## **Supplementary Materials**

## In vivo efficacy and metabolism of the antimalarial cycleanine and improved in vitro antiplasmodial activity of novel semisynthetic analogues

## Fidelia Ijeoma Uche<sup>1</sup>, Xiaozhen Guo<sup>2</sup>, Jude Okokon<sup>3</sup>, Imran Ullah<sup>4</sup>, Paul Horrocks<sup>4</sup>, Joshua Boateng<sup>5</sup>, Chenggang Huang<sup>2,\*</sup> and Wen-Wu Li<sup>1,\*</sup>

- <sup>1</sup> School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, United Kingdom; fiuche@yahoo.com (FU); w.li@keele.ac.uk (WL)
- <sup>2</sup> Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China; guoxzfj@yeah.net (XG); cghuang@simm.ac.cn (CH)
- <sup>3</sup> Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Nigeria; judeefiom@yahoo.com (JO)
- <sup>4</sup> School of Medicine, Keele University, Stoke-on-Trent, ST5 5BG, United Kingdom; Imran.Ullah@utsouthwestern.edu (IU); p.d.horrocks@keele.ac.uk (PH)
- <sup>5</sup> School of Science, University of Greenwich, Medway Campus, ME4 4TB, United Kingdom; J.S.Boateng@greenwich.ac.uk (JB)
- \* Correspondence: cghuang@simm.ac.cn (CH); w.li@keele.ac.uk (WL)

## LC-MS/MS analysis of metabolites

The twelve metabolites (M1-M12) of cycleanine (M0) in rat were tentatively identified using LC MS/MS and described as below.

Cycleanine hydroxylation metabolite (**M1**)

The retention time of the metabolite **M1** was 7.2 min, and its protonated molecular ion was m/z 639.3056  $[M+H]^+$  (elemental composition C<sub>38</sub>H<sub>43</sub>N<sub>2</sub>O<sub>6</sub>) with an increase of 16 Da over M0, suggesting that it was a hydroxylated metabolite of M0. The presence of a fragment ion m/z 621.2977 suggested that one molecule H<sub>2</sub>O was lost from its protonated molecular ion. The characteristic fragment ions m/z 206.0808, 327.1469, 416.1875, 175.0988 and 220.0964 increased 16 Da compared to the characteristic fragment ions of M0, also indicating that **M1** was a hydroxylated metabolite of cycleanine (Figure S4).

Cycleanine hydroxylation metabolite (**M2**)

The metabolite **M2** at retention time of 7.9 min gave a protonated molecular ion m/z 639.3056  $[M+H]^+$  with a 16 Da increase over M0, which was presumably another hydroxylated metabolite of M0. The fragment ion m/z 621.2963 suggested that one molecule of H<sub>2</sub>O was lost from the molecular ion peak (Figure S4).

Cycleanine demethylation and hydroxylated metabolites (M3)

The retention time of the metabolite **M3** was 7.9 min, and its protonated molecular ion was m/z 625.2911  $[M+H]^+$  with 2 Da increase from **M0** (Figure S4). The fragment ion m/z of 607.2784 in the secondary mass spectrum was generated after loss of one molecule of H<sub>2</sub>O, indicating the presence of a hydroxyl group. The ions m/z 298.1434, and 176.0691 suggested a loss of 14 Da by demethylation comparing to the corresponding fragment ions of M0, indicating that M3 is likely a demethylated and hydroxylated cycleanine metabolite.

N-demethyl cycleanine (M4) and didemethyl cycleanine (M5)

The retention times of the two metabolites **M4** and **M5** were close to 9.7 min. The protonated molecular ion of **M4** in the first-order MS was at m/z 609.2950 [M+H]<sup>+</sup>, which was 14 Da less than that of **M0** (Figure S4). The fragment ions at m/z 176.0704, 145.0880, and 298.1435 were also 14 Da less than the corresponding fragment ions of M0, and other fragment ions m/z 190.085, 312.1580, 204.1020 were the same as M0 fragments, so presumably a N-demethylated metabolite. In the first order MS of M5, the quasi-molecular ion m/z 595.2799 was 28Da less than that of **M0**, whereas the fragment ion m/z 284.1282 in the MS/MS was 28 Da less than the corresponding fragment of M0. The ions m/z 578.2505, 176.0703 and 145.0879 were 14 Da less than those of M0 fragment ions. Overall, **M5** was presumably a didemethylated cycleanine metabolite.

Cycleanine dehydro and hydroxylated metabolite (M6)

The metabolite **M6** (Rt 10.4 min) showed the protonated molecular ion at m/z 637.2905 with 14 Da higher than that of **M0** (Figure S4). The fragment ions at m/z 157.0879, 188.0656, 202.0855, and 309.1381 in the MS/MS spectra had the characteristic fragment ions with a decrease of 2 Da, while an ion at m/z 328.1553 increased 16Da compared to the characteristic fragment of **M0**, suggesting that this metabolite may be a dehydrogenation and hydroxylation metabolite of M0, and the hydroxylation and dehydrogenation sites may be a different tetrahydrobenzylisoquinoline moiety. Cycleanine dehydrogenation and dihydroxylated metabolites (**M7**)

The metabolite **M7** had a retention time of 11.1 min with the protonated molecular ion peak at m/z 653.2855  $[M+H]^+$  (elemental composition C<sub>38</sub>H<sub>41</sub>N<sub>2</sub>O<sub>8</sub>) with 30 Da more than M0 (Figure S4). Secondary fragment ions at m/z 635.2754  $[M-H_2O]^+$ , 157.0879, 202.0855, 188.0656, 309.1381 were 2 Da less than M0 characteristic fragment ions. In addition, a characteristic fragment ion at m/z 326.1384s was 14 Da greater than that of M0, indicating that the dehydrogenation site and one of the

hydroxylation sites were in the same tetrahydro-benzylisoquinoline fragment, so this metabolite was presumed to be a dehydrogenated and dihydroxylated metabolite of cycleanine.

Cycleanine dehydrogenation and dihydroxylated metabolite **M7** isoforms (**M8**, **M9**, **M11**) The retention times of the metabolites **M8**, **M9** and **M11** were 12.1, 13.0 and 13.6 min, respectively, and their protonated ions were all m/z 653.2868 [M+H]<sup>+</sup>, and the characteristic fragment ions at m/z 312.1586, 190.0884, 204.1031 were consistent with the corresponding fragments of **M0** (Figure S4), suggesting that they were isomeric metabolites of **M7** as the dehydrogenated and dihydroxylated cycleanine.

Cycleanine dehydrogenation metabolite (M10)

The retention time of metabolite **M10** was 13.6min with the protonated molecular ion at m/z 621.2966 [M+H]<sup>+</sup>, decreased by 2Da comparing to M0. The fragment ions in the second-order MS m/z 157.0883, 188.0725, 202.0860, 310.1435, and 398.1739, showed similar pattern to the corresponding fragments of M0 as 159.1028, 190.0863, 204.1013, 312.1572 and 400.1893, but with a decrease of 2 Da (Figure S4). Therefore, **M10** was presumed to be a dehydrogenation metabolite of cycleanine.

Cycleanine dehydro and hydroxylated metabolite (M12)

The metabolite **M12** with retention time at 14.1 min gave a protonated molecular ion at m/z 637.2905 [M+H]<sup>+</sup>. The fragment ions 190.0874, 204.013 and 312.1237 in the MS/MS spectra were the same as the corresponding characteristic fragments of **M0**, while fragment ions at m/z 218.0824, 326.1381, and 414.1684 increased by 14 Da compared to the corresponding characteristic fragments of **M0** (Figure S4). It was presumed that the sites of dehydrogenation and hydroxylation in this metabolite were in the same tetrahydro-benzylisoquinoline moiety.

Table S1: Curative activity and mean survival time (MST) of mice treated with cycleanine

| Treatment   | Dose<br>(mg/kg) | Parasitaemia (%)ª |               |               |               |               | MST<br>(day)ª           |
|-------------|-----------------|-------------------|---------------|---------------|---------------|---------------|-------------------------|
|             |                 | Day 3             | Day 4         | Day 5         | Day 6         | Day 7         | · • ·                   |
| Control     | -               | $12.8 \pm 1.0$    | 13.3 ±<br>1.2 | 15.3 ±<br>1.2 | 20.4 ± 2.1    | 30.2 ±<br>2.2 | $12.2\pm0.2$            |
| Cycleanine  | 25              | 12.7 ± 1.7        | 14.3 ±<br>2.1 | 13.3 ±<br>1.5 | 12.8 ±<br>1.2 | 10.1 ±<br>1.3 | 21.3 ± 0.8 <sup>b</sup> |
|             | 50              | $15.5 \pm 0.9$    | 13.3 ±<br>1.4 | 10.5 ±<br>1.0 | $6.0 \pm 1.0$ | 3.7 ± 1.1     | 24.8 ± 0.4 <sup>b</sup> |
| Chloroquine | 5               | 12.4 ± 0.5        | $2.1 \pm 0.2$ | 0.0           | 0.0           | 0.0           | 29.8 ± 0.2 <sup>b</sup> |

(1) during established *P. berghei* infection for 3 days.

<sup>a</sup> Values are expressed as mean  $\pm$  SEM (n = 6 in each group)

<sup>b</sup> Significant relative to control, p < 0.001.



Figure S1. Dose-response anti-plasmodial curves of BBIQ alkaloids (1-5).



Figure S2. HPLC ESI-MS/MS spectrum of cycleanine.



**Figure S3**. Extracted ion chromatograms of cycleanine (M0), its 5 metabolites (M2, M6, M7, M10 and M12) in plasma, 11 metabolites (M1-6, M7-9, M11-12) in urine of rat. M0, M1, M6, and M12 were present in both urine and plasma.



Figure S4. MS/MS spectra of cycleanine metabolites (M1-M12).



Figure S5 Possible metabolic pathway of cycleanine in rats.