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Supporting Information Text12

Methods supplement to Figure 2: deciding about school closures and their length during COVID-19 pandemic13

Overview14

This Appendix supports the case study presented in Figure 2 of the manuscript. Its purpose is to show how decision theory15

could be used in a context where distinct model projections exist. Using a simple example of a decision problem of school16

closures during the COVID-19 pandemic, we highlight what are the resulting recommendations from different formal decision17

rules in terms of policy responses.18

It is important to note that the decision problem presented in this case study is necessarily simplistic and should be used for19

demonstrative purposes only.20

1. Background21

Context By end of April 2020, 191 countries had implemented national school closures in response to the COVID-19 pandemic22

(1). Yet the effectiveness of such a measure is highly uncertain, due to the lack of data on the relative contribution of school23

closures to transmission control, and conflicting modelling results (2).24

The policymaker’s problem Decisions about closures and their length involve a series of trade-offs. The policy assessment thus25

involves weighting benefits and costs of alternative courses of action. On the one hand, school closures can slow the pandemic26

and its impact by reducing child-child transmission, thus delaying the pandemic peak that overwhelms health care services,27

and therefore ultimately reducing morbidity and associated mortality. If this is the case, such interventions bring clear health28

benefits for the society and avoid unsustainable demands on the health system. On the other hand, school closures can have29

high direct and indirect health and socio-economic costs. For example, they may increase child-adult transmission, reduce the30

ability of healthcare and key workers to work and thus reduce the capacity of healthcare (3, 4). Economic costs of lengthy31

school closures are also high (5–7), generated for example through absenteeism by working parents, loss of education, etc.32

Uncertainty The evidence supporting national closure of schools in the COVID-19 pandemic context was very weak. In33

particular, evidence of COVID-19 transmission through child-child contact or through schools was not available at the time of34

decision (2). As a consequence, it was unclear whether school closures would be effective in the COVID-19 pandemic (4).35

Framework We use a framework that decomposes uncertainty into distinct layers of analysis: (i) uncertainty within models36

(also called risk, aleatory uncertainty, or physical uncertainty), (ii) uncertainty across models (also called model ambiguity, or37

model uncertainty), and (iii) uncertainty about models (also called model misspecification).∗38

We consider a general decision problem in which consequences depend on the states of the environment that are viewed as39

realizations of an underlying economic or physical generative mechanism (10). A model is a probability distribution induced by40

such a mechanism. It describes states’ variability by combining a structural component based on theoretical knowledge (e.g.41

economic or physical) and a random component coming from, for example, measurement errors or minor omitted explanatory42

variables (13; 14). We assume that decision makers (DMs) posit a collection of such models. Uncertainty across model therefore43

results from the uncertainty about the true underlying mechanism: within the posited collection, there is uncertainty about44

which model actually governs states’ realizations. However, even after a model is specified, there is still uncertainty within45

model, i.e. about which specific state will actually obtain; this is the notion of risk typically considered in economics. Finally,46

the third layer of uncertainty (about models), arises as the true model might not belong to the posited collection of models,47

reflecting the idea that all posited models have an inherent approximate nature.48

2. Decision making under uncertainty49

A. The structure of a decision problem. The general problem that a DM, in particular a policymaker, faces is to choose an
action a within a set A of possible alternative actions, whose consequences c ∈ C depend on the realization of a state of the
environment s ∈ S which is outside the DM’s control. The relationship among consequences, actions and states is described by
a consequence function ρ : A× S → C, where c = ρ(a, s) is the consequence of action a when state s obtains. DMs have a
(complete and transitive) preference relation % over actions that describes how they rank the different alternative actions.†
The quintet (A,S,C, ρ,%) characterizes the decision problem under uncertainty. The aim of the DM is to select the action â
that is optimal according to her preference, that is, such that â % a for all actions a ∈ A. The preference % is assumed to
admit a numerical representation via a decision criterion V : A→ R, with

a % b⇐⇒ V (a) ≥ V (b)

for all actions a, b ∈ A. This numerical representation permits to formulate the decision problem as an optimization problem50

max
a

V (a) sub a ∈ A. [1]51

Optimal actions â are the solutions of this problem. To find an optimal action thus amounts to solve this optimization problem.52

∗See (8–11) for a discussion, and (12) for empirical evidence on the distinction between these layers.
†As is usual, we write a % b if the DM prefers action a to action b (i.e., either strictly prefers action a to action b, a � b, or is indifferent between the two, a ∼ b).
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The DM may address, especially in policy problems, state uncertainty through the guise of models. Based on ex ante53

scientific and socio-economic information, the DM might be able to posit a set of probability models M ⊆ ∆ (S) describing the54

likelihoods of the different states. This set of models is taken as a datum of the decision problem, which is now characterized55

by a sextet (A,S,C, ρ,%,M). It is often assumed, following (15), that the correct model belongs to the set of models that the56

DM posits, thus abstracting from model misspecification issues.57

B. Decision criteria. The form of the decision criterion V determines the nature of decision problem [1]. Different possible58

criteria have been proposed in the literature. The ones we consider are: the subjective expected utility (SEU) criterion, which59

dates back to the seminal works of (15–18), and has recently been revisited by (19) to accommodate explicitly the presence of60

uncertainty across models; the maxmin criterion of (15); the smooth ambiguity criterion, developed by (20); and the multiple61

priors criterion proposed by (21). For the sake of brevity, the more general α-versions of the maxmin criterion (22) and of the62

multiple priors criterion (23) are only discussed in the main text.63

C. Making decisions in a pandemic.64

C.1. States and consequences. With the letter R we denote a rate of contagion within a given population, i.e., the average number65

of individuals infected per single case. The baseline rate of contagion, denoted by R0, is called basic reproduction number. It66

applies to a population never exposed to the virus, where everyone is susceptible,‡ and depends on the biology of the virus as67

well as on the natural (pre-pandemic) socio-economic structure that characterizes the population (24). The biology of the virus68

determines its ability to infect (i.e., the probability of infection per interaction) and the duration of infectiousness.§ The natural69

socio-economic structure determines the natural social distancing and, through it, the average number of interactions per70

individual (25, 26). For instance, natural social distancing might be higher in Northern than in Southern European countries.71

These natural factors, biological and socio-economic, determine R0. It is the natural, ex ante, rate at which the pandemic72

progresses, without private and public decisions that respond to it. Ex post, after these decisions are put in place and affect73

the biological and socio-economic factors that determine R0, the relevant rate of contagion becomes the effective reproduction74

(or reproductive) number Re (27). For example, school closure is a public decision that may increase social distancing (a75

socio-economic factor), while a diligent use of protective gear is a private decision that may decrease the virus ability to infect76

(a biological factor).77

Here we focus on public decisions, policies, and assume that private ones are subsumed by them.¶ A policy translates a78

basic reproduction number R0 into an effective one Re. Yet, how this translation occurs often remains uncertain. For instance,79

evidence on the effectiveness of school closure policies for COVID-19 comes from influenza outbreaks, but the ability of children80

to transmit the disease greatly varies across coronaviruses (28). For this reason, we represent how a policy a maps R0 into Re81

via the relation Re = f(a,R0, θr, εr), where θr is a structural parameter and εr is a shock.‖ We assume that ∂f/∂a ≤ 0 and82

∂f/∂R0 > 0. For example, if the relation is linear we have83

Re = θr,1a+ θr,2R0 + εr, [2]84

with θr,1 ≤ 0 and θr,2 > 0.∗∗ In the baseline scenario without policy intervention – i.e., when a = 0 – the effective reproduction85

number Re is determined by: (i) the natural proportion θr,2 of the population that is susceptible, (ii) the basic reproduction86

number R0 that summarizes the biological and socio-economic factors previously discussed, (iii) a shock εr that accounts for87

minor omitted variables. The economic damage D, in monetary terms (e.g., loss of GDP)††, associated with the pandemic is88

determined by the rate of contagion Re via a function D = g (Re, θd, εd), where θd is a structural parameter and εd is a shock.89

This function represents the ability of health and economic systems to cope with the pandemic. We assume that ∂g/∂Re > 0.90

For example, assuming a quadratic damage function we have:91

D = θd,1R
2
e + θd,2Re + εd, [3]92

with 2θd,1Re+θd,2 > 0. The economic damage D associated with a policy a is then D = g (Re, θd, εd) = g (f(a,R0, θr, εr), θd, εd).93

A policy affects, according to relation f , the effective reproduction number and, through it, determines an economic damage94

according to relation g.95

In the linear-quadratic example, we have96

D = κ1a
2 + κ2a+ κ3, [4]97

where98

κ1 = θd,1θ
2
r,1 [5]99

κ2 = θr,1 (2θd,1 (θr,2R0 + εr) + θd,2) [6]100

κ3 = θd,1 (θr,2R0 + εr)2 + θd,2 (θr,2R0 + εr) + εd. [7]101

‡An individual is susceptible if has no immune protection against the virus.
§By interaction we mean a contact amenable to virus transmission (in terms of closeness and duration).
¶A highly non-trivial assumption that, for instance, requires people to use diligently protective gear if asked by local or national authorities.
‖Throughout, shocks have zero mean and unit variance.

∗∗For simplicity, we allowRe to be negative (otherwise, we should add constraints that preserve the positivity ofRe , something that we prefer to abstract from).
††The scalar D lumps together economic consequences and health effects (through a monetary measure, e.g. GDP loss). Yet, in principle D may be a multidimensional vector with different components,

say health and economic ones, that the decision criterion then trades off.
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Policy a has an uncertain implementation cost C that, for instance, for school closures includes, as previously mentioned,102

absenteeism by working parents and loss of education. This cost is represented by a function C = h (a, θc, εc). We assume that103

costs grow more than proportionally, so that ∂h/∂a > 0 and ∂2h/∂a2 > 0 (e.g., the cost of school closures grows more than104

proportionally with its duration). For example, a quadratic cost function is105

C = θc,1a
2 + θc,2a+ εc, [8]106

with 2θc,1a+ θc,2 > 0 and θc,1 > 0. We also assume that the policymaker knows the functional forms of the relations f , g and
h (e.g., whether they are linear or quadratic) but not their structural parameters. This lack of knowledge, along with that of
the basic reproduction number R0 and of the shocks’ value ε, prevents the DM to know the actions’ consequences. States thus
have the form s = (R0,ε, θ) ∈ S with both random and structural components. In particular, the vector ε = (εr, εd, εc) ∈ E
represents the shocks affecting the health and economic systems, while the vector θ = (θr, θd, θc) ∈ Θ specifies the structural
coefficients parametrizing a model population. If we denote by B = −D the benefit of policy a as its ability to reduce the
economic damages due to the pandemic, its consequence is the difference B−C between its benefits and costs. The consequence
function is then ρ (a, ε, θ) = −g (f(a,R0, θr, εr), θd, εd)− h (a, θc, εc). In the linear-quadratic example, it becomes

ρ (a, ε, θ) = − (κ1 + θc,1) a2 − (κ2 + θc,2) a− κ3 + εc

C.2. Models and beliefs. Shocks have the form εr = σrwr; εd = σdwd; εc = σcwc, where wr, wd and wc are uncorrelated “white107

noises” with zero mean and unit variance. The vector parameter σ = (σr, σd, σc) ∈ Σ then specifies the standard deviations of108

shocks. To ease the analysis, we assume that their distribution qσ is known, up to their standard deviations σ. We also assume109

that the distribution pξ of the rate R0 is indexed by a parameter ξ ∈ Ξ that accounts for different epidemiological views on the110

quantification of the basic reproduction number. With this, the positive scalar m (ε, θ, R0) gives the joint probability of shock111

ε, parameter θ and rate R0 under a posited model m ∈M . We adopt the model factorization m = qσ × δθ × pξ, that is,‡‡
112

m
(
ε, θ′, R0

)
=

{
qσ (ε) pξ (R0) if θ′ = θ

0 else
[9]113

where qσ (ε) is the probability of shock ε under the standard deviation specification σ, while pξ (R0) is the probability that R0114

is the basic reproduction number according to epidemiological view ξ. We can thus index models as mθ,σ,ξ = qσ × δθ × pξ115

and denote by M = {mθ,σ,ξ} the set of models that the policymaker posits. Because of the factorization, the policymaker’s116

subjective belief µ(m) that m is the correct model is actually over the values of θ, σ and ξ and so has the form µ (θ, σ, ξ). A117

convenient separable form is, with an abuse of notation, µ (θ, ξ) = µ (θ, σ)µ (ξ).118

For example, consider the pandemic decision problem (A,S,C, ρ,%,M) and the set of models M = {mθ,σ,ξ} that the119

policymaker posits. Assume that a von Neumann-Morgernstern utility function u : C → R translates economic consequences,120

measured in monetary terms, into utility levels. This function captures attitudes toward risk (i.e. uncertainty within models).121

The expected reward of action a under model m ∈M is122

R(a, θ, σ, ξ) =
∑
ε,R0

u (ρ(a, θ, ε, R0))mθ,σ,ξ(ε,R0)123

=
∑
ε,R0

u (ρ(a, θ, ε, R0)) qσ (ε) pξ(R0).124

D. Numerical example. In the case study presented in Figure 2 of the manuscript, the policymaker must decide whether to and125

how long to close school for. Closing schools is costly (e.g. it increases child-adult transmission, reduces the ability of healthcare126

and key workers to work and the capacity of healthcare, generates economic costs through absenteeism by working parents,127

loss of education, etc.), but it helps slow the pandemic and its impact by reducing child-child transmission, thus delaying the128

pandemic peak that overwhelms health care services, and therefore ultimately reducing morbidity and associated mortality.129

Here, we illustrate how different decision rules may be used in this specific example, in which there is only structural130

uncertainty about the benefits of school closures. The cost function is assumed to be known, so that there are only three131

different models in the set M .132

• Model 1 is based on the evidence coming from influenza outbreaks, for which the majority of transmission is between133

children (29). According to this model, closing schools would be the biggest contributor to reducing Re to below 1 and134

it may be the only intervention that could do so. In this case the benefit would, for example, be proportional to the135

duration of school closure. In the linear-quadratic example, this would imply that κ1 = 0 and κ2 < 0, so that benefits136

positively depend on the action a: stronger measures reduce the effective reproductive number Re, and thus the economic137

damage D of the pandemic.138

• Model 2, instead, relies on some previous coronavirus outbreaks, for which evidence suggests minimal transmission139

between children (28). In this case, Re cannot be reduced below 1, school closures do not affect the size of the epidemic,140

and therefore do not bring any benefits. This is for example the case if κ1 = κ2 = 0 in the linear-quadratic setup, so that141

the economic damages, and thus the benefits, are unaffected by the policy action a.142

‡‡Here δθ is the probability distribution concentrated on θ, i.e., δθ (θ) = 1 and δθ
(
θ′
)

= 0 if θ′ 6= θ.
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• Model 3 projects that some child to child transmission happens so that closing schools contributes to reducing Re to143

below 1 and reduces the size of the epidemic. However, this only works in combination with other measures (30). Without144

it, Re would be above 1 but as an isolated measure school closures do not have such a big effect (31). Under this scenario,145

the effectiveness of school closures is important at the beginning, but declines as time goes on. In the linear-quadratic146

example, this would imply that κ1 > 0 and κ2 < 0.147

For simplicity, we assume that there is no uncertainty within models (εr = εd = εC = 0).148

149

The illustrative benefit and cost functions we used are the following:150

• B(a) = 4a+ 20 in the case of model 1,151

• B(a) = 100 in the case of model 2,152

• B(a) = −0.1a2 + 4a+ 70 in the case of model 3,153

• C(a) = 0.1a2 + 10.154

Consider the decision problem (A,S,C, ρ,%,M). In our case, we restrict the action space so that A = [0, 20]. For each of155

these 3 models mθ,σ,ξ, it is possible to compute the expected reward R(a, θ, σ, ξ) associated with a school closure policy. The156

policymaker, however, does not know which is the correct one. The expected reward is, in that sense, itself uncertain because157

it depends on the values of the different structural parameters used. For each particular model representing the net overall158

monetary benefits of the school closure policy, it is possible to determine the optimal action to put in place. Table S1 presents159

the expected rewards, together with their associated optimal actions â in the case of linear utility u.

Table S1. Example of expected rewards and their associated optimal actions with linear utility u

R(a, θ, σ, ξ) â

Model 1 −0.1a2 + 4a+ 10 20
Model 2 −0.1a2 + 90 0
Model 3 −0.2a2 + 4a+ 60 10

160

If the policymaker considers uncertainty within and across models in the same way, she aggregates the expected rewards by161

taking a weighted average over them, where the weights represent the degrees of belief in each specific model. The decision162

criterion in this case is the classical SEU criterion of (17). For example, under a uniform prior over the possible models, i.e. if163

µ(m) = 1/3 for all m, the optimal decision is a school closure policy âseu = 10. It therefore means that, putting the same164

weight on the three different models given by three different sources, or a single model (such as model 3) on which all experts165

would agree, would lead exactly to the same optimal school closure policy. Instead, if the policymaker decides to behave166

extremely precautionary by taking into account only the model providing the lowest expected reward, she only considers Model167

1 and decides to close schools for the maximum length âmxm = 20. This policymaker is extremely averse to uncertainty across168

models, and in consequence, uses the maxmin decision rule of (15). Alternatively, if the policymaker is averse to uncertainty in169

the sense of disliking more uncertainty across than within models but is not as precautionary as a maxmin policymaker, she170

may follow the smooth ambiguity criterion of (20). In such a case, the optimal length of school closures is longer than under171

expected utility. It approximately corresponds to 12, when the ambiguity function φ is logarithmic. Finally, if the policymaker172

has multiple prior probability measures over the models, she can computes the expected utility for each of them, and considers173

only the one providing the lowest level of subjective expected utility. For example, imagine two distinct priors: the uniform174

prior, in which the 3 models are weighted equally, and the prior that considers model 2 as implausible, but models 1 and 3 as175

equally likely (i.e., this prior puts a weight 0 on model 2 and a weight 0.5 over the two other models). The optimal length176

of school closures under the multiple priors model of (21) in this situation is higher than under subjective expected utility.177

It corresponds to closing schools for approximately 13 weeks. Table S2 summarizes the optimal decisions for each of these178

decision rules.

Table S2. Example of optimal policies depending on the decision rules followed

Decision rules (criterion) Optimal policy

Vseu âseu = 10
Vmxm âmxm = 20
Vsmt âsmt = 11.65
Vmp âmp = 13.33

179

Loïc Berger, Nicolas Berger, Valentina Bosetti, Itzhak Gilboa, Lars Peter Hansen, Christopher Jarvis, Massimo Marinacci and
Richard D. Smith

5 of 6



References180

1. United Nations Educational Scientific and Cultural Organization. Covid-19 educational disruption and response. https:181

//en.unesco.org/themes/education-emergencies/coronavirus-school-closures, 2020. [Online; accessed April 24, 2020].182

2. Russell M Viner, Simon J Russell, Helen Croker, Jessica Packer, Joseph Ward, Claire Stansfield, Oliver Mytton, Chris183

Bonell, and Robert Booy. School closure and management practices during coronavirus outbreaks including covid-19: a184

rapid systematic review. The Lancet Child & Adolescent Health, 2020.185

3. Samantha K Brooks, Louise E Smith, Rebecca K Webster, Dale Weston, Lisa Woodland, Ian Hall, and G James Rubin.186

The impact of unplanned school closure on children’s social contact: rapid evidence review. Eurosurveillance, 25(13):187

2000188, 2020.188

4. Jude Bayham and Eli P Fenichel. Impact of school closures for covid-19 on the us health-care workforce and net mortality:189

a modelling study. The Lancet Public Health, 2020.190

5. Md Z Sadique, Elisabeth J Adams, and William J Edmunds. Estimating the costs of school closure for mitigating an191

influenza pandemic. BMC public health, 8(1):135, 2008.192

6. Howard Lempel, Joshua M Epstein, and Ross A Hammond. Economic cost and health care workforce effects of school193

closures in the us. PLoS currents, 1, 2009.194

7. Richard D. Smith, Marcus R. Keogh-Brown, and Tony Barnett. Estimating the economic impact of pandemic influenza:195

An application of the computable general equilibrium model to the uk. Social Science & Medicine, 73(2):235–244, 2011. .196

8. Kenneth J Arrow. Alternative approaches to the theory of choice in risk-taking situations. Econometrica, 19:404–437,197

1951.198

9. Lars Peter Hansen. Nobel lecture: Uncertainty outside and inside economic models. Journal of Political Economy, 122(5):199

945–987, 2014.200

10. Massimo Marinacci. Model uncertainty. Journal of the European Economic Association, 13(6):1022–1100, 2015. ISSN201

1542-4774. . URL http://dx.doi.org/10.1111/jeea.12164.202

11. Lars Peter Hansen and Massimo Marinacci. Ambiguity aversion and model misspecification: An economic perspective.203

Statistical Science, 31:511–515, 2016.204

12. Ilke Aydogan, Loïc Berger, Valentina Bosetti, and Ning Liu. Three layers of uncertainty and the role of model misspecifi-205

cation: an experiment. IGIER Working Paper 623, Bocconi University, 2018.206

13. Tjalling C Koopmans. Measurement without theory. The Review of Economics and Statistics, 29(3):161–172, 1947.207

14. Jacob Marschak. Economic measurements for policy and prediction. In Studies in Econometric Method (W. Hood and T.208

J. Koopmans, eds.), pages 1–26. Wiley, New York, 1953.209

15. A. Wald. Statistical decision functions. John Wiley & Sons, New York, 1950.210

16. John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. 2nd ed. Princeton University211

Press, 1947.212

17. L.J. Savage. The Foundations of Statistics. J. Wiley, New York, 1954. second revised edition, 1972.213

18. Jacob Marschak and Roy Radner. Economic theory of teams. Yale University Press, New Haven, 1972.214

19. Simone Cerreia-Vioglio, Fabio Maccheroni, Massimo Marinacci, and Luigi Montrucchio. Classical subjective expected215

utility. Proceedings of the National Academy of Sciences, 110(17):6754–6759, 2013.216

20. P. Klibanoff, M. Marinacci, and S. Mukerji. A smooth model of decision making under ambiguity. Econometrica, 73:217

1849–1892, 2005.218

21. I. Gilboa and D. Schmeidler. Maxmin expected utility with a non-unique prior. Journal of Mathematical Economics, 18219

(2):141–154, 1989.220

22. Leonid Hurwicz. Some specification problems and applications to econometric models. Econometrica, 19(3):343–344, 1951.221

23. Paolo Ghirardato, Fabio Maccheroni, and Massimo Marinacci. Differentiating ambiguity and ambiguity attitude. Journal222

of Economic Theory, 118(2):133–173, 2004.223

24. Ta-Chou Ng and Tzai-Hung Wen. Spatially adjusted time-varying reproductive numbers: Understanding the geographical224

expansion of urban dengue outbreaks. Scientific Reports, 9(1):1–12, 2019.225

25. Klaus Dietz. The estimation of the basic reproduction number for infectious diseases. Statistical methods in medical226

research, 2(1):23–41, 1993.227

26. Paul L Delamater, Erica J Street, Timothy F Leslie, Y Tony Yang, and Kathryn H Jacobsen. Complexity of the basic228

reproduction number (r0). Emerging infectious diseases, 25(1):1, 2019.229

27. Jacco Wallinga and Marc Lipsitch. How generation intervals shape the relationship between growth rates and reproductive230

numbers. Proceedings of the Royal Society B: Biological Sciences, 274(1609):599–604, 2007.231

28. Gary WK Wong, Albert M Li, PC Ng, and Tai F Fok. Severe acute respiratory syndrome in children. Pediatric pulmonology,232

36(4):261–266, 2003.233

29. P Mangtani et al. Impact of school closures on an influenza pandemic: Scientific evidence base review. 2014.234

30. Kiesha Prem, Yang Liu, Timothy W Russell, Adam J Kucharski, Rosalind M Eggo, Nicholas Davies, Stefan Flasche,235

Samuel Clifford, Carl AB Pearson, James D Munday, et al. The effect of control strategies to reduce social mixing on236

outcomes of the covid-19 epidemic in wuhan, china: a modelling study. The Lancet Public Health, 2020.237

31. Neil Ferguson, Daniel Laydon, Gemma Nedjati Gilani, Natsuko Imai, Kylie Ainslie, Marc Baguelin, Sangeeta Bhatia,238

Adhiratha Boonyasiri, ZULMA Cucunuba Perez, Gina Cuomo-Dannenburg, et al. Report 9: Impact of non-pharmaceutical239

interventions (npis) to reduce covid19 mortality and healthcare demand. 2020.240

6 of 6Loïc Berger, Nicolas Berger, Valentina Bosetti, Itzhak Gilboa, Lars Peter Hansen, Christopher Jarvis, Massimo Marinacci and
Richard D. Smith

https://en.unesco.org/themes/education-emergencies/coronavirus-school-closures
https://en.unesco.org/themes/education-emergencies/coronavirus-school-closures
https://en.unesco.org/themes/education-emergencies/coronavirus-school-closures
http://dx.doi.org/10.1111/jeea.12164

	Background
	Decision making under uncertainty
	The structure of a decision problem
	Decision criteria
	Making decisions in a pandemic
	States and consequences
	Models and beliefs

	Numerical example


