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Supplementary Information Text 
 
Detailed methods 
Sample collection 

Sinking POM was collected and preserved in sequencing sediment traps deployed at 4000 m 

over a three-year time period as previously described (1).  Moored sequential sediment traps 

were deployed at 4,000 m at station ALOHA (McLane Research Laboratories Inc.). These traps 

were deployed yearly and operated between periods of 8-9 months during 2014, 2015 and 2016. 

For each year, 21 samples were collected for a total of 63 samples collected over the entire time-

series. Each sample was collected over a 10-12-day interval (see Dataset S1 for details). Sinking 

particles captured in the trap were preserved in a nucleic acid preservation solution as previously 

described (1).  A second trap was deployed over the same time period collected sinking particles 

in a formalin brine solution for analysis of particulate carbon and nitrogen as described in Karl et 

al. (2).  After sediment trap recovery and deployment, all samples were processed, and DNA and 

RNA extracted and purified, exactly as described in Boeuf et al. (1). 

 

Sample processing and data generation  

Metatranscriptomic libraries were prepared using a ScriptSeq v2 RNA-seq kit (Illumina, 

San Diego, CA). Unique barcodes were added to the cDNA by PCR enrichment. Sequencing was 

performed on an Illumina NextSeq 500 system using a V2 high output 300 cycle kit (Illumina, 

San Diego, CA).  Primer sequences were removed from sequence reads using Trimmomatic 0.38 

(parameters: ILLUMINACLIP:2:30:10) (3); read pairs were assembled using FLASH 

1.2.11 (default parameters) (4) and low quality bases were removed with Trimmomatic 

(parameters: LEADING:10 TRAILING:10 MINLEN:100). Reads containing spiked in 

sequences were removed using the bbduk script from BBMap 38.22 (5). The first pass removed 
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phiX sequence and reads with extreme GC values (parameters: k=27 hdist=1 qtrim=rl trimq=17 

cardinality=t mingc=0.05 maxgc=0). The second pass removed and counted the quantitative 

standards (parameters: k=27 hdist=1 cardinality=t).  

Metagenomic libraries were prepared using an automated NeoPrep instrument with TruSeq 

Nano DNA library preparation kit (Illumina #NP1011001, San Diego, CA), using an input of 25 

ng of sheared genomic DNA. Libraries were sequenced either using a 150 bp paired-end 

NextSeq500/550 High Output v2 reagent kit (Illumina #FC4042004, San Diego, CA). 

Quality controlled sequences were compared to all ribosomal RNA (rRNA) models from 

RFAM release 12.1 (6) using cmsearch (parameters: --hmmonly) from infernal 1.1.2 (7).  A total 

of 662 million reads with rRNA sequences passed the quality control filters. The taxonomic 

affiliations of the SSU rRNA sequences were assessed by homology to the SILVA SSU NR99 

database Release 132 (8) using BWA 0.7.15-r1140 (9) with matches limited to at least 97% 

identity over at least 70 bases. 

 

Diversity Calculations for SSU rRNA taxon determinations 

Family level Eukaryote and combined Bacteria and Archaea datasets were rarefied to their 

respective minimum depths and Shannon diversity indices were calculated for each sample using 

the R package ‘vegan’ (10). Using the R package ‘stats’, a dependent 2-group Wilcoxon Signed 

Rank Test was performed (11).   

 

Recovery of the MAGs 

A total of 3.19 billion metagenomic raw paired-end reads were quality controlled and 

assembled as follows. First, contaminant sequences were removed using the bbduk script from 
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BBMap 38.22 (5) in two passes. The first pass used parameters “ktrim=r k=23 mink=11 hdist=1 

tbo tpe tbo tpe” for Illumina sequencing adapters, and the second pass used parameters “k=27 

hdist=1 qtrim=rl trimq=17 cardinality=t mingc=0.05 maxgc=0.95” to remove phiX, low quality 

bases, and sequences with unrealistically high or low GC. Next, additional low-quality bases and 

sequences were removed with Trimmomatic 0.38 (parameters: LEADING:10 TRAILING:10 

MINLEN:100) (3). Unpaired reads were removed using the dropse command from seqtk 1.2 

(12), producing a total of 2.45 billion quality-controlled metagenomic reads across 63 samples. 

Finally, the cleaned reads from each sample were assembled using SPAdes 3.11.1 (parameters: -

meta -k 21,33,55,77,99,127) (13) generating 92 million contigs, 900,000 of these were longer 

than 1500bp. 

 

Mapping of quality reads was performed using CoverM v0.3.1 with default parameters 

(https://github.com/wwood/CoverM). For each assembled metagenome, metagenomic assembled 

genomes were recovered using MetaBAT1 v0.32.5 (14) with all the sensitivity settings, 

MetaBAT2 v2.12.1 (15) and MaxBin2 v2.2.6 (16) using the 40 and 107 gene sets. The resulting 

MAGs from each assembly were assessed for completeness and dereplicated using DAStool 

(17). Completeness and contamination rates of the MAGs were assessed using CheckM v1.0.13 

(18) with the ‘lineage wf’ command. MAGs from all metagenomes were subsequently 

dereplicated using dRep v2.2.3 (19) using the dereplicate wf at ≥97% average nucleotide identity 

over ≥70% alignment and the best MAGs were chosen based on genome completeness. The 

dereplicated MAGs were further refined by reassembling the mapped quality trimmed reads with 

SPAdes (20) using the –careful and –trusted-contigs setting. Additional scaffolding and resolving 
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ambiguous bases of the MAGs was performed using the ‘roundup’ mode of FinishM v0.0.7 

(https://github.com/wwood/finishm). 

 

Taxonomic inference of the MAGs 

Classification of the MAGs was determined using GTDB-Tk (21) v.0.3.3 implementing the 

classify_wf command (https://github.com/Ecogenomics/GTDBTk). Briefly, marker genes were 

identified in each genome, aligned, concatenated and classified with pplacer to identify the 

maximum-likelihood placement of each genome's concatenated protein alignment in the GTDB-

Tk reference tree. GTDB-Tk classifies each genome based on its placement in the reference tree, 

its relative evolutionary distance and FastANI distance. 

 

Functional annotations 

For all MAGs, open reading frames (ORF) were called and annotated using Prokka v.1.13 

(22). Additional annotation was performed using the blastp ‘verysensitive’ setting in Diamond 

v0.9.24.125 (23) (https://github.com/bbuchfink/diamond.git) against UniRef100 (accessed 

September 2019) (24), clusters of orthologous groups (COG) (25), Pfam 31 (26) and TIGRfam 

15.0 (27). ORFs were assigned KO ID by hmmsearch against KOfam with predefined thresholds 

(28). Genes of interest were further verified using NCBI’s conserved domain search to identify 

conserved motif(s) present within the gene (29). The genetic potential of each lineages for 

different metabolism was based on the presence and absence of all key enzymes and a pathway 

coverage of at least 60% in the KEGG module.  

 

Calculation of MAG relative abundances 
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To calculate the relative abundance, reads from each metagenomic datasets were mapped to 

the dereplicated MAGs using CoverM v0.3.1 with the ‘contig’ command and a cutoff of 95% 

minimum identity and minimum aligned read length of 75% of each read. Coverage of each 

contig was calculated with the CoverM ‘trimmed_mean’ option and the coverage for each MAG 

was calculated as the average of all contig coverages, weighted by their length. The relative 

abundance of each MAGs in each metagenomic dataset was calculated as its coverage divided by 

the total coverage of all genomes in the dereplicate MAGs set.  

 

Determination of MAG diversity and abundance. 

To estimate strain level diversity, SingleM v0.12.1 with the ‘pipe’ command was applied to 

each raw metagenomic dataset to find abundances of discrete sequence-based operational 

taxonomic units (OTUs) based on alignment of translated reads to profile HMMs representing 

conserved ribosomal proteins (https://github.com/wwood/singlem).  As 10% of sequences are 

estimated to be sequencing error, the number of individual strains was calculated as total number 

of different OTU sequences detected minus 10% of the total sequence count (30). To determine 

fraction of the microbial community represented by the dereplicated MAG set, read-derived 

OTU sequences were compared to the ribosomal protein marker genes from the recovered 

MAGs using the singlem appraise --imperfect --sequence_identity 0.89 command. Read-based 

OTU sequences with ≥89% global sequence identity were determined to be from the same genus 

(30).  

 

MAGs that were selectively enriched during the SEP, non-SEP, or Spring-2015 ECF 
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To determine which lineages were differentially abundant between the SEP, non-SEP, and 

Spring-2015 ECF periods, the relative abundance profiles of all MAGs were compared across all 

time points.  All statistical analyses were performed using sciPy (31) in the python programming 

environment (32). The mean and statistical significance of the difference was analyzed using the 

Mann-Whitney U test. All p-values that were affected by multiple testing were corrected for 

false discovery using the Benjamini-Hochberg procedure.  

 

Identification of nifH genes from unbinned metagenomic contigs 

Metagenomic contigs were annotated with Prodigal using the -p meta option. The ORFs were 

searched with hmmsearch using the K02588 hmm profile and filtered with the predefined 

threshold from KOfam (28). The gene sequences were dereplicated with a cutoff of 95% 

sequence identity using CD-HIT (33). The genes were compared against proteins from GTDB 

r89 database (34) to infer their taxonomic affiliations. 

 

Read mapping and coverage profile of the nifH gene sequences 

Coverage profile of the nifH gene sequences from the MAGs and metagenome generated 

using CoverM v0.3.1 with the ‘contig’ command and a cutoff of 95% minimum identity and 

minimum aligned read length of 75% of each read. Coverage of each gene sequence was 

calculated with the CoverM ‘trimmed_mean’ option.  

 

Weighted Gene Co-Expression Network Analysis 

To identify assemblages of families highly correlating with carbon flux, Weighted Gene 



 

8 

Co-Expression Network Analysis (WGCNA) was performed using the R package WGCNA (35).  

WGCNA is used in systems biology to identify clusters (modules) of temporally correlated gene 

expression or taxon abundance profiles, which can be related to external sample traits, in this 

case carbon flux values. A co-expressed (or co-occurring) network of taxon abundances was 

represented mathematically using an adjacency matrix that expresses pairwise similarities. 

Specific modules were then identified by hierarchical clustering. Module associations were 

explored, by examining first principal component of the module (known as the module 

eigengene). In our analyses, module and eigengene structure of the WGCNA fitted networks 

interrelate taxa whose abundances were highly correlated with the magnitude of carbon flux. In 

combination with module membership and global trait significance values, we identified specific 

taxonomic groups that were either positively or negatively correlated with carbon flux. For our 

data, SSU rRNA read counts derived from the metatranscriptome time-series were aggregated by 

family or higher, if the resolution did not allow for identification at the family level. Then, the 

dataset was rarefied to the sample with the lowest number of total reads and a transformation was 

performed using the R “DeSeq2” package variance stabilizing transformation function vst() (11, 

36). Families with fewer than 200 reads associated with them were removed from the dataset 

before further analysis. Modules were defined using a soft-threshold Pearson correlation in 

conjunction with a topological overlap distance metric and Ward’s Hierarchical Agglomerative 

Clustering Method. Softthresholding powers were chosen using the pickSoftThreshold() 

WGCNA function. Soft thresholding power was set to 10 and the minimum module size was set 

at 15 taxa. Visualization of the resulting modules and their correlation with carbon flux was 

performed using Cytoscape (37). 
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Random Forest Models 

To further define rRNA-based taxon associations with SEP events a Random Forest 

classification and regression tree machine-learning model was built using the R package 

randomForest() (38). Using a bagging approach, random forest constructs “forests” of multiple 

decision trees independently from a bootstrap sample of the dataset. To avoid overfitting, each 

node, or decision point, was split using a best abundance threshold among a subset of predictors 

randomly selected rather than using the entire representative dataset. The best split was determined 

based on the Gini criterion (a variation of entropy measures usually used for decision trees). New 

data were mapped along the training set trees. Each tree yielded a classification and the majority 

votes among all the trees were counted and a prediction is assigned. An out-of-bag-error-rate 

(OOB) was estimated to evaluate the accuracy of classifications. Because our dataset has relatively 

few samples, partitioning a training set and testing was not possible, and so our trained model was 

not directly validated on independent data. Instead, we used the mean of squared residuals and 

percent variance explained as performance metrics. Permutation and cross-validation tests were 

also performed to assess the accuracy of our model. Due to large differences in their relative 

abundances, we performed Random Forest models on Eukaryotes and Prokaryotes separately. To 

decrease dataset noise, rare features were removed (taxonomic groups with less than 200 reads 

assigned to them) and a z-scale transformation was done before running the model. Our final 

Prokaryote model was built with 10,001 trees and 32 variables were tried at each split. The OOB 

estimate was 4.76%, and our permutation test (n = 100) showed the model was significant (P < 

0.05). The cross-validation test results showed both high accuracy (95.2%) and Kappa (81.4%) 

values. The eukaryotic Random Forest model had a higher OOB estimate at 14.29%, and lower 

cross-validation accuracy (85.7%) and Kappa values (15.8%), the permutation test (n = 100) 
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yielded significant results (P < 0.05). Error tables with mean decrease in accuracy of the model for 

each taxa for both models are provided in Datasets S8 and S9. 

 

Correlation network analyses of sinking particle-associated bacteria and eukaryotes 

Correlation networks were inferred between the 2259 families of bacteria, archaea and 

eukaryotes using FastSpar(v0.0.10) (39), an efficient C++ implementation of the SparCC, which 

is based on the dbOTU3 algorithm (39-41).  SparCC uses a log ratio transformation and iteratively 

calculates correlations between taxa assuming a sparse network. Correlations between Bacteria, 

Archaea and Eukaryotes were based on a distribution-based clustering method dbOTU3, 50 

iterations and a cut-off threshold of 0.40 (p < 0.05) (41).  A permutation-based approach was used 

to assess correlation significance. From the original count data, 1000 bootstrap counts were 

generated using the command fastspar_bootstrap. From the randomly permuted data, p-values 

were calculated using fastspar_pvalues. Only interdomain correlation values calculated were 

retained while correlations between families within prokaryota or eukaryote were eliminated from 

the analysis. Using the same count table, a Kendall correlation test between taxa and carbon flux 

values was performed using the cor.test function in the R package (v3.6.0) “Stats”(42). Only 

correlations with p-values < 0.05 were considered significant. Using the above matrices, 

insignificant values were eliminated from the data frames.  The network was visualized using the 

Cytoscape (v3.7.2)  software to identify the most significant positive correlations between groups 

and carbon flux (37).  

Additionally, Kendall Tau correlation tests were performed on SSU rRNA abundance data, to 

identify taxa that were specifically enriched during the Spring-2015 ECP (SI Appendix Figure S9; 

Dataset S9). Only correlation values that were found to be significant (P = 0.05) were retained. 
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Taxa with less than 5,000 SSU rRNA reads across all samples, or those that had a negative Kendall 

correlation value, were eliminated for visualization purposes (SI Appendix Figure 9). 

 

Data visualization 

Figures were generated using pheatmap (43) and ggplot2 (44) package in R (11) and further 

refined using Adobe Illustrator.   
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Figure S1.  
Total particulate carbon (PC) and nitrogen (PN) fluxes at 4000 m during 2014-2016.  

Solid and dashed horizontal lines represent the mean and 150% of the mean annual PC and PN 

flux values, respectively. Points above the dotted lines represent large flux events. The grey 

shaded area represents the Summer Export Pulse (SEP), and red shaded area the Spring-2015 

ECF event.  The values for mean annual PC-flux and PN-flux were 230.4 and 12.96 umol/m2/d, 

respectively. Values for PC and PN represent duplicate values in 2014 and 2015 (due to sample 

availability), and triplicate values for 2016.  The average percent difference for all duplicate 

measurements in 2014 was 4% for PC, and 5%, for PN. The average percent difference for all 

duplicate measurements in 2015 was 2.9% for PC, and 11.9%, for PN.  In 2016, the coefficients 

of variation from all triplicate measurements for PC ranged from 0 to 0.06, and for PN from 0.01 

to 0.17.  
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Figure S2. Community profiles based on SSU rRNA gene abundances from metagenomes 

(DNA) of sinking particles collected at 4,000 m from 2014 -2016.  

A. Total small subunit rRNA gene reads recovered from bacteria plus archaea, and eukaryotes. 

B. Recovery of eukaryotic SSU rRNAs in the sediment trap time-series. C. Recovery of specific 

bacterial and archaeal SSU rRNAs in the sediment trap time-series. Samples collected during the 

summer export pulse (SEP) are outlined in black.  
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Figure S3. Relative abundance of specific MAGs assembled from metagenomes of sinking 
particles collected at 4,000 m from 2014 - 2016.  
The heat map displays the relative abundance of 121 MAGs determined by read mapping from 
63 individual sediment trap sample time points (columns), during 2014 (orange), 2015 (green), 
and 2016 (blue). Summer export pulse (SEP) time periods are shaded in grey, and Spring-2015 
ECF time periods shaded in orange. MAGs significantly enriched (P < 0.05) during SEP period 
are displayed in the top panel, those in the Spring-2015 ECF in the middle panel, and all others 
(Non-ECF) are displayed in the bottom panel. 
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Figure S4. Eukaryotic taxa enriched in rRNA abundance during the Spring-2015 ECF 

period.  

Heat map showing eukaryotic taxa that were significantly enriched in SSU rRNA abundances (P 

< 0.05) based on Kendall’s method during the Spring-2015 ECF period. Values were calculated 

proportionately across rows. Samples collected during the ECF periods are outlined in dark black 

(Spring-2015) or light black (SEP periods in 2015 and 2016).   Only taxa with >5000 reads 

across the time series are shown.  
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Figure S5. Changes in the abundance of MAGs that encoded carbon fixation genes on 

sinking particles collected at 4,000 m from 2014 - 2016.  

Key metabolic pathways encoded by different MAGs driving carbon fixation. All MAGs found 

to encode these pathways are shown in the plots.  A. Calvin-Benson-Bassham cycle and B. 3-

Hydroxyproprionate bi-cycle. The area chart represents cumulative abundance of the MAGs 

contributing to the specific metabolic process. The heatmap represents the relative contribution 

of the individual MAG to the total abundance of the specific metabolic process.  The symbols in 

solid black to the right of the heatmap indicate those MAGs that positively correlated with either 

the SEP time period (circles), the Spring-2015 ECF (squares), or carbon flux (polygon).  Empty 

symbols indicate no correlation found.  The time periods of the summer export pulse (SEP) are 

shaded in darker grey.    
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Figure S6. Relative abundance of nifH genes recovered from metagenomes 
of sinking particles collected at 4,000 m from 2014 - 2016. 
A. Violin plots summarizing the average mean coverage of nifH genes recovered from MAGs 
and orphan contigs across all metagenomic samples. The nifH genes were separated into three 
groups (MAGs, diazotrophic, and heterotrophic orphan genes) (See Supplementary Table 5 for 
top blast hits and coverage values of the orphan genes). Coverage values were calculated after 
removing the 5% of nucleotide positions with the highest and lowest coverage. B. Area chart 
representing the cumulative coverage values of the nifH genes by taxa across the three year 
metagenomic time series. The time periods of the summer export pulse (SEP) are shaded in 
darker grey.   
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Figure S7. Correlations of rRNA-based taxon abundances with carbon-flux via WGCNA 

analyses.  

A. Eigengenes representing the relative abundance of four modules identified in a weighted 

network analysis are shown with module eigengene to carbon flux relationship denoted by node 

color for each of the four modules. The edge color represents individual taxon global 

significance of carbon flux (central grey node) from most negative to most positive (blue to red). 

The size of the nodes represents the cumulative relative abundance in the module.    

B. The cumulative relative abundances of taxa in each of the four WGCNA modules is plotted 

below the corresponding carbon flux values (red line) and nitrogen flux values (blue line).  

Module 1 positively correlates with elevated carbon flux.  See Dataset S4 for the taxon 

composition of each WGCNA module and Methods for more information. 
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Figure S8. Random Forest Mean decrease in accuracy ranking for Prokaryote (Bacteria 

and Archaea) or Eukaryote models.  

Left panel: Top 30 bacterial and archaeal taxa ranked by mean decrease in accuracy for a 

Random Forest classification model run using bacterial and archaeal SSU rRNAs. For the 

models, a total of 10,001 trees were built. Left Panel:Top prokaryotic taxa ranked by mean 

decrease in accuracy for a Random Forest classification model run using Prokaryote SSU 

rRNAs. Right panel: Top 30 eukaryotic taxa ranked by mean decrease in accuracy for a Random 

Forest classification model run using Eukaryote SSU rRNAs. Specific details on model testing 

are further provided in the Methods. 
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Figure S9. Prokaryote-Eukaryote network associations determined from SSU rRNA 

abundance correlations to carbon flux. 

Correlations between Bacteria, Archaea and Eukaryotes were based on a distribution-based 

clustering method dbOTU3 (39), 50 iterations and a cut-off threshold of 0.40 (p < 0.05). Kendall’s 

Tau coefficient calculated between taxonomic groups and carbon flux values are denoted by the 

node size, with a cutoff threshold of 0.30 assigned (p < 0.05). The larger the node size, the greater 

the positive correlation of the taxon with carbon flux.  Nodes are colored by higher taxonomic 

level and Prokaryotes and Eukaryotes assigned by node shape. 
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Family Genus Percent of total 
reads (MT) 

Percent of  
Campylobacterales 

reads (MT) 

Percent of total 
reads (MG) 

Percent of  
Campylobacterales 

reads (MG) 

Arcobacteraceae Arcobacter 34.31% 99.37% 16.36% 99.37% 

Sulfurovaceae Sulfurovum 0.15% 0.45% <0.01% 0.45% 

Sulfurovaceae Nitratifractor <0.01% <0.01% <0.01% <0.01% 

Thiovulaceae Sulfurimonas 0.03% 0.09% <0.01% 0.09% 

Thiovulaceae Sulfuricurvum 0.01% 0.04% <0.01% 0.04% 

Thiovulaceae Thiovulum <0.01% 0.01% <0.01% 0.01% 

Sulfurospirillaceae Sulfurospirillum 0.01% 0.04% 0.01% 0.04% 

Helicobacteraceae uncultured 0.01% 0.06% 0.01% 0.06% 

Campylobacteraceae Campylobacter <0.01% <0.01% 0.08% <0.01% 

Nitratiruptoraceae Hydrogenimonas <0.01% <0.01% 0.01% <0.01% 

Other  <0.01% <0.01% <0.01% <0.01% 

Total  34.53% 100% 16.47% 100% 
 

Table S1. Top 10 most abundant Campylobacterales genera represented in the SSU rRNA identified from the sediment trap 
metatranscriptomes (MT), organized by percent of total reads in each family. Respective metagenomic read percentages (MG) are also 
shown.  

 

 

 

 

 

 

 

 



Table S2. Top 32 most abundant Gammaproteobacteria genera represented in the SSU rRNA identified from the sediment trap 
metatranscriptomes (MT) and organized by percent of total reads in each order. Respective metagenomic read percentages (MG) are 
also shown.   -, undesignated 

Order  Family Genus Percent of total 
reads (MT) 

Percent of 
Gammaproteobacteria 

reads (MT) 

Percent of total 
reads (MG) 

Percent of 
Gammaproteobacteria 

reads (MG) 

Alteromonadales Colwelliaceae Colwellia 17.94% 45.81% 10.87% 32.46% 
Alteromonadales Moritellaceae Moritella 6.57% 16.76% 7.92% 23.65% 
Alteromonadales Shewanellaceae Psychrobium 1.73% 4.43% 1.51% 4.50% 
Alteromonadales Shewanellaceae Shewanella 1.07% 2.73% 2.71% 8.10% 
Alteromonadales Pseudoalteromonadaceae Pseudoalteromonas 1.02% 2.60% 0.75% 2.23% 
Alteromonadales Colwelliaceae Thalassotalea 0.57% 1.44% 0.35% 1.05% 
Alteromonadales Pseudoalteromonadaceae - 0.48% 1.24% 0.11% 0.33% 
Alteromonadales Colwelliaceae - 0.46% 1.18% 0.20% 0.59% 
Alteromonadales Psychromonadaceae Psychromonas 0.33% 0.84% 0.29% 0.86% 
Alteromonadales Alteromonadaceae Alteromonas 0.16% 0.42% 0.12% 0.36% 
Alteromonadales Moritellaceae Paramoritella 0.16% 0.40% 0.22% 0.65% 
Alteromonadales Shewanellaceae Ferrimonas 0.09% 0.24% 0.06% 0.17% 
Alteromonadales Psychromonadaceae Agarivorans 0.07% 0.19% 0.01% 0.03% 
Alteromonadales Idiomarinaceae Idiomarina 0.06% 0.16% 0.39% 1.16% 
Oceanospirillales Nitrincolaceae Profundimonas 3.08% 7.86% 1.96% 5.87% 
Oceanospirillales Oleiphilaceae Oleiphilus 0.49% 1.24% 0.09% 0.27% 
Oceanospirillales Saccharospirillaceae Oleispira 0.47% 1.20% 0.15% 0.44% 
Oceanospirillales Saccharospirillaceae - 0.35% 0.90% 0.13% 0.39% 
Oceanospirillales Kangiellaceae Aliikangiella 0.33% 0.85% 0.11% 0.34% 
Oceanospirillales Saccharospirillaceae -  0.26% 0.67% 0.04% 0.13% 
Oceanospirillales Nitrincolaceae uncultured 0.15% 0.38% 0.08% 0.23% 
Oceanospirillales Marinomonadaceae Marinomonas 0.07% 0.19% 0.06% 0.19% 
Vibrionales Vibrionaceae Vibrio 0.36% 0.91% 0.48% 1.45% 
Vibrionales Vibrionaceae Photobacterium 0.28% 0.70% 0.17% 0.51% 
Vibrionales Vibrionaceae Enterovibrio 0.07% 0.19% 0.01% 0.02% 
Cellvibrionales Spongiibacteraceae BD1-7 clade 0.22% 0.56% 0.23% 0.69% 
Cellvibrionales Halieaceae Halioglobus 0.21% 0.54% 0.23% 0.67% 
Cellvibrionales Cellvibrionaceae uncultured 0.12% 0.31% 0.05% 0.16% 
Cellvibrionales Halieaceae OM60(NOR5) clade 0.07% 0.18% 0.15% 0.44% 
Cellvibrionales Spongiibacteraceae Sinobacterium 0.07% 0.17% 0.03% 0.09% 
Nitrosococcales Methylophagaceae Methylophaga 0.10% 0.26% 0.08% 0.23% 
Steroidobacterales Woeseiaceae Woeseia 0.09% 0.22% 0.15% 0.45% 
Other   1.67% 4.23% 3.79% 11.29% 
Total   39.17% 100% 33.50% 100% 
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Table S3. Top 30 most abundant Alphaproteobacteria genera represented in the SSU rRNA identified from the sediment trap 
metatranscriptomes (MT) and organized by percent of total reads in each order. Respective metagenomic read percentages (MG) are 
also shown. -, undesignated 

Order Family Genus Percent 
of reads 

(MT) 

Percent of 
Alphaproteobacteria 

reads (MT) 

Percent 
of reads 

(MG) 

Percent of 
Alphaproteobacteria 

reads (MG) 
Rhodobacterales Rhodobacteraceae Tropicibacter 0.08% 4.35% 0.15% 5.61% 
Rhodobacterales Rhodobacteraceae Sedimentitalea 0.06% 3.55% 0.13% 4.82% 
Rhodobacterales Rhodobacteraceae Thalassobius 0.05% 2.66% 0.12% 4.61% 
Rhodobacterales Rhodobacteraceae Ruegeria 0.04% 2.20% 0.13% 5.05% 
Rhodobacterales Rhodobacteraceae Roseovarius 0.03% 1.74% 0.03% 1.15% 
Rhodobacterales Rhodobacteraceae Loktanella 0.03% 1.71% 0.04% 1.60% 
Rhodobacterales Rhodobacteraceae Leisingera 0.03% 1.50% 0.04% 1.56% 
Rhodobacterales Rhodobacteraceae Aestuariivita 0.02% 1.34% 0.03% 1.21% 
Rhodobacterales Rhodobacteraceae Phaeobacter 0.02% 1.21% 0.02% 0.85% 
Rhodobacterales Rhodobacteraceae Shimia 0.02% 0.90% 0.03% 1.30% 
Rhodobacterales Rhodobacteraceae Pseudophaeobacter 0.02% 0.87% 0.03% 1.08% 
Rhodobacterales Rhodobacteraceae Dinoroseobacter 0.02% 0.83% 0.02% 0.63% 
Rhodobacterales Rhodobacteraceae Sulfitobacter 0.01% 0.80% 0.03% 0.97% 
Rhodobacterales Rhodobacteraceae Actibacterium 0.01% 0.80% 0.01% 0.53% 
Rhodobacterales Rhodobacteraceae Thalassococcus 0.01% 0.72% 0.02% 0.58% 
Rhodobacterales Rhodobacteraceae HIMB11 0.01% 0.68% 0.01% 0.52% 
Rhodobacterales Rhodobacteraceae Roseobacter 0.01% 0.59% 0.01% 0.33% 
Rhodobacterales Rhodobacteraceae Tropicimonas 0.01% 0.56% 0.01% 0.35% 
Caulobacterales Hyphomonadaceae - 0.22% 12.29% 0.14% 5.35% 
Caulobacterales Parvularculaceae Parvularcula 0.05% 2.65% 0.01% 0.53% 
Caulobacterales Hyphomonadaceae Maricaulis 0.03% 1.89% 0.02% 0.65% 
Caulobacterales Hyphomonadaceae Oceanicaulis 0.02% 0.92% 0.01% 0.33% 
Rhizobiales Rhizobiaceae Pseudahrensia 0.05% 2.75% 0.04% 1.42% 
Rhizobiales Hyphomicrobiaceae Filomicrobium 0.02% 1.25% 0.03% 0.96% 
Rhizobiales Stappiaceae Labrenzia 0.02% 1.22% 0.05% 1.72% 
Rhizobiales Rhizobiaceae Lentilitoribacter 0.01% 0.74% 0.02% 0.92% 
Sphingomonadales Sphingomonadaceae Erythrobacter 0.09% 5.20% 0.10% 3.71% 
Sphingomonadales Sphingomonadaceae Altererythrobacter 0.02% 1.14% 0.04% 1.46% 
Parvibaculales PS1 clade Pseudovibri 0.03% 1.57% 0.08% 2.85% 
Rickettsiales Rickettsiaceae Candidatus Megaira 0.03% 1.44% 0.01% 0.36% 
Other   0.95% 39.92% 1.25% 46.98% 
Total   2.05% 100% 2.66% 100% 



 

 

Order Family Percent of 
reads 
(MT) 

Percent of 
Deltaproteobacteria 

reads (MT) 

Percent of 
reads 
(MG) 

Percent of 
Deltaproteobacteria 

reads (MG) 
NB1-j clade - 0.35% 28.63% 0.70% 43.64% 

Myxococcales - 0.18% 14.31% 0.11% 6.77% 

Myxococcales Sandaracinaceae 0.10% 7.90% 0.05% 2.88% 

Myxococcales Nannocystaceae 0.06% 5.06% 0.07% 3.99% 

Myxococcales Haliangiaceae 0.02% 1.57% 0.01% 0.79% 

Myxococcales - 0.02% 1.59% 0.02% 1.44% 

Bdellovibrionales Bacteriovoracaceae 0.16% 13.23% 0.11% 7.01% 

Bdellovibrionales Bdellovibrionaceae 0.12% 9.98% 0.12% 7.47% 

Oligoflexales Oligoflexaceae 0.05% 4.43% 0.15% 9.14% 

PB19 clade - 0.03% 3.20% 0.04% 2.44% 
Desulfarculales Desulfarculaceae 0.01% 1.06% 0.03% 2.10% 

Desulfobacterales Desulfobacteraceae 0.01% 0.85% 0.02% 1.01% 

RCP2-54 clade - 0.01% 0.73% 0.02% 1.14% 

SAR324 clade - 0.01% 0.50% 0.02% 1.25% 

Bradymonadales - 0.01% 0.49% NA NA 

Other  0.09% 6.47% 0.15% 8.93% 

Total  1.23% 100% 1.63% 100% 

Table S4. Top 20 most abundant Deltaproteobacteria families represented in the SSU rRNA identified from the sediment trap 
metatranscriptomes (MT) and organized by percent of total reads in each order. Respective metagenomic read percentages (MG) are 
also shown.  -, undesignated 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S5. Top 31 most abundant Bacteroidetes families represented in the SSU rRNA identified from the sediment trap 
metatranscriptomes (MT) and organized by percent of total reads in each class. Respective metagenomic read percentages (MG) are 
also shown.  -, undesignated 

Class Order Family Percent of 
reads (MT) 

Percent of 
Bacteroidetes 
reads (MT) 

Percent of 
reads (MG) 

Percent of 
Bacteroidetes 
reads (MG) 

Bacteroidia Flavobacteriales Flavobacteriaceae 1.13% 31.37% 1.62% 45.55% 
Bacteroidia Flavobacteriales Crocinitomicaceae 0.84% 23.14% 0.59% 16.62% 
Bacteroidia Flavobacteriales Cryomorphaceae 0.59% 16.32% 0.31% 8.83% 
Bacteroidia Flavobacteriales NS9 marine group 0.08% 2.19% 0.26% 7.40% 
Bacteroidia Flavobacteriales NS7 marine group 0.03% 0.77% 0.02% 0.58% 
Bacteroidia Flavobacteriales Weeksellaceae <0.01% 0.09% 0.01% 0.26% 
Bacteroidia Flavobacteriales Schleiferiaceae <0.01% 0.05% <0.01% 0.13% 
Bacteroidia Cytophagales Cyclobacteriaceae 0.40% 11.09% 0.30% 8.49% 
Bacteroidia Cytophagales Flammeovirgaceae 0.02% 0.59% 0.01% 0.33% 
Bacteroidia Cytophagales Amoebophilaceae 0.01% 0.18% 0.02% 0.43% 
Bacteroidia Cytophagales Cytophagaceae <0.01% 0.12% <0.01% 0.09% 
Bacteroidia Cytophagales Microscillaceae <0.01% 0.09% <0.01% 0.10% 
Bacteroidia Cytophagales - <0.01% 0.07% <0.01% 0.04% 
Bacteroidia Cytophagales Bernardetiaceae <0.01% 0.03% <0.01% 0.05% 
Bacteroidia Cytophagales Hymenobacteraceae <0.01% 0.03% <0.01% 0.03% 
Bacteroidia Chitinophagales Saprospiraceae 0.37% 10.26% 0.27% 7.58% 
Bacteroidia Chitinophagales - 0.03% 0.76% 0.01% 0.32% 
Bacteroidia Chitinophagales - 0.02% 0.52% 0.01% 0.29% 
Bacteroidia Chitinophagales - 0.02% 0.43% 0.01% 0.26% 
Bacteroidia Chitinophagales - <0.01% 0.14% <0.01% 0.11% 
Bacteroidia Chitinophagales Chitinophagaceae <0.01% 0.03% <0.01% 0.05% 
Bacteroidia Sphingobacteriales Lentimicrobiaceae 0.01% 0.27% 0.01% 0.37% 
Bacteroidia Sphingobacteriales - 0.01% 0.18% 0.01% 0.18% 
Bacteroidia Sphingobacteriales NS11-12 marine group <0.01% 0.11% <0.01% 0.09% 
Bacteroidia Sphingobacteriales - <0.01% 0.07% <0.01% 0.01% 
Bacteroidia Sphingobacteriales - <0.01% 0.07% <0.01% 0.06% 
Bacteroidia Sphingobacteriales - <0.01% 0.06% <0.01% 0.01% 
Bacteroidia Sphingobacteriales - <0.01% 0.05% <0.01% 0.09% 
Bacteroidia Bacteroidales Prolixibacteraceae <0.01% 0.07% <0.01% 0.06% 
Bacteroidia Bacteroidales - <0.01% 0.04% <0.01% 0.03% 
Bacteroidia Bacteroidales - <0.01% 0.04% <0.01% 0.01% 
Bacteroidia Bacteroidales Bacteroidetes BD2-2 <0.01% 0.04% <0.01% 0.07% 
Bacteroidia Bacteroidales Marinifilaceae <0.01% 0.03% 0.01% 0.24% 
Bacteroidia Bacteroidales - <0.01% 0.03% <0.01% <0.01% 
Bacteroidia ML602M-17 marine metagenome <0.01% 0.11% <0.01% <0.01% 
Rhodothermia Rhodothermales Rhodothermaceae <0.01% 0.10% 0.01% 0.35% 
Rhodothermia Balneolales Balneolaceae 0.01% 0.18% 0.01% 0.29% 
Other   0.01% 0.31% 0.03% 0.58% 
Total   3.62% 100% 3.56% 100% 



Table S6. Top 31 most abundant SAR (Stramenopiles, Alveolates, and Rhizaria) classes represented in the SSU rRNA identified from 
the sediment trap metatranscriptomes (MT) and organized by percent of total reads in each supergroup. Respective metagenomic read 
percentages (MG) are also shown.  

Supergroup Phylum Class Percent of reads 
(MT) 

Percent of SAR 
reads (MT) 

Percent of reads 
(MG) 

Percent of SAR 
reads (MG) 

Alveolata Ciliophora Intramacronucleata 3.61% 42.30% 0.52% 2.39% 
Alveolata Protalveolata Syndiniales 0.50% 5.89% 7.89% 35.88% 
Alveolata Dinoflagellata Dinophyceae 0.29% 3.45% 0.71% 3.25% 
Alveolata uncultured uncultured eukaryote 0.12% 1.35% 0.26% 0.06% 
Alveolata Ciliophora Postciliodesmatophora 0.05% 0.54% 0.04% 0.20% 
Rhizaria Cercozoa Ascetosporea 1.53% 17.92% 0.47% 2.13% 
Rhizaria Retaria Acantharia 0.31% 3.60% 0.95% 4.32% 
Rhizaria Cercozoa Imbricatea 0.26% 3.02% 0.07% 0.30% 
Rhizaria Cercozoa Phaeocalpida 0.22% 2.59% 0.54% 2.43% 
Rhizaria Cercozoa Phaeogromia 0.20% 2.31% 0.54% 2.45% 
Rhizaria Retaria Foraminifera 0.18% 2.13% 4.83% 21.99% 
Rhizaria Cercozoa Thecofilosea 0.16% 1.89% 0.16% 0.73% 
Rhizaria Cercozoa uncultured 0.16% 1.85% 0.26% 0.06% 
Rhizaria Cercozoa uncultured 0.09% 1.09% 0.18% 0.04% 
Rhizaria Retaria RAD B 0.09% 1.03% 0.14% 0.65% 
Rhizaria Retaria RAD C 0.06% 0.66% 0.20% 0.93% 
Rhizaria Retaria Polycystinea 0.05% 0.61% 3.57% 16.23% 
Rhizaria Cercozoa Cyranomonas 0.04% 0.52% 0.02% 0.07% 
Rhizaria Cercozoa Phaeoconchia 0.04% 0.48% 0.05% 0.24% 
Rhizaria Cercozoa Novel Clade 10 0.04% 0.46% 0.03% 0.14% 
Rhizaria Cercozoa Cercomonadidae 0.04% 0.44% 0.02% 0.09% 
Rhizaria Cercozoa Novel Clade Gran-3 0.03% 0.35% 0.04% 0.18% 
Rhizaria Cercozoa Granofilosea 0.02% 0.26% 0.01% 0.04% 
Rhizaria Cercozoa uncultured 0.02% 0.22% 0.06% 0.01% 
Rhizaria Cercozoa Gromia 0.02% 0.20% <0.01% 0.02% 
Rhizaria Cercozoa Phaeodina sp. Go1 0.02% 0.20% 0.02% 0.07% 
Rhizaria Cercozoa Glissomonadida 0.02% 0.19% 0.01% 0.06% 
Rhizaria Cercozoa Metromonadea 0.01% 0.17% <0.01% 0.01% 
Stramenopiles Ochrophyta Diatomea 0.09% 1.10% 0.06% 0.29% 
Stramenopiles MAST-3 MAST-3I 0.03% 0.31% 0.01% 0.03% 
Stramenopiles Labyrinthulomycetes Thraustochytriaceae 0.02% 0.24% 0.03% 0.12% 
Other   0.23% 2.64 0.29% 4.58% 
Total   8.54% 100% 21.98% 100% 



Phylum Class Subclass Percent of reads (MT) Percent of 
Metazoa reads 

(MT) 

Percent of reads 
(MG) 

Percent of 
Metazoa reads 

(MG) 
Mollusca Gastropoda Heterobranchia 2.57% 47.39% 1.92% 17.07% 
Mollusca Gastropoda Caenogastropoda 0.14% 2.62% 0.05% 0.46% 
Mollusca Bivalvia Pteriomorphia 0.10% 1.90% 0.24% 2.16% 
Mollusca Gastropoda Neritimorpha 0.02% 0.37% <0.01% 0.03% 
Mollusca Bivalvia Heteroconchia 0.01% 0.19% <0.01% 0.04% 
Mollusca Bivalvia Palaeoheterodonta 0.01% 0.10% <0.01% 0.01% 
Mollusca Bivalvia Protobranchia <0.01% 0.04% <0.01% 0.04% 
Mollusca Cephalopoda Coleoidea <0.01% 0.04% 0.04% 0.36% 
Cnidaria Hydrozoa Hydroidolina 1.57% 28.92% 6.72% 59.78% 
Cnidaria Hydrozoa Trachylinae 0.24% 4.35% 0.15% 1.38% 
Cnidaria Scyphozoa Semaeostomeae <0.01% 0.04% <0.01% 0.01% 
Cnidaria Scyphozoa Rhizostomeae <0.01% 0.03% <0.01% 0.01% 
Ctenophora Tentaculata Cydippida 0.23% 4.16% 0.04% 0.31% 
Ctenophora Nuda Beroida 0.03% 0.57% <0.01% 0.03% 
Ctenophora Tentaculata Lobata 0.01% 0.17% 0.01% 0.06% 
Ctenophora Tentaculata Platyctenida 0.01% 0.13% <0.01% 0.04% 
Ctenophora Tentaculata Lyrocteis sp. LMC-2016 <0.01% 0.08% <0.01% 0.02% 
Ctenophora Tentaculata Cestida <0.01% 0.07% <0.01% 0.02% 
Ctenophora Tentaculata uncultured eukaryote <0.01% 0.05% 0.01% 0.11% 
Chordata Tunicata Appendicularia 0.17% 3.10% 0.11% 1.00% 
Chordata Vertebrata Gnathostomata 0.01% 0.23% 0.28% 2.46% 
Chordata Tunicata Thaliacea 0.01% 0.12% 0.38% 3.37% 
Arthropoda Crustacea Maxillopoda 0.14% 2.58% 0.19% 1.70% 
Arthropoda Crustacea Malacostraca 0.01% 0.15% 0.03% 0.24% 
Arthropoda Hexapoda Insecta 0.01% 0.10% 0.01% 0.09% 
Arthropoda Crustacea Ostracoda 0.01% 0.09% 0.04% 0.36% 
Annelida Polychaeta Palpata 0.07% 1.29% 0.24% 2.16% 
Annelida - - 0.02% 0.29% NA NA 
Annelida Polychaeta Scolecida 0.02% 0.29% 0.48% 4.27% 
Annelida - - <0.01% 0.05% NA NA 
Other   0.02% 0.49% 0.27% 2.41% 
Total   5.42% 100% 11.23% 100% 

 

Table S7. Top 30 most abundant Metazoa subclasses represented in the SSU rRNA identified from the sediment trap 
metatranscriptomes and organized by percent of total reads in each phylum. Respective metagenomic read percentages are also shown. 
-, undesignated 
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Captions for Datasets S1 to S9 

 
Dataset S1. Geochemical chemical measurements of particulate carbon (PC) and 
particulate nitrogen (PN) fluxes.  
 
Dataset S2. Quality metrics and characteristics of the metagenome-assembled genomes.  
 
Dataset S3. Relative abundance profiles of the dereplicated MAGs. The relative abundance 
profile of MAGs across the 63 metagenomic timepoints. Taxa that correlated significantly with 
summer export pulse (SEP) events, elevated carbon flux (ECF) or the Spring-2015 ECF period 
are indicated. 
 
Dataset S4.   Dataset S9.   Kendall correlation analyses of eukaryote SSU rRNA taxa 
associated with the Spring-2015 ECF period. 
 
Dataset S5. Weighted Gene Co-Expression Network Analysis (WGCNA) of prokaryote and 
eukaryote rRNAs.  WGCNA results from rRNA abundance analyses, including p-values and 
module membership values for all modules for each taxon are shown. 
 
Dataset S6. KEGG module completeness of metabolisms of interest in MAGs.   Modules 
analyzed include Photosystem I, Photosystem II, Reductive pentose phosphate cycle (Calvin 
cycle), Nitrogen fixation, 3-Hydroxypropionate bi-cycle, and Anoxygenic photosystem II. 
 
Dataset S7. Top Genome Taxonomy Database (GTDB) similarities and coverage profiles of 
nifH genes recovered from the 63 metagenomic timepoints.   
 
Dataset S8.  Eukaryote Random Forest classification model output. Complete mean decrease 
in accuracy list for Eukaryote Random Forest classification model. Columns “SEP” and “non-
SEP” represent the normalized variable importance (normalized RF prediction accuracies) for 
taxa in SEP time periods, versus non-SEP time periods. 
 
Dataset S9. Prokaryote Random Forest classification model output. Complete mean decrease 
in accuracy list for Prokaryote Random Forest classification model.  Columns “SEP” and “non-
SEP” represent the normalized variable importance (normalized RF prediction accuracies) for 
taxa in SEP time periods, versus non-SEP time periods.  
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