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I. SUPPLEMENTAL TABLES  
 
Supplemental Table S1. Public single cell sequencing datasets that were used in 
this study. 
 

Accession ID Experimental 
Protocol 

Data modalities  Pubmed ID 
(Reference)  

GSE74535 scM&T-seq Methylome and 
transcriptome 

26752769 
(Angermueller et al. 
2016) 

GSE121436  scM&T-seq Methylome and 
transcriptome 

31554804 (Hernando-
Herraez et al. 2019) 

GSE109262  scNMT-seq 

Methylome, 
transcriptome and 
nucleosome 
occupancy 

29472610 (Clark et al. 
2018) 

GSE121708  scNMT-seq 

Methylome, 
transcriptome and 
nucleosome 
occupancy 

31827285 (Argelaguet 
et al. 2019) 

GSE97179  snmC-seq  Methylome 28798132 (Luo et al, 
Science, 2017) 

 
Supplemental Table S2. Number of genes for which gene expression and DNA 
methylation have significant correlation (adjusted p-value < 0.01).  
Datasets: I:Hernando-Herraez et al. II: Angermueller et al. III: Clark et al. IV: Argelaguet et 
al. TSS, transcription start site; N, negative correlation; P, positive correlation.  
 
Dataset TSS+/-5kb TSS+/-2kb Gene Body 

 N P N P N P 

I 1 13 10 59 2 2 

II 20 10 13 43 12 2 

III 31 36 22 44 44 33 

IV 790 121 408 58 1696 397 
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Supplemental Table S3. Percentage of performance gain by ensemble learner over 
mean promoter demethylation (MPD) across datasets.  
Performance was measured by correlation of predicted gene activity and observed 
expression. Datasets: I:Hernando-Herraez et al. II: Angermueller et al. III: Clark et al. IV: 
Argelaguet et al. 
 

 
Test Dataset 

 I II III IV 

Training 
Dataset 

I  4% 15% 47% 

II 16%  18% 34% 

III 26% 15%  62% 

IV 25% 16% 26%  
 AVERAGE 22% 12% 20% 48% 
 
Supplemental Table S4. The effect of genes with CpG-poor promoters on the 
quality of meta-cells. 
 
CpG-poor promoters were defined as those whose number of CpG sites are ranked in the 
lowest 10 percentile. A total of 5,000 variably methylated promoters (VMPs) were used to 
compute the PCA, which was then used to compute the adjacency matrices. Adjacency 
difference means the difference in the adjacency matrices generated with and without 
CpG-poor promoters. Total edges means the number of edges (non-zero values) in the 
adjacency matrix. Datasets: I:Hernando-Herraez et al. II: Angermueller et al. III: Clark et 
al. IV: Argelaguet et al. 
 

Dataset 
#VM CpG 

poor 
promoters 

% VM CpG 
poor 

promoters 

Adjacency 
difference 

# Total 
edges 

% Adjacency 
difference 

I 9 0.18 212 2,625 8 

II 13 0.26 52 1,281 4 

III 88 1.76 234 2,247 10 

IV 13 0.26 1,096 14,112 8 

AVERAGE 30.8 0.6 398.5 5,066.3 7.5 
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II. SUPPLEMENTAL FIGURES 

 
Supplemental Fig. S1. Scatter plots showing the correlation between the promoters 
and gene body methylation and gene expression.  
Each row (I-IV) is a multi-omics dataset and each column is a region type (TSS +/-5kb, 
TSS +/-2kb, gene body). Datasets: I:Hernando-Herraez et al. II: Angermueller et al. III: 
Clark et al. IV: Argelaguet et al. For each plot, the X-axis shows the Spearman’s 
correlation coefficient and the Y-axis shows the negative log 10 p-value (BH-corrected). 
Each point is a gene. Significant (adjusted p-value < 0.01) correlations are colored in red. 
Blue dashed line marks the correlation coefficient of 0. 
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Supplemental Fig. S2. Violin plots showing the effect of using data from meta-cells, 
instead of individual cells for computation. 
The +/-5kbp flanking region of TSS was divided into 500bp bins (20 bins). Each data point 
in plots is a meta-cell and gene pair and the Y-axis shows the number of bins having at 
least one overlapping cytosine call.   
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Supplemental Fig. S3. Performance of individual learners for gene activity 
prediction.  
For each matrix, rows correspond to training sets and columns correspond to the test 
sets. The values in the cells are Spearman’s correlation coefficients.  
 
 
 



9 

 
 
Supplemental Fig. S4. Performance comparison of different ensemble learning 
combination rules. 
The rules of combining individual predictors were compared: unweighted (UWA), 
weighted averaging, and stacking. For weighted averaging, weights were determined 
either by Spearman’s correlation coefficient computed with cross-validation (CWA) or by 
accuracy (1-error) computed with cross-validation (AWA). For stacking, the individual 
predictors were not given weights. Instead, they were combined into the ensemble by 
using a second-level predictor. ANN, Artificial Neural Network; EN, Elastic Net 
Regression; RF, Random Forest. MPD, Mean Promoter De-methylation. A) Performance 
of weighting rules. Heatmap showing global Spearman’s correlation coefficients between 
observed gene expression and predicted gene activity for all genes across all cells in a 
dataset. Rows represent training datasets and columns represent test datasets. B) 
Performance of stacking rules. 
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Supplemental Fig. S5. Performance comparison between Mean Promoter De-
methylation (MPD) and Ensemble Learner (EL) as the predictor of gene expression.  
Each boxplot corresponds to one dataset. Y-axis, the distribution of Spearman’s 
correlation coefficients in 5-fold cross validation tests. Each data point is the correlation 
coefficient for one single run. 
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Supplemental Fig. S6. Evaluation of prediction accuracy using Spearman’s 
correlation across genes.  
Each row represents the result using the given training dataset and test datasets. Each 
boxplot shows the distribution of Spearman’s correlation coefficients between the 
predicted gene activity levels and the observed expression levels for the cells in the test 
dataset. MPD, Mean Promoter De-methylation. EL, Ensemble Learner. Asterisks denote 
the statistical significance of the difference between MPD and EL (whether EL correlation 
is statistically higher). ***: one sided t-test p-value < 0.001. 
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Supplemental Fig. S7. Evaluation of prediction accuracy using median squared 
error across cells. 
Each row represents the result using the given training dataset and test datasets. Each 
boxplot shows the distribution of the median of the squared difference between the 
predicted gene activity levels and the observed expression levels for each cell. MPD, 
Mean Promoter De-methylation, EL, Ensemble Learner.  Asterisks denote the statistical 
significance of the difference between MPD and EL (whether EL error is statistically 
lower). ***: one sided t-test p-value < 0.001. 
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Supplemental Fig. S8. Evaluation of prediction accuracy using median squared 
error across genes. 
Each row represents the result using the given training dataset and test datasets.  Each 
boxplot shows the distribution of the median of the squared difference between the 
predicted gene activity levels and the observed expression levels for each cell. MPD, 
Mean Promoter De-methylation, EL, Ensemble Learner. Asterisks denote the statistical 
significance of the difference between MPD and EL (whether EL error is statistically 
lower). ***: one sided t-test p-value < 0.001. 
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Supplemental Fig. S9. Evaluation of feature importance using Random Forest 
models.  
Each panel corresponds to one training dataset. X-axis, distance from the transcription 
start site. Gray dotted lines, ends of genomic bins. Y-axis, mean decrease in accuracy of 
the predictor when values of a feature were permuted. Each colored point corresponds to 
the center of a bin on the X-axis. 
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Supplemental Fig. S10. Clustering of  neuronal dataset in Fig. 3a using different 
sets of PCA dimensions with MPD as the input.  
A) Clustering with top 10 PCA dimensions (left), expression signature of exhibitory and 
inhibitory cell markers B) Same as panel A, but with top 20 PCA dimensions. C) Same as 
panel A, but with top 30 PCA dimensions.  
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Supplemental Fig. S11. MPD distributions of marker genes for excitatory neurons.  
X-axis and colors represent different clusters. Y-axis, mean promoter de-methylation 
(MPD) values for each marker gene.  
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Supplemental Fig. S12. MPD distributions of marker genes for inhibitory neurons. 
X-axis and colors represent different clusters. Y-axis, mean promoter de-methylation 
(MPD) values for each marker gene. CGE: Caudal ganglionic eminence. MGE: Medial 
ganglionic eminence. 
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Supplemental Fig. S13. MAPLE gene activity distributions of marker genes for 
excitatory neurons. 
 X-axis and colors represent different clusters. Y-axis, MAPLE predicted gene activity 
values for each marker gene.  
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Supplemental Fig. S14. MAPLE predicted gene activity distributions of marker 
genes for inhibitory neurons.  
X-axis and colors represent different clusters. Y-axis, MAPLE predicted gene activity 
values for each marker gene. CGE: Caudal ganglionic eminence. MGE: Medial ganglionic 
eminence. 
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Supplemental Fig. S15. MPD distributions of marker genes for pluripotency and 
differentiation (EB) in the dataset of Clark et al. 
 X-axis and colors represent different clusters. Y-axis, MPD  values for each marker gene. 
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Supplemental Fig. S16. MAPLE predicted gene activity distributions of marker 
genes for pluripotency and differentiation (EB) in the dataset of Clark et al. 
 X-axis and colors represent different clusters. Y-axis, MAPLE predicted gene activity 
values for each marker gene. 
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Supplemental Fig. S17. UMAP plots for embryoid bodies (EBs) for the dataset of 
Clark et al. using various parameter settings.  
The parameter settings (n.nei: number of neighbors; min.dist: minimum distance) are 
shown on the top of each plot. Colors represent different clusters.  
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Supplemental Fig. S18. Violin plots showing the MAPLE predicted gene activities 
for the pluripotent marker gene Esrrb and the differentiation marker gene T with 
different parameter settings for embryoid bodies (EBs) for the dataset of Clark et al 
using various parameter settings.  
Colors represent the clusters in Supplemental Fig. S17.  
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Supplemental Fig. S19. Classification accuracy for cells in the methylome data 
based on the integration of the dataset of Clark and colleagues  (Clark et al. 2018). 
A) Each pie chart shows the percentage of cells that were assigned to the correct cell 
type (EB or ESC) using k-Nearest Neighbor (kNN) classification based on scRNA data in 
the integrated PCA. Bottom right chart shows the percentage of correctly classified cells 
when mean promoter de-methylation was used for the integration. Remaining three 
panels show the percentage of correct classification with ensemble method using three 
different training sets. Supervised predictor outperformed the unsupervised mean de-
methylation based predictor, regardless of the training dataset. Chi-square test p-value for 
the comparison of the three classification results with MPD is 0.06.  B) Confusion 
matrices for the class assignments of EB and ES cells. Cluster 1 is composed of EBs and 
Cluster 2 is composed of ESCs. Ensemble method was used for constructing a gene 
activity matrix from DNA methylation data and then scRNA and gene activity matrices 
were integrated with Seurat (Stuart et al. 2019). Each confusion matrix is the result of 
integration using the gene activity matrix predicted by the models trained by the datasets 
shown at the top. Chi-square test p-value for comparison of the two confusion matrices is 
0.03.  
 
 
 



25 

 
 
Supplemental Fig. S20. Predictive modeling improves integration with 
transcriptome data of primary tissues. 
 A) PCA plots for integrated expression and DNA methylation data. Mean promoter de-
methylation (MPD) was used as the input for data integration using Seurat. Pie chart 
showing the percentage of correctly and mis-classified cells using scDNA-methylation 
data, based on k-nearest neighbor (kNN) classification on the scRNA-seq cells for the 
MPD based PCA B) Same as panel A), but using MAPLE predicted gene activity as the 
input.  
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Supplemental Fig. S21. Percentage of correct classification for the cells in the 
methylome data based on the integration of the dataset of Argelaguet and 
colleagues (Argelaguet et al. 2019) using two different training datasets. 
Each pie chart shows the percentage of cells in DNA methylation data that were assigned 
to the correct cell type (same embryonic day) using k-Nearest Neighbor (kNN) 
classification using cells from scRNA data in the integrated PCA. The models were 
trained with the dataset shown on top of each pie chart (Fig. 5d showing the results with 
the training dataset of Clark and colleagues.). Chi-square test p-values (compared to the 
pie chart for MPD in Fig. 5c) are 0.04 (left) and 0.07 (right), respectively. 
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Supplemental Fig. S22. Heatmaps showing Spearman’s correlation coefficients 
between gene expression and MAPLE predicted gene activity for different sets of 
genes. 
 Annotation for CpG islands were retrieved from the UCSC Table Browser. CpG shores 
are +/-2kb flanking regions of CpG islands. CpG shelves are defined as +/-4kb to +/-2kb 
flanking regions of CpG islands. “Open sea” represents all genes that are not in CpG 
islands, or shores or shelves. Rows represent the training datasets and columns 
represent the test datasets. Datasets: I:Hernando-Herraez et al. II: Angermueller et al. III: 
Clark et al. IV: Argelaguet et al. 
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Supplemental Fig. S23. Elbow plots showing the percentage of variance in the data 
explained by each principal component in the principal component analysis, sorted 
from highest to lowest.  
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Supplemental Fig. S24. Violin plots showing the distribution of the number of non-
empty bins for individual cells and meta-cells of varying sizes. 
Each data point is one cell (k=1) or meta-cell (k>1), and the value is the mean number of 
non-empty bins for the promoters of that cell. White circle shows the median value. Black 
rectangle shows the upper and lower quartiles. Whisker shows 1.5 times the interquartile 
range. 
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Supplemental Fig. S25. Sensitivity of MAPLE for different bin sizes. 
Each heatmap shows the performance of MAPLE when trained and tested with a different 
bin size. Spearman’s correlation coefficients are shown in the cells in the heatmap for 
different training and test set combinations, rows correspond to the training sets and 
columns correspond to test sets. 
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Supplemental Fig. S26. Box plots showing the parameter tuning results with 5-fold 
cross validation for convolutional neural network predictor.  
Top 10 parameter settings with highest Spearman’s correlation (median of 5 runs) 
between the predicted gene activity and observed expression for all the cells and genes 
are shown. Each data point is a single run. Parameter name is followed by the value for 
each setting. Patience, number of epochs to stop if there is no reduction in error during 
optimization step; filter, number of filters; pool, pooling size; kernel, kernel size;  dropout, 
dropout rate. Parameter setting used in the ensemble predictor is highlighted in red. 
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Supplemental Fig. S27. Box plots showing the parameter tuning results with 5-folds 
cross validation for elastic net predictor.  
Top 10 parameter settings  with highest correlation are shown. Each data point is a single 
run. Parameter name is followed by the value for each setting. alpha, alpha value setting 
the balance between LASSO and Ridge regressions. lambda.min, choice of lambda that 
gives the minimum error via internal cross validation. lambda-1se, choice of lambda in 
one standard error vicinity of the lambda.min, for regularization. Parameter setting used in 
the ensemble predictor is highlighted in red. 
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Supplemental Fig. S28. Box plots showing the parameter tuning results with 5-folds 
cross validation for random forest predictor.  
Top 10 parameter settings with highest correlation are shown. Each data point is a single 
run. Parameter name is followed by the value for each setting. sample, ratio of the input 
samples to be used for constructing each tree. node, number of minimum terminal nodes. 
Parameter setting used in the ensemble predictor is highlighted in red. 
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