conditioning on these
parameters breaks the correlation between the potential outcomes and the influence network, therefore meeting the unconfounded influence
network assumption. Often, these network model parameters are not readily observed, but they can be estimated from the social network data
collected in the experiment. This is similar in spirit to work by Frangakis and Rubin (81) on latent ignorability where the treatment mechanism
is ignorable by conditioning on the latent compliance covariate.

D.5. Theory to Practice: Design and Analysis Under Network Interference. Driven by the theoretical framework developed above, the experi-
mental and analytical procedure for Bayesian imputation of missing potential outcomes and causal estimands is summarized in the following
steps.

1. Define the population, the treatment, and the network potential outcomes. Collect prior information on the underlying influence network.
This can be from data on interactions between the units (e.g., emails, tweets, phone calls, etc.) or a survey on the social network (e.g., list
of relationships). One may only have partial or prior information on the influence network, in which case the network will need to be
imputed during analysis.

2. Propose an appropriate network model, such as the ones mentioned in the previous section (74—80), and estimate the model parameters
using the observed influence network or the prior distribution on the influence network.

3. Propose an appropriate potential outcome model including all the possible confounding covariates, guided by Assumptions 1 and 2, and
Theorem 2, in order to meet the ignorable treatment exposure mechanism condition specified in Theorem 1. Some of these may be the
estimated network parameters from the previous step and the possible treatment assignment confounders. Perform Bayesian inference to
compute the posterior distribution of the potential outcome model parameters, jointly with the influence network if it is not fully known, as
typically is the case. Weakly informative priors on the model parameters have shown to improve convergence stability while minimizing
any bias on the posterior distribution (82). Some model parameters such as propagated effects on the network (each y; in main paper,
Eq. [2]) should respect social phenomenologies such as decaying exposure effects with each additional hop in the propagation. This
can be accomplished with truncated priors to restrict the feasible parameter range. Lastly, adequacy of the potential outcome model in
describing the observed outcomes can be evaluated via statistical tests such as the posterior predictive check (83).

4. Using the potential outcome model and the parameter posterior distribution from the step above, impute the missing network potential
outcomes in the causal estimands of interest. This will finally provide estimates on the desired causal estimands. Typically, one would
want to quantify the uncertainty on the estimated causal estimand. This can be accomplished by multiple imputation (84) of the missing
potential outcomes, by imputing them with independent samples of model parameters from their posterior distribution.

This procedure accounts for potential confounders through covariate adjustment, where accuracy depends on the adequacy of the potential
outcome model. Additional robustness to model mis-specification can be achieved through balancing of confounding covariates across different
treatment exposure conditions in the causal estimand. This can be done via treatment design in experiments or matching in observational
studies, as a desirable future expansion on this framework. Propensity score matching for multiple treatment conditions such as the case here
with numerous treatment exposure conditions through the network is a challenging and relevant research topic with recent work by Forastiere
et al. (85) and Han and Rubin (86).

E. Impact Estimation on the #MacronLeaks Narrative. Further support of this framework’s efficacy is provided by its application to a
well-known, highly visible, and distinctive IO narrative network defined by a simple Twitter hashtag, #MacronLeaks (36, 40, 87) (Fig. S10).
Vertex color in Fig. S10 indicates the number of times each account tweets the hashtag #MacronLeaks; vertex size is the in-degree, i.e., the
number of retweets received by each account. Compared to the financial allegation narrative detected via topic modeling in the main paper,
this narrative is on a related but more focused event of the leaking of candidate Macron’s emails. While many IO narratives do not align nicely
with a hashtag and need to be detected via topic modeling, the #MacronLeaks narrative is an instance where the hashtag became a prominent
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signature for the narrative. The hashtag was widely used in many tweets and retweets, as reflected by the higher magnitude impact statistics in
Table S14, compared to Table 1 in the main paper. Among the accounts with high estimated impact, there exists independent confirmation of
the prominence of the two accounts @wikileaks and @JackPosobiec in pushing the #MacronLeaks narrative (36, 87). The relatively high
causal impact of these accounts shown in Table S14 is consistent with independently reported articles about this narrative. Further, a new
finding is the high-impact spreading of this IO narrative by the known IO account @Pamela_Moorel3 (37-39).

Comparison between impact statistics in Table S14 highlights the advantage of causal impact estimation in quantifying impact over
activity- and topologically based statistics such as retweet (RT) volume and PageRank centrality (88, 89). The limitation of activity count
statistics as indicators for impact is seen in @UserA and @ UserC, both having high tweet and retweet counts but little impact due to their
positions on and connectivities to the network with low centrality. Follower count and PageRank centrality clearly highlight @wikileaks’s
impact on the network, which is consistent with its high causal impact. However, accounts such as @JackPosobiec, @UserB, and known
10 account @Pamela_Moore13 have only a medium level of PageRank centrality, but high causal impact. @JackPosobiec, being one of the
earliest participant, has been reported as a key source in pushing the #MacronLeaks narrative (36, 87). @UserB serves as a bridge into the
predominantly French-speaking subgraph (the cluster seen in the middle of Fig. S10). Causal impact is able to detect these prominent accounts
that do not stand out in other impact statistics by modeling the narrative propagation on the network. Unlike existing propagation methods on
network topology (90) alone, causal inference accounts also for the observed outcomes at each node.

F. Influential 10-like Content 2017 vs. 2020. Many of the high-impact accounts with behaviors and content similar to known IO accounts
(upper-right corner of main paper, Fig. 9) have been suspended by Twitter since 2017. However, several remain actively engaged at the time of
writing in narratives also used by IO accounts in 2020 (12, 91, 92). For example, high-impact, IO-like accounts that posted on the 2017 French
election narrative network (main paper, Figs. 2 and 6) are actively posting three years later on COVID-19 conspiracy theories. Additional
validation of this paper’s approach is suggested by examining how the content of such active accounts has been used by known IO accounts.
Inspecting a small-but-representative sample of 3 active accounts appearing in the upper-right corner of main paper, Fig. 9 shows that content
from these accounts has been used by known IO accounts hundreds of times (9 in one case, 472 in another, and 589 in another) for each of
these active accounts (39). Furthermore, we observe that our classifier is robust to whether or not these accounts are directly retweeted by
known 10 accounts. Only 5 tweets from these 3 representative accounts (1, 1, and 3 tweets for each account) were included in our classifier as
“positive” examples used by known IO accounts, whereas 555 tweets (total for all 3) were retweeted by accounts included as negative examples
in the training data. Because the classifier training data is comprised of 40 million tweets, the presence of 5 tweets from these specific accounts
does not have a large effect on their positive classification, especially that their content appears 555 times in non-IO “negative” training data.
Finally, note that we do not assert or imply that these are IO accounts, but merely observe that their content and behavior is quantifiably similar
to known IO accounts, independent of their authenticity. This observation is consistent with the fact that content from these specific accounts
has also been used hundreds of times (as retweets) by known IO accounts (39, 93).
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Table S1. Select English topics.

Topic 1 Topic 2 Topic 3 Topic 4
Anti-Macron, financial May 1st protest in Paris Brexit Russia and Middle East
allegations
macron police brexit syria
tax antifa news russia
documents paris win sptnkne.ws
emmanuel day amp syrian
evasion mayday2017 twitter.com isis
engaging on.rt.com britain russian
putin protesters brussels turkey
trump breaking theresa sputniknews.com
huge video ukip military
disobedientmedia.com anti labour amp
on.rt.com amp macron attack
prove arrested election army
busted officers europe war
news news pen israel
cheat violent on.rt.com news
rally violence ge2017 putin
breaking texas telegraph.co.uk killed
phone portland juncker on.rt.com
harrisburg left :united_kingdom: ukraine
nato pen politics nato
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Table S2. Select French topics.

Topic 1 Topic 2 Topic 3 Topics 4

Anti-Macron, financial Final debate of 2017 Police violence at May Islamophobia during

allegations election 1st protests election
macron macron paris macron
compte débat crs uoif
journaliste 2017ledébat policiers youtube.com
fiscale marine gauche watch
plainte pen mai islamistes
offshore debat2017 ler voter
:red_circle: soir blessés soutenu
mort france 1ermai jamaismacron
documents plateau extréme france
macrongate menace policier musulmans
emmanuel quitter macron islamiste
porte 2017ledébat bralé soutien
twitter.com debat police :france:
bahamas brigitte france emmanuel
évasion mlp :france: jamais
preuves lepen molotov :thumbs_down:
france tours violences juifs
pen faire théo fréres
fraude bout ordre lyon
société heure cgt 2017lédebat
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Fig. S1. (A) Fraction of our 3,151 accounts by origin from Twitter's datasets (39) used for classifier training and testing. (B) Account fraction by origin of all released Twitter
datasets by March 2020.
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Table S3. 10 account heuristics (27-30) as Snorkel labeling functions.

# Account has no profile description
@labeling_function()
def profile_length(x):

return I0 if x.profile_length==0 else ABSTAIN

# Account has repeated interactions with external news sites
@labeling_function()
def external_news__interactions(x):

return I0 if x.num_external__news_interactions > 5 else ABSTAIN

# Account follows large number of accounts
@labeling_function()
def num_following(x):

return I0 if x.following_count > 3000 else ABSTAIN

# On average, every tweet includes a link
@labeling_function()
def num_links(x):

return I0 if x.avg_num_links > 1 else ABSTAIN

# Account tweeted in many languages
@labeling_function()
def many_langs(x):
return I0 if np.count_nonzero(x.num_langs_used) > 10 else ABSTAIN

# Account rarely favorited tweets
@labeling_function()
def few_faves(x):

return I0 if x.num_faves <20 else ABSTAIN

# Account favorited large number of tweets
@labeling_function()
def too_many_faves(x):

return I0 if x.num_faves >30000 else ABSTAIN

#Account tweeted in an undetermined language often
@labeling_function()
def many_und_tweets(x):

return I0 if x.und > 0.05 else ABSTAIN

# Account has follow, following counts indicative of real user
@labeling_function()
def normal_people_ff_ratio(x):
return REAL if x.follower_count < 500 and 0.75 < x.followers_following_ratio < 4 else ABSTAIN

# Account interacted with external news source once or never
@labeling_function()
def no_external_news__interactions(x):

return REAL if x.num_news__news_interactions < 2 else ABSTAIN

#Account seldom included links in tweets
@labeling_function()
def few_tweets_w_links(x):
return REAL if 0.05 < x.ratio_tweets_w_links_all_tweets < 0.15 else ABSTAIN

# Number of likes by account in normal range
@labeling_function()
def normal_num_likes(x):

return REAL if 500 < x.num_faves < 10000 else ABSTAIN

# Profile description of a normal length
@labeling_function()
def normal_profile_len(x):

return REAL if x.profile_length > 50 else ABSTAIN

# Many legitimate organizations have large number of followers, don’t want to classify them as IO~accounts
@labeling_function()
def org_num_followers(x):

return REAL if x.follower_count > 60000 else ABSTAIN

12 of 35 Steven T. Smith, Edward K. Kao, Erika D. Mackin, Danelle C. Shah, Olga Simek, and Donald B. Rubin



Table S4. Proportion of training data subsets labeled as 10 accounts by Snorkel heuristics.

50% threshold ~ 70% threshold ~ 90% threshold

French election, English 38% 32% 23%
French election, French 34% 28% 22%
Topic and language neutral 30% 15% 8%
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Fig. S2. Classifier P-R performance across many classifier algorithms. Validation set selected from known IO accounts and negatively labeled Snorkel data.
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Fig. S3. Classifier P-R performance across many classifier algorithms. Validation set selected from all data.
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Fig. S4. RF / ET classifier precision—recall (P-R) performance with cross-validation error over twenty 90 : 10 splits; all data (=== ), and Snorkel positives omitted ( ).
Maximum standard deviation (gray region, === ) is 0.016 and 0.032, respectively.
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Fig. S5. RF / ET classifier receiver operating characteristic (ROC) performance: true positive rate (TPR, a.k.a. recall) versus false positive rate (FPR); all data (== ), and
Snorkel positives omitted ( ). Classifier EER is determined by the point at which 1 — TPR = FPR (dashed gray curve, = = ).
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Table S5. Sensitivity comparison, Snorkel thresholds for 10 labeling and cross validation set selection.

Precision Recall AUPRC EER

50% threshold, all data 94.3% 78.7% 95.8% 10.5%
50% threshold, omit Snorkel positives 88.2% 91.6% 96.9% 6.1%
70% threshold, all data 95.6% 78.9% 96.4% 8.1%
70% threshold, omit Snorkel positives 91.6% 90.3% 96.6% 5.6%
90% threshold, all data 97.1% 73.5% 96.0% 7.6%

90% threshold, omit Snorkel positives 95.8% 90.5% 97.4% 5.0%
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Table S6. Behavioral features in descending importance.

num_external_news_interactions num_tweets_in_time_range follower_count
avg_num_chars sd_num_tweets_per_day profile_length
avg_num_hashtag_chars ratio_retweets_w_links_all_tweets

num_faves avg_num_tweets_per_day
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Table S7. Language features in descending importance (Twitter language codes).

en de ht nl pl eu

sr fr tl cs no ca
it sl ro da It fi
und pt ru sv v hu
in es et tr cy hi
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Table S8. Top 150 1- and 2-grams™* (out of 500) in descending order of importance.

en:serbia
en:macron
fr:lepen
en:france
fr:macron
en:president_serbia
en:lepen
fr:france
en:belgrade
fr:pen
en:serbian
en:serbiacamp
en:aleksandar
fr:marine
en:election
en:forum
fr:fillon

en:le
en:president
frremmanuel
fr:remmanuel_macron
en:french
en::serbia:
en:trump
en:amp
en:le_pen
en:pen

en:vote
en:people

en:2
en:discussed
fr:faut

en:video

en:day
fr:macron.lepen
en:vucic

en:win
en:business._forum
en:austria
fr:parti
en:russian
en:breaking
en:syria
en:obama
en:news
en:love
en:support
en:live

en:eu
en:ampc.hosting

en:serbia_austria
en:vucié
en:aleksandar.vucic¢
en:serbian_president
en:campaign
en:mueller
en:country
en:government
en:germany
en:sessions
en:attack

en:israel

en:meeting
en:presidential
en:merkel
en:aleksandar_vucic
en:nazarbayev.55qsospayr
fr:merkel

en:strike

en:night
en:exercise_organised
en:55gsospayr
en:report
fr:lepen_.macron
en:team
en:american
en:french_election
en:fbi

en:life

en:emmanuel
en:watch
en:emmanuel_macron
en:leaks

en:war
en:hosting.largest
en:special
en:nato.euro
en:participants._president
en:photo_congress
en:atlantic_di
en:family

en:iran

enkilled

en:children
en:emails
en:largest._disaster
en:kosovo

en:robert

en:saudi

en:attacks

en:investigation
en:nursultan
en:friends

en:18
en:jeffusessions
en:nursultan_nazarbayev
en:smarttraffic

en:jeff
en:robertumueller
en:foreign
en:euro.atlantic
en:follow

en:terrorist
en:beautiful

en:girl
en:palace_serbia
en:close

en:congress
en:presidentielle2017
en:probe
en:organised.nato
en:countries

en:firing

en:arrested

en:china

en:press

en:missile
en:khashoggi

en:visit
en:presidential_election
en:syrian
en:nazarbayev
en:congress.participants
en:minister

en:heart

en:proof

en:citizens

en:prince

en:share

en:crisis
en:family_photo
en:president.nursultan
en:turkey
en:business
en:participants
en:happening
en:disaster_response
en:including
en:france.macron
fr:cqfd

*2-grams are represented by two words separated by the visible space character ‘.
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Fig. S6. Classification on English narrative network (main paper, Fig. 8) without Snorkel labeling functions; RF / ET classifier. Classifier overfitting without Snorkel is apparent
because classifier scores for all accounts not within Twitter's known IO dataset are all clustered near zero. See also Table S9 for the feature importances without Snorkel.
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Table S9. Top 36 classifier features* without Snorkel, descending order of importance. Note that classifier overfitting without Snorkel labeling
functions is apparent from the prevalence of Serbian-related features that correspond to the dominance of known 10 accounts in our training

data from Twitter’s Serbian dataset (Fig. S1).

lang:sr
num_tweets_in_time_range
following_count

num_faves

en:serbia
sd_num_tweets_per_day
lang:sl

lang:und
en:president_serbia
ratio_retweets_w_links_all_tweets
ratio_retweets_all_tweets
lang:en

en:macron
en:serbia:

en:france

en:serbian

follower_count
en:serbia_amp

lang:fr

avg_num_chars
en:aleksandar.vucic¢
en:belgrade
en:aleksandar
avg_num_tweets_per_day

en:business.forum
en:forum

en:vuci¢
en:discussed
fr:lepen
en:serbian_president
fr:macron

en:vucic

lang:es
en:nursultan
profile_length
en:election

*2-grams are represented by two words separated by the visible space character ‘.
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Fig. S7. Classifier score histograms (Random Forest/Extra-Trees) for active, suspended, and deleted accounts in the French narrative network.
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Fig. S8. Classifier score histograms (xgBoost/Extra-Trees) for active, suspended, and deleted accounts in the French narrative network.
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Fig. S9. Relative classifier score frequencies between communities (main paper, Fig. 6).
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Table S10. Select French topics from the three Macron allegations communities.

Topic A Topic B Topic C

Macron, police violence Macron, immigration Macron, financial

at May 1st protests and Islam allegations
macron macron macron
policiers france france
gauche francais soutien
paris oradour marie
crs marine emmanuel
france shoah uoif
extréme loi garaud
mai veut marine
1er 2017ledébat pen
blessés frontiéres voter
1ermai faire compte
police emmanuel porte
policier guerre candidat
bralé campagne plainte
twitter.com immigration fiscale
ordre ans appelle
guillon islamiste islamistes
mort travail hollande
france: étrangers grande
forces vote 2017ledébat
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Table S11. Representative tweets of the Topics in Table S10.

Topic A Topic B Topic C
Macron, police violence Macron, immigration Macron, financial
at May 1st protests and Islam allegations
[id 535820307] Rottweiller83 ~ [id 799704104004100096] M-J [id 4856695311] Alain Thomas
@rottweiller83 - 5:26 AM - 28 April PSS :latin_cross: :star_of_david: :france: @AlainThomas1 - 1:15 PM-
2017 - Retweeted LELNIE @Cal_369 - 2:20 PM - 30 April 28 April 2017 - Retweeted
- Du matériel #ToutSaufMacron a été B 2017 Du trés trés lourd sur @Macron ,
volé lors d’une agression ultra @EmmanuelMacron Rothschild : banquier pourri , “enflure bancaire”
violente de 2 jeunes par un gang appels de fond pour vous financer. financé par Goldman Sachs !
pro- Macron. Nous allons porter Caché au public ! #MacronNon Gravissime | TWEET ET
plainte :france: RETWEET

http://www.valeursactuelles.com/politic
politiques-quand-rothschild-
sponsorise-macron-72133

[id 789035544021983232] Julia [id 2983945431] I'oranaise [id 768475921112104960] I’'oranaise
(5 :france: :pig: :sun: :butterfly: @L_oranaise_ - 4:09 PM - 4 May @Pascal Azoulay - 8:25 AM -
X .J @mamititi31 - 7:33 PM - 1 May il 2017 - Retweeted 4 May 2017 - Retweeted
2017 - Retweeted voila ce qui nous attend avec #MacronGates : Voici 1 copie pour
Les vrais facistes sont ceux qui,a #Macron et aprés ca voile un chéque déposé par Macron
I'extréme gauche,manifestent et obligatoire pour les femmes et dans la banque Nevis as an
cassent en ce moment,refusant le jeunes filles? :angry_face: Offshore Asset Prot C’est bien
résultat du 1er tour des :angry_face: :angry_face:

présidentielles

[id 775389437672947717] Frexit_2017 [id 304858372] MAXIMUS DECIMUS ~ [id 799704104004100096] M-J
@avril_sylvie - 7:33 PM - 1 May @lorquaphilip - 7:33 PM - 1 May PO :latin_cross: :star_of_david: :france:
2017 - Retweeted A 2017 - Retweeted L @Cal 369 - 1:00 AM - 4 May 2017
La porte-parole de #Macron appelle Aprés avoir nié I'existence de la @JackPosobiec #2017LeDebat
a la violence contre Marine et nos culture frangaise, Macron nie C’est donc 1a que sont fric non
forces de I'ordre. Effarant. désormais I'existence de la France. déclaré a pris la fuite !
T - https://www.les-crises.frlemmanuel-
e e macron-36-millions-deuros-de-
osomoepennots sfor e revenus-cumules-patrimoine-
Batez- negatif/
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Table S12. Select French topics from the pro-Macron/anti-Le Pen/anti-abstention community.

Topic A
pro-Macron and anti-Le

Topic B
pro-Macron and

Topic C
Final election debate:

Pen anti-abstention lead-up and event
ensemble macron pen
france voter 2017ledebat
veux vote marine
macron pen macron
projet tour lepen
europe appelle débat
république mélenchon programme
pays faire 2017ledébat
national france euro
francais insoumis mip
mai blanc debat2017
jevotemacron abstention mme
politique mai projet
macrondirect marine soir
liberté lepen jevotemacron
france: faut jamais
porte emmanuel france
macronpresident 1er madame
2017ledébat twitter.com faire
jt20h dimanche twitter.com
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Table S13. Select French topics from the pro-abstention community.

Topic A Topic B Topic C

Support for Jean-Luc Support of abstention Criticism of Macron and

Mélenchon Le Pen
mélenchon twitter.com macron
jean macron pen
france faire marine
mai voter utm
insoumis vote emmanuel
franceinsoumise tour article
1er mélenchon source
législatives insoumis fillon
1ermai sansmoile7mai perdu
insoumise pen débat
tour faut politique
luc lepen discours
youtu.be oui france
rdis26 jim twitter
paris mlp candidat
youtube.com veut campaign
melenchon abstention social
legislatives2017 blanc medium
watch électeurs lafarge
présidentielle VOix bit.ly
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#MacronLeaks Retweet Network

@wikileaks @UserA % ;
Impact: 4.18 Impact: 0:05| ik At @UserC

fad

@RedPillDropper
Impact: 1.80

@UserB

Impact: 4.84

‘Nodes colored by
#MacronLeaks tweet count

i @JackPosobiec
@Pamela_Moore13 0 255 Impact: 5.60

Impact: 4.16 [ T

Fig. S10. Causal impact of highlighted accounts on the #MacronLeaks narrative network. Vertices are accounts and edges are retweets. Vertex color indicates the number of
tweets and the vertex size corresponds to in-degrees. Causal impact is the average number of additional tweets generated by an user’s participation (main paper, Eq. [1]).
Image credits: Twitter/wikileaks, Twitter/RedPillDropper, Twitter/Pamela_Moore13, Twitter/JackPosobiec.
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Table S14. Comparison of impact statistics between accounts on the #MacronLeaks narrative network: tweets (T), total retweets (TRT), most
retweeted tweet (MRT), followers (F), first tweet time on 5 May, PageRank centrality (PR), and causal impact* (Cl).

Screen name T TRT MRT F 1st time PR CI*
@JackPosobiec 95 47k 5k 261k 18:49 667 5.60
@RedPillDropper 32 8k 3k 8k 19:33 44 1.80
@UserA+t 256 59k 8k 1k 19:34 7 0.05
@UserB¥ 260 54k 8k 3k 20:25 424 4.84
@wikileaks 25 63k Tk 5515k 20:32 9294 4.18
@Pamela_Moorel3 4 4k 2k 54k 21:14 294 4.16
@UserCt 1305 51k 8k < 1k 22:16 6 0.80

*Estimate of the causal estimand in main paper, Eq. [1]
FAnonymized screen names of currently active accounts
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