

Expanded View Figures

Figure EV1.

Figure EV1. Generation and evaluation of Lmnb1 conditional knockout mouse line.

- A A schematic illustration of Lmnb1 conditional knockout mouse line (cKO).
- B Induction of EYFP in ANSCPs 10 days after the administration of TAM in the SGZ of DG.
- C, D Representative images of lamin B1 complete-loss cell (arrowhead) and non-EYFP ANPC (open arrowhead) (C), lamin B1 partial-loss cell (arrowhead), and non-EYFP ANPC (open arrowhead) (D).
- E The fractions of EYFP+ cells with lamin B1 deficiency for each cell type 10 days or 3 weeks after TAM administration (Total number of counted cells, 10 days; RGL-ANSCs. 81 cells, ANPCs = 116 cells, Neuroblasts = 74 cells from 3 animals; 3 weeks, RGL-ANSCs = 39 cells, ANPCs = 59 cells, neuroblasts = 84 cells from 3 animals). Lamin B1-deficient cells are defined as having 30% or more reduced levels of lamin B1 intensity compared to the averaged intensity of the same type of control cells.
- F A confocal image of lamin B1 deficiency in Ki67+ proliferating cells (arrows) 10 days after TAM infusion. Open arrows indicate lamin B1 deficient cells without Ki67.
- G The fraction of lamin B1-deficient cells in Ki67+ proliferating cells. Ki67+ non-RGL cells (others cells) show lamin B1 deficiency whereas only a few Ki67+ RGL-ANSCs exhibit laminB1 deficiency, implying the necessity for cellular proliferation to deplete lamin B1 proteins (Total number of counted cells, 10 days; RGL-ANSCs. 115 cells, non-RGL cells = 196 cells, from 3 animals; 3 weeks; RGL-ANSCs. 42 cells, non-RGL cells = 142 cells, from 3 animals).

Data information: Scale bars, 200 μ m in (B, left), 50 μ m in (B, right), 10 μ m (C, D, F).

Figure EV2.

Figure EV2. Increased age-related behavior in Lmnb1-cKO mice.

- A Rearing counts during the OF test. $F_{2.25} = 3.95$, *P = 0.032, ANOVA followed by Tukey-Kramer (n: WT = 10, WT-old = 7, Lmnb1-cKO = 11 for the OF test).
- B Average time spent on stereotypic behavior. F_{2, 25} = 7.15, P = 0.0035, ANOVA followed by Tukey–Kramer, *P < 0.05, **P < 0.01 (n: WT = 10, WT-old = 7, Lmnb1-cKO = 11 for the OF test).
- C Total resting time in the OF. $F_{(2, 25)} = 4.65$, P = 0.018, ANOVA followed by Tukey–Kramer, *P < 0.05 (n: WT = 10, WT-old = 7, Lmnb1-cKO = 11 for the OF test). D Total resting time in the peripheral area. $F_{2,25} = 12.34$, P = 0.00019, ANOVA followed by Tukey–Kramer, **P < 0.01, ***P < 0.001 (n: WT = 10, WT-old = 7, Lmnb1-cKO = 11 for the OF test).
- E Ratio of resting time between center and peripheral area. Kruskal–Wallis test followed by Dunn test, *P < 0.015, **P < 0.01 (n: WT = 10, WT-old = 7, Lmnb1-cKO = 11 for the OF test).
- F No significant changes in spontaneous alternation in Y-maze test. F_{2,25} = 0.12, P = 0.89, ANOVA (n: WT = 10, WT-old = 7, Lmnb1-cKO = 11).
- G Preference to novel object was not different among three groups $F_{2,25} = 3.39$, P = 0.45, ANOVA) (n: WT = 10, WT-old = 7, Lmnb1-cKO = 11 for the OF test).
- H Proportional body weight loss after 24-h food deprivation for the NSF test F225 = 6.11, P = 0.94, ANOVA) (n: WT = 6, WT-old = 7, Lmnb1-cKO = 6).
- Latency to feed in NSF test. Kruskal–Wallis test followed by Steel test, *P = 0.038, (n: WT = 6, WT-old = 7, Lmnb1-cKO = 6).

Data information: Data are presented as mean \pm SEM.

Figure EV3. Effects of lamin B1 loss on adult hippocampal neurogenesis.

- A Schematic of BrdU treatment and collection of brain tissue.
- B Representative images of BrdU staining in the DG 3 weeks after TAM administration. BrdU-positive cells were markedly increased in cKO mice.
- C Quantification of BrdU+ cells 3 weeks after TAM administration (*P = 0.021, t-test, n = 4).
- D Quantification of BrdU+ cells 2 months after TAM administration (***P = 0.0007, t-test, n = 3 for Control, 4 for cKO).
- E, F Orthogonal views of confocal images to identify cell type of EFYP+ cells.
- G Schematic of EdU treatment and collection of brain tissue.
- H Representative images of EdU-click staining in the DG. EdU-positive cells were markedly reduced in cKO mice.
- I Quantification of EdU-positive cells in the DG indicates that lamin B1 loss induces the prominent reduction of new cell generation in the DG similar to Cont-15M mice. **P < 0.01, ANOVA (P = 0.0009) followed by Tukey–Kramer test (n = 4 for each genotype).

Data information: Data are presented as mean \pm SD. Scale bars, 100 μm in (B), 50 μm in (E, F), and 200 μm in (H).

Figure EV4. Lamin B1 is essential for the survival of adult-born cells.

- A Quantification of EYFP+ NeuN+ neurons 2 months after TAM administration. *P = 0.042, t-test, n = 4).
- B Schematic of BrdU treatment and collection of brain tissue.
- C Representative images of BrdU staining 10 days or 2 months after TAM treatment. Scale bar = $250 \mu m$.
- D Quantification of BrdU-positive cells in each time point. Number of BrdU-positive cells was significantly higher at day 10 (*P = 0.049, t-test) or 3 weeks
- (*P = 0.019, t-test) after TAM in cKO mice, but not at 2 months (P = 0.12, t-test, n = 3 animals). Data represent mean \pm SD.
- E The survival ratio of BrdU+ cells from 10 days to 2 months after TAM treatment (*P = 0.015, t-test, n = 3). Data represent mean \pm SD.
- F $\hfill Representative images of active caspase3 2 months after TAM treatment. Scale bar = 20 <math display="inline">\mu m.$
- G–I Significant difference in the density of active caspase3 was observed 2 months after TAM treatment, but not 3 weeks or 6.5 months after TAM treatment (3 weeks, P = 0.86, n = 3, *t*-test; 2 months, *P = 0.02, n = 5-6, *t*-test; 6.5 months, P = 0.09, n = 4, ANOVA). Data are presented as mean \pm SD.
- J Experimental schema. RV:pSox2-Cre-GFP was injected into the DG of *Lmnb1*fl/fl:Ai3 or *Lmnb1*+/+:Ai3 mice and the morphology of EYFP+ newborn neurons was assessed at 21dpi. Scale bar = 20 μ m.
- K Dendritic reconstruction of RV-labeled neurons derived from WT and cKO mice. Scale bars = 20 μ m.
- L, M Total dendrite length (L) and total numbers of branches (M) were quantified (65 cells for control, 35 cells for cKO from 3 animals per genotype; total length, *P = 0.0147; number of branches, P = 0.099, Mann–Whitney test). Data are presented as mean \pm SEM.
- N Sholl analysis of neurite length. **P < 0.01, *P < 0.05 (t-test) (65 cells for control, 35 cells for cKO from 3 animals per genotype). Data are presented as mean \pm SEM.

Figure EV4.

Figure EV5. Gene pathways regulated by lamin B1 in NPCs.

- A Confirmation of lamin B1 depletion after the delivery of LV; pSox2-Cre. Closed white arrowheads indicate the depletion of lamin B1 immunoreactivity in right panels. Scale bar = 25 μm.
- B, C GO and KEGG pathway enrichment analyses of differentially expressed genes.
- D, E GO and KEGG enrichment analyses for lamin B1-directed upregulated genes.
- F Fold change expression of Bmp4 and Id1-4 from the transcriptomic analysis in cKO-NPCs, n = 3, DEseq2 for statistical test. Data are presented as mean \pm SEM.
- G qRT-PCR validation of Bmp4 and Id4 upregulation in cKO-NPCs (Bmp4, *P = 0.022; Id4, *P = 0.015, one-sample t-test, n = 3). Data are presented as mean \pm SD.