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Figure S1. Isolation and identification of six germ cell types from mouse testis. (A) 

Morphology and size detection of six distinct germ cell types under a phase contrast 

microscope. Scale bar, 10 μm. (B) Immunostaining of each isolated germ cell type 

for marker genes (red): ZBTB16, KIT, H2AX, SYCP3, CLGN and PNA. Nuclei were 

stained with DAPI (blue). Six random fields under confocal microscopy were selected 

to calculate the marker gene positive rate of each germ cell type. Scale bar, 20 μm. 

(C) Relative expression level of marker genes in each germ cell type as detected by 

qRT-PCR. Data represent the mean ± SEM for three biological replicates. 
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Figure S2. Related to Fig. 1. Global lncRNA expression dynamics during mouse 

spermatogenesis. (A) Protein-coding potential of protein-coding genes, annotated 

and novel lncRNA genes. (**) P<0.01; (***) P<0.001, Student’s t-test. (B) Transcript 

length of protein-coding genes, annotated and novel lncRNA genes. (C) Number of 

exons per transcript of protein-coding genes, annotated and novel lncRNA genes. 

(D) Expression level of protein-coding genes, annotated and novel lncRNA genes. (*) 

P<0.05; (n.s.) P>0.05, Student’s t-test. (E) Heatmap showing novel lncRNAs genes 

identified during spermatogenesis. (F) Pairwise Pearson’s correlation analysis 

between lncRNAs and their nearby genes. “1” refers to the closest protein-coding 

gene; “2-4” refers the other distal protein-coding genes. (G) Conservation analysis of 

the different biotypes of lncRNAs in different species. Biotypes of lncRNAs according 

to their genomic locations relative to the neighboring protein-coding genes: antisense 

lncRNA/mRNA gene pairs in the head-to-head position were designated divergent 

(“XH”); antisense lncRNA/mRNA gene pairs in the tail-to-tail position were 

designated convergent (“XT”); the gene body of an antisense lncRNA can be located 

within a protein-coding gene (“XI”) or can completely encompass a protein-coding 

gene (“XO”); the lncRNAs transcribed in the same direction can be located 

downstream (“SD”) or upstream (“SU”) of the neighboring coding genes. (H) Co-

expression network analysis of lncRNAs and mRNAs during spermatogenesis using 

WGCNA. (I) Heatmap showing 271 differentially expressed novel lncRNAs during 

spermatogenesis. (J) Heatmap showing 94 germ cell signature novel lncRNAs. (K) 

Enriched GO terms for the germ cell developmental signature lncRNAs based on 

their neighboring mRNAs. 
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Figure S3. Related to Fig. 2. Characterization of lncRNA candidates in mouse 

spermatogenesis. (A) Expression validation of 27 candidate lncRNAs in each germ 

cell types by qRT-PCR. Two independent pairs of primers were used for each 

lncRNA (primer-1# and primer-2#). Gm43263 was not detected in germ cells. Data 

represent mean ± SEM for three biological replicates. (B) Relative expression level 

of marker genes in Germ cells, Sertoli cells, and Leydig cells as dectected by qRT-

PCR. Data represent mean ± SEM for three biological replicates. (C) Germ cell-

specific expression screening of 20 lncRNA candidates by qRT-PCR in Germ cells, 

Sertoli cells and Leydig cells. Data represent the mean ± SEM for three biological 

replicates. (*) P<0.05; (**) P<0.01; (***) P<0.001, Student’s t-test. (D) Testis-specific 

expression validation of six candidate lncRNAs in multiple tissues by qRT-PCR. Data 

represent the mean ± SEM for three biological replicates. (E) Expression pattern 

analysis of candidate lncRNAs using transcriptome data generated by the Mouse 

ENCODE Project.  
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Figure S4. Coding potential analysis and subcellular localization of candidate 

lncRNAs. (A) Full length of six candidate lncRNAs determined by 5’ and 3’-rapid 

amplification of cDNA ends (RACE) assay. (B) Coding potential analysis of six 

candidate lncRNAs by Coding Potential Calculator (CPC 2.0) program. Hotair and 

Actb were respectively used as non-coding or coding RNA control. (C) Subcellular 

localization of candidate lncRNAs (red) at different stages of spermatogenesis via 

RNAscope analysis. Nuclei were stained with DAPI (blue). Scale bar, 50 μm. 
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Figure S5. Knockdown of SYCP3 leading to defects in spermatogenesis by in vivo 

functional screening strategy. (A) Western blot analysis of SYCP3 knockdown in vivo 

by AAV9-shRNA-RFP. TUBULIN was used as loading controls. (B) Testis 

morphology and weight from the control (shCtrl) and SYCP3 knockdown (shRNA1#, 

shRNA2#) mice. Top: the average weight of testes; bottom: representative images of 

testes. Data represent mean ± SEM (n=3). (*) P<0.05 compared with shCtrl, 

Student’s t-test. (C) H&E staining of testis sections from the control (shCtrl) and 

SYCP3 knockdown (shRNA1#, shRNA2#) mice. Scale bar, 50 μm. (D) 

Immunostaining of testis sections from the control (shCtrl) and SYCP3 knockdown 

(shRNA1#, shRNA2#) mice for WT1 (yellow), PNA (green), and RFP (red). Nuclei 

were stained with DAPI (blue). Scale bar, 50 μm. (E) Immunostaining of testis 

sections from the control (shCtrl) and SYCP3 knockdown (shRNA1#, shRNA2#) 

mice for WT1 (red), SYCP3 (green). Nuclei were stained with DAPI (blue). Left: 

representative images; right: number of cells with staining per tubule. Data represent 

the mean ± SEM of at least 100 seminiferous tubules from 3 mice; (****) P<0.0001; 

(n.s.) P>0.05 compared with shCtrl, Student’s t-test. Scale bar, 50 μm. 
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Figure S6. Related to Fig. 3. Functional screening of candidate lncRNAs in mouse 

spermatogenesis by in vivo functional screening strategy. (A) Testis morphology and 

weight from the shCtrl, shRNA1# and shRNA2# mice. Top: the average weight of 

testes; bottom: representative images of testes. Data represent mean ± SEM (n=3). 

(*) P<0.05, (n.s.) P>0.05 compared with shCtrl, Student’s t-test. (B) H&E staining of 

testis sections from the shCtrl, shRNA1# and shRNA2# mice. Scale bar, 50 μm. (C, 

D) Immunostaining of testis sections from the control (shCtrl), 1700027A15Rik or 

Gm4665 knockdown (shRNA1#, shRNA2#) mice for MKI67 (green). Nuclei were 

stained with DAPI (blue). Left: representative images; right: number of cells with 

staining per tubule. Data represent mean ± SEM of at least 100 seminiferous tubules 

from 3 mice. (n.s.) p>0.05 compared with shCtrl, Student’s t-test. Scale bar, 50 μm. 
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Figure S7. Related to Fig. 5. High-resolution dissection of transcriptional alterations 

induced by Gm4665 knockdown in testis. (A) Quality control of single-cell RNA-seq 

dataset. Sequencing metrics of the three datasets generated (shCtrl, shRNA1#, 

shRNA2#). (B) Violin plot displaying the expression level of marker genes per cell of 

five distinct cell populations. (C) Violin plot displaying expression level of Gm4665 in 

indicated cell populations between control and shRNA1#shRNA2# groups. P-values 

were calculated using Wilcoxon Rank-Sum test. (***) P<0.001 compared with shCtrl. 

(D) Proportion of each germ cell population in control and shRNA1#shRNA2# 

groups. (E) Enriched GO terms for the differentially expressed genes induced by 

Gm4665 knockdown in rST (left) and elST (right) populations. (F) The expression 

dynamics of functional spermatogenic genes upon Gm4665 knockdown in a 

pseudotime manner. (G) Number and percentage of cells with staining for TNP1, 

PRM2 and HOOK1 per tubule. Data represent the mean ± SEM of at least 50 

seminiferous tubules from 3 mice. (*) P<0.05; (**) P<0.01; (n.s.) P>0.05 compared 

with shCtrl, Student’s t-test. 
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Figure S8. Related to Fig. 6. ChIRP-seq analysis of chromatin interactions between 

Gm4665 and functional spermatogenic genes. (A) qRT-PCR validation of the 

biotinylated probes specifically targeting the endogenous Gm4665 but not LacZ 

control. Actb and Gapdh mRNA were used as negative control. Data represent the 

mean ± SEM. (B) Enriched GO terms for the genes whose enhancer was bound by 

Gm4665 and also marked with the histone modification marker. (C) Venn diagram 

showing the overlap of Gm4665 ChIRP-seq genomic regions with genes 

preferentially expressed in early stages (top) and late stages (bottom) of 

spermatogenesis. FE: Fold Enrichment. (D) Graphical representation of Gm4665 

ChIRP-seq peaks as well as the histone modification ChIP-seq peaks among 

functional spermatogenic genes loci. 
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Supplemental Tables (.xlsx) 

Supplemental Table S1. Quality control of sequencing data, including RNA-seq, 

Single-cell RNA-seq and ChIRP-seq. 

Supplemental Table S2. Gene list: lncRNAs and mRNAs expressed in six distinct 

germ cell types during mouse spermatogenesis. 

Supplemental Table S3. LncRNAs of six locus biotypes classification. 

Supplemental Table S4. Differentially expressed genes (DEGs) upon Gm4665 

knockdown in rST and elST populations at the single-cell level. 

Supplemental Table S5. Analysis of the chromatin fragments binding to Gm4665 by 

ChIRP-seq. 

Supplemental Table S6. Gene list: 134 candidate target genes mediated by Gm4665. 

Supplemental Table S7. Primer sequences of qRT-PCR. 

Supplemental Table S8. shRNA sequences used for knockdown of candidate 

lncRNAs and mRNA. 
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Supplemental Methods 

Immunostaining 

Male germ cells isolated from wild-type mouse testis were smeared on slides and fixed 

with 4% paraformaldehyde (PFA) in PBS. For testis tissue analyses, the testis were 

dissected from mice injected with AAV9-RFP after four weeks of injection, fixed with 

4% PFA in PBS, and then incubated in sucrose-PBS solution (10% sucrose for 1 hr, 

20% sucrose for 1 hr, and 30% sucrose overnight) at 4°C. Cryosections or cells were 

washed in PBS and permeabilized with PBS containing 0.5% Triton X-100. The slides 

were blocked with 5% BSA and then incubated with primary antibody at 4°C overnight. 

AlexaFluor™ conjugated secondary antibody (Invitrogen) was added for 1 hr at room 

temperature. Finally, the slides were mounted with SlowFade™ Gold Antifade 

Mountant with DAPI (Invitrogen) and observed under LSM 780 confocal microscope 

(Zeiss) for fluorescent signal analysis. Primary antibodies used in immunostaining 

were as follows: anti-ZBTB16 (Santa cruz, sc-28319), anti-HOOK1 (santa cruz, sc-

398233), anti-KIT (Cell Signalling Technology, 3074), Anti- H2AX (Abcam, ab2893), 

anti-SYCP3 (Abcam, ab97672), anti-WT1 (Abcam, ab89901), anti-CLGN (Abcam, 

ab172477), Alexa Fluor™ 594 Conjugated-Lectin PNA (Invitrogen, L32459), anti-

TNP1 (Proteintech, 17178-1-AP), anti-PRM2 (Proteintech, 14500-1-AP). Intensity and 

number of cells with staining were calculated using image analysis software of ZEISS 

ZEN lite 3.0; percentage of cells with staining per tubule was the ration of positive cell 

number/ nucleus number. 
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Northern blotting 

Northern blotting was performed using the DIG Northern Starter Kit (Roche). Briefly, 

10~20 μg of total RNA was denatured with RNA loading dye with formaldehyde at 65°C 

for 10 min and separated on a 1.2% agarose gel with formaldehyde for at least 2 hr 

until the RNA fragments were well separated. The RNA was then transferred to a nylon 

membrane (GE Healthcare) by capillary blotting with 20×SSC buffer for at least 6 hr 

or overnight and cross-linked with UV light. The membrane was subjected to a 

prehybridization step by incubation in DIG Easy Hyb Granules for 30 min at 68°C with 

gentle agitation. Denatured antisense DIG-labeled RNA probe (100~400 ng/ml) was 

added to prewarmed DIG Easy Hyb Granules and mixed well. The membrane was 

incubated at 68°C overnight with a probe/hybridization mixture. After hybridization and 

stringency washes with washing buffer, the membrane was incubated for 30 min in 

50~100 ml blocking buffer. Finally, the membrane was exposed to CDP-star, a ready-

to-use solution to detect chemiluminescent signals with X-ray film. 

Rapid amplification of cDNA ends (RACE) 

To identify the full length of lncRNAs, 5’ and 3’ RACE was performed using the 

SMARTer® RACE 5’/3’ Kit (TaKaRa) according to the manufacturer’s instructions. 

RACE-Ready cDNAs were synthesized from total RNA. RACE-PCR products were 

separated on 1%~2% agarose gels. The bands were excised and the extracted DNA 

(Gel Extraction Kit, CWBIO) was cloned into T vectors and sequenced bidirectionally 

using M13 forward and reverse primers. At least two colonies were sequenced for 

each clone product. 
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RNAscope in situ hybridization 

Briefly, 10 μm cryosections were mounted on glass slides (SuperFrost, Fisher 

Scientific) and washed in PBS, followed by target retrieval by boiling slides in 

RNAscope Target Retrieval Reagent for 15 min while maintaining the temperature 

between 98°C and 102°C, then washed twice for 2 min in distilled water. Slides 

underwent protease treatment for 30 min at 40°C in an ACD HybEZ hybridization oven. 

Probes were then hybridized for 2 hr at 42°C in a HybEZ oven followed by RNAscope 

signal amplification. The slides were mounted with SlowFade™ Gold Antifade 

Mountant with DAPI (Invitrogen) and images were collected on an LSM 780 confocal 

microscope (Zeiss). 

Adeno-associated virus (AAV9) production 

For lncRNA knockdown, shRNA sequences were designed according to online 

BLOCK-iT RNAi tools (Thermo Fisher Scientific). AAV9 production was carried out 

following standard procedures as described previously. In brief, an AAV vector plasmid 

(pAAV-H1-RFP), an adenovirus helper plasmid (pAAV29), and an AAV helper plasmid 

(pAAV-RC) were transiently transfected into AAV-293 cells. Cell culture media and 

transfected cells were harvested separately after 72 h. Added 40% PEG (Sigma-

Aldrich) in 2.5 N NaCl to the supernatant (final concentration: 8%) and mixed well, and 

then the cell pellet was suspended in 5 ml of lysis buffer (50 mM Tris-Cl, 150 mM NaCl 

and 2 mM MgCl2) and stored at 4°C. Virus was purified by iodixanol gradient 

ultracentrifugation. The extracted virus was then transferred to an Amicon Ultra-15 

concentration unit (Millipore) followed by a 10-min centrifugation at 3000 g followed by 
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4 rounds of repeated washing and spinning. Finally, virus was aliquoted and stored at 

−80°C. Viral titer was determined by qRT-PCR. The viral titer was 1×1013/mL unless 

otherwise indicated. 

Bulk RNA-seq 

For RNA-seq, ribosomal RNA depleted and strand-specific libraries were constructed 

with the Ribo-zero gold (Epicentre) and TruSeq Stranded Total RNA Sample Prep kit 

(Illumina), and the libraries were sequenced using the Illumina HiSeq system. 

Alignment of sequencing reads and gene expression analysis 

All reads were trimmed down to 150 bp and mapped to the Gencode lncRNA catalog 

of the mouse genome (version mm10) using HISAT2 with default settings, and only 

uniquely mapped reads were kept (Pertea et al. 2016). Gene expression levels were 

expected of fragments per kilobase of transcript sequence per millions of base pairs 

mapped (FPKM) using HTseq (Anders et al. 2015). To ensure the accuracy of 

estimated FPKM values and removal of the auxiliary data, only genes with FPKM>0.1 

in at least one sample were analyzed. The DEseq package was used to evaluate the 

statistical significance of differentially expressed genes for different single-cell groups 

based on the negative binomial distribution. 

Co-expression network analysis 

Weighted gene co-expression network analysis (WGCNA) was performed according 

to previously described protocol (Casero et al. 2015). Expression associations of 

lncRNA genes and the adjacent protein-coding genes were built by Circle tools 
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(Krzywinski et al. 2009; R Core Team 2017). The dynamic expression of each module 

was performed using STEM (Ernst and Bar-Joseph 2006). 

ChIRP-seq analysis 

For each sample, reads from target and control lanes were aligned to reference 

genome mm10 using Bowtie, separately, and perbase coverage was normalized 

(Langmead et al. 2009). For each base pair of the genome, true coverage of this base 

in this sample was defined as the minimum coverage of the even lane and odd lane 

and a SAM file was generated for peak calling. Peaks of each sample were then called 

using MACS against its corresponding input with p-value cutoff 1×10-5 (Zhang et al. 

2008). We filtered for peaks that share the same shape in the raw data from the two 

independent experiments and the following criteria: thresholds of average 

coverage >1.5, Pearson’s correlation >0.3, and fold enrichment against input >2 and 

annotated peaks by Homer. We then used Chip-seq reads in GSE49621, ChIP-seq 

reads were aligned to mm10 genome assembly using Bowtie (Langmead et al. 2009; 

Hammoud et al. 2014). Peak calling was done using MACS with the following 

configurations: -q 1e-5 --llocal=10000 --bw 300 -m 5,30 --slocal=1000 -B --keep-dup=1. 

Overlap region between ChIRP-seq reads and ChIP-seq reads were calculate using 

bedtools intersect and peaks were visualizated by IGV tools. Gene Ontology (GO) 

analysis was performed using Matescape (http://metascape.org/). 
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