Supplemental Material

Thermal stress accelerates Arabidopsis thaliana mutation rate

Eric J. Belfield^{1*}, Carly Brown¹, Zhong Jie Ding^{1,2}, Lottie Chapman^{1,3}, Mengqian Luo^{1,4}, Eleanor Hinde¹, Sam W. van Es^{1,5}, Sophie Johnson¹, Youzheng Ning^{1,6}, Shao Jian Zheng², Aziz Mithani^{7*} and Nicholas P. Harberd^{1*}

¹Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB;

²State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China;

³Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, Geneva 1211, Switzerland;

⁴Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;

⁵Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden;

⁶Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA;

⁷Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore 54792, Pakistan.

Supplemental Fig. 1. Genomes of HT-grown MA plants lack detectable Copy Number Variants (CNVs). Dot scatter-plots show log₂ coverage ratio of reads from G11 HT MA line plants, together with a positive control dataset (*met1/+ nrpd2a* (Mirouze et al. 2009)), as compared with G0 ancestor reads (Jiang et al. 2014), and presented chromosome-by-chromosome (A–E, Chromosomes 1–5). The blue dots cluster around 0 and are the most visible because the *met1/+ nrpd2a* data that they represent were the last entered into the plots. Other dot colors indicate data from individual G11 HT MA line plants, as indicated, and represent consecutive 1000 bp windows from across TAIR10. The greyed-out sections of chromosome represent centromeres. The circled and black arrowed dots in (D) represent the CNV-generating transposition of *At*COPIA93 (positive control (Mirouze et al. 2009)). Any CNVs would be expected to result in a log₂ score value of ≥1. Dots with log₂ score values ≥1 were therefore visually checked using IGV (see Methods). However, none were verified as being genuine CNVs, indicating that HT growth does not detectably increase the frequency of larger-scale indel mutations during genome replication.

Ε

Supplemental Fig. 2. HT-induced mutations appear to be evenly spread across *Arabidopsis* chromosomes. Chromosomal distribution of SNVs (A) and indel (B) mutations in G11 HT-grown MA line plants. Chromosomal locations of mutations on the five *Arabidopsis* chromosomes (represented as horizontal black lines, length in megabases as shown) are represented by single vertical colored lines ((A) 92 SNVs, blue; (B) 138 indels, red). Peri-centromeric regions of each chromosome are indicated with rectangular black boxes.

Α

Supplemental Fig. 3. HT-induced GC-to-AT transitions may occur preferentially in particular sequence locations. Nucleotide flanking sequences ten bases upstream (5') and downstream (3') of

GC-to-AT transitions mutation site are shown as stacked columns and as sequence logos (Schneider and Stephens 1990; Crooks et al. 2004). (A) The combined 18 C-to-T and 32 reverse complemented G-to-A to C-to-T mutations in G11 HT MA line plants. (B) All C and all reverse complemented G sites in TAIR10. (C) The combined 47 C-to-T and 38 reverse complemented G-to-A to C-to-T mutations identified in ST-grown MA line plants (Ossowski et al. 2010; and Jiang et al. 2014). Comparison of the sequence logos (A–C) showed enrichment for an A residue at the 5' -3 position to the mutated GC-to-AT transitions (A) in HT-grown plants versus TAIR10 (B) and ST-grown plants (C). A second residue, a G, at the 3'+8 position to the mutated GC-to-AT transitions in HT-grown plants (A) showed no enrichment versus TAIR10 (B) but did however show enrichment versus STgrown plants (C), see main Results section: HT growth boosts SNV frequency and maintains GC-to-AT bias, for further details. Sequence logos provide graphical representations of the relative frequencies of individual nucleotide residues with respect to position within flanking sequences. Individual residues are shown as stacked letters, along with the number of sites (combined C and reverse complemented G-to-A to C-to-T) considered (shown as N). The letters are ordered from most (top) to least (bottom) frequent in each stack. Overall stack indicates sequence conservation at that position (measured in bits), while the letter height indicates the relative frequency of each nucleotide (A, T, C or G) at that position (Crooks et al. 2004).

Supplemental Fig. 4. HT-growth increases the frequency of indel mutations. Comparison of the frequency of indels (insertions and deletions) in G11 HT MA lines with that of ST controls (ST1, data from Ossowski et al. 2010; ST2, data from Jiang et al. 2014). Error bars indicate SEM from 5 (ST1 data), 9 (ST2 data), or 6 (HT data) biological replicates.

Supplemental Fig. 5. The frequency of homopolymeric repeat stretches within the *Arabidopsis* genome decreases with increasing stretch length. The frequency of homopolymeric A (A) or T (B) repeat stretches in the TAIR10 reference genome is plotted with respect to stretch length (data from (Belfield et al. 2018)).

Supplemental Fig. 6. Nucleosome occupancy in an example segment of *A. thaliana* Chromosome 1. Illumina sequencing was performed on MNase-digested genomic DNA from ST- and HT-grown plants. The top panel shows nucleosome occupancy of a 2.2kb region of Chromosome 1 (from ST-grown plants) predicted by nucleosome-positioning algorithm iNPS (Chen et al. 2014) from the MNase-seq data. The bottom panel shows a zoomed-in region (co-ordinates 1,861 – 2,141bp) of Chromosome 1 showing a single predicted nucleosome. Nucleosomic regions are classified as: nucleosome (red block), non-nucleosome (blue block) and edge of nucleosome (yellow block) regions.

Α

Supplemental Fig. 7. Comparison of the effect of growth temperature on nucleosome occupancy at Transcription Start Sites (TSS) versus at random positions across the genome. (A) Relative nucleosome occupancy in the vicinity of the TSS of all *A. thaliana* genes. Occupancy plots show the average nucleosomal coverage with respect to distance (bp) from the TSS in HT-grown (dark red trace), versus ST-grown (dark green trace) plants, presented on a chromosome-by-chromosome basis (plots show merged +ve and -ve DNA strands). Comparison traces show average nucleosome coverage with respect to distance (bp) from randomly chosen chromosomal positions in HT-grown (pink) and ST-grown (light green) plants. (B) Merged data for Chromosomes 1–5. Data are normalized to the highest value for each chromosome. The sites of the randomly chosen positions were determined by using the number of TSS sites (28,496) to divide the length of the genome (120Mb/28,496=~4.2kb), then taking points every ~4.2kb from the beginning of each of the 5 Chromosomes.

Supplemental Fig. 8. MNase-seq read-density and mutation distribution along chromosome arms. Nucleosome read count density in 100-kb tiles is plotted for HT-grown (red) and ST-grown (green) plants. Nucleosome-enriched pericentromeric regions are greyed out. Also shown are the chromosomal locations of HT-induced mutations (SNVs, yellow vertical lines; indels, green vertical lines).

Supplemental Fig. 9. The relationship between read coverage depth and frequency of detected mutation. (A) Numbers of TAIR10 genomic positions averaged across six G11 HT MA lines (x-axis) and plotted against the read coverage (y-axis). (B) A zoomed-in view of (A) overlaid with a histogram display of the 230 mutations (138 indels, blue bars; 92 SNVs, grey bars (right y-axis); Supplementary Table 2) detected in the six G11 HT MA lines. (C) A plot of mutation rates versus depth of coverage for the 230 mutations found in six G11 HT MA lines.

	Illumina		Raw sequencing dat	ta	Ali	gned sequencing dat	ta	
Line	paired-end read length (bp)	Number of reads	Total number of bases sequenced	Genome fold coverage*	Number of Reads	Total number of bases sequenced	Genome fold coverage*	Total number of sites covered (million)
CT-2	100	35,822,644	3,582,264,400	30.1	30,499,439	3,049,943,900	25.6	118,674,753
CT-4	100	32,273,474	3,227,347,400	27.1	28,048,073	2,804,807,300	23.5	118,682,089
CT-6	100	32,426,492	3,242,649,200	27.2	27,711,819	2,771,181,900	23.3	118,565,154
CT-10	100	32,260,792	3,226,079,200	27.1	27,689,284	2,768,928,400	23.2	118,674,324
CT-12	100	32,337,888	3,233,788,800	27.1	26,396,211	2,639,621,100	22.2	118,674,951
HT-1	100	33,932,676	3,393,267,600	28.5	27,462,253	2,746,225,300	23.0	118,471,548
HT-11	100	33,743,230	3,374,323,000	28.3	27,818,608	2,781,860,800	23.3	118,381,764
HT-15	100	35,694,470	3,569,447,000	30.0	29,549,929	2,954,992,900	24.8	118,141,545
HT-18	100	34,000,868	3,400,086,800	28.5	27,134,763	2,713,476,300	22.8	118,436,561
HT-20	100	33,885,734	3,388,573,400	28.4	26,989,657	2,698,965,700	22.7	118,483,579
HT-21	100	34,807,454	3,480,745,400	29.2	27,953,947	2,795,394,700	23.5	118,462,564

Supplemental Table 1. Whole genome sequencing data summary table. Genomic DNA from five independent G6 cold temperature (CT) MA line plants (CT-2, -4, -6, -10, -12) and six independent G11 high temperature (HT) MA line plants (HT-1, -11, -15, -18, -20, -21) were sequenced using 100bp paired-end Illumina sequencing technology. For each sample, >32 million raw sequencing data reads (>3.2 gigabases of data) were aligned to the TAIR 10 *A. thaliana* reference genome, resulting in a 22.2–25.6-fold sequencing coverage depth (aligned data) for each genome. The total number of TAIR10 sites having aligned sequence data coverage \geq 3 and \leq 100 is shown. *The TAIR10 genome size of 119,146,348 bp was used to determine genome fold coverage.

MA lineage	Coordinates	Mutation size	TAIR10 reference	Mutation	Mutation location	Flanking indel mutation sequence*	Indel context
HT-21	Chr1:15949261	-2	ТА	-	Intergenic	CATTG <mark>TA</mark> TATATATATATATATATATA	Dinucleotide repeat
HT-15	Chr1:16142592	2	-	TA	Intergenic	GCAAG <mark>ta</mark> tatatatatatatatatata	Dinucleotide repeat
HT-1	Chr1:16342316	-2	GA	-	Intergenic	gtgag <mark>ga</mark> gagagagagagagagagagagagagagagagag	Dinucleotide repeat
HT-20	Chr1:16498351	-2	AT	-	Intergenic	GAAAA <mark>AT</mark> ATATATATATATATATATATATATA	Dinucleotide repeat
HT-15	Chr1:17377490	-2	ТА	-	Intergenic	TTTCT <mark>TA</mark> TATATATATATATATATATATATATATATATATAT	Dinucleotide repeat
HT-21	Chr1:17421944	-2	AT	-	Intergenic	TATAA <mark>AT</mark> ATATATATATATATATAT	Dinucleotide repeat
HT-18	Chr1:18605859	-2	ТА	-	Intergenic	ATTTT <mark>TA</mark> TATATATATATATATATAAA	Dinucleotide repeat
HT-18	Chr1:18672003	2	-	AT	Intergenic	CCTTA <mark>at</mark> ATATATATATATATATATATATAT	Dinucleotide repeat
HT-1	Chr1:20593095	-2	СТ	-	Intergenic	TGACC <mark>CT</mark> CTCTCTCTCTCTCTCTTTGTT	Dinucleotide repeat
HT-21	Chr1:22232997	2	-	AT	Intergenic	TATGA <mark>at</mark> ATATATATATATATATATGGTAC	Dinucleotide repeat
HT-1	Chr1:29440434	-2	ТА	-	Intergenic	ATAAG <mark>TA</mark> TATATATATAT	Dinucleotide repeat
HT-11	Chr2:10205930	2	-	TA	Intron	GCTTT <mark>at</mark> ATATATATATATATATATATAT	Dinucleotide repeat
HT-20	Chr2:13377446	-2	AT	-	Intergenic	TCTTA <mark>AT</mark> ATATATATATATATATATATATATA	Dinucleotide repeat
HT-15	Chr2:14846624	2	-	AT	Intergenic	GTTTG <mark>at</mark> ATATATATATATATATATATATATATATAT	Dinucleotide repeat
HTHT-11	Chr2:15061965	2	-	AT	UTR	CATAA <mark>at</mark> ATATATATATATATATACGTA	Dinucleotide repeat
HT-1	Chr2:1664191	-2	ТА	-	Intergenic	AATAC <mark>TA</mark> TATATATATATATATATAT	Dinucleotide repeat
HT-20	Chr2:2284706	2	-	AT	Intergenic	ACCGA <mark>at</mark> ATATATATATATATATATATATATATATGG	Dinucleotide repeat

HT-21	Chr2:6455752	2	-	ТА	Intergenic	TTCTC ta TATATATATATATATATATTG	Dinucleotide
		2		70			Dinucleotide
HI-15	Chr2:683661	2	-	IC	UIR	CTCTT <u>CCTCTCTCTCTCTCTCTCTCTCT</u> TTTAT	repeat
HT-21	Chr2:894394	-2	AT	-	Intergenic	TATAC AT ATATATATATATATATATATTTTT	Dinucleotide
					_		repeat Dipucloatida
HT-11	Chr3:11857854	-2	AT	-	Intergenic	TAAAA <mark>AT</mark> ATATATATATATATATATATATATATATATGT	repeat
HT-1	Chr3·12575169	-2	ТΔ	_	Intergenic	ТТАТТ ТА ТАТАТАТАТАТАААСАС	Dinucleotide
	0110112070100	-			intergenie		repeat
HT-1	Chr3:12691899	2	-	TA	Intergenic	TCTCT ta TATATATATATATATAAGAGA	Dinucleotide
		•					Dinucleotide
HT-15	Chr3:13483796	2	-	AI	Intergenic	ATATA <mark>ataTATATATATATATATAT</mark> GTTAT	repeat
HT-18	Chr3:16925630	-2	ТА	_	Intergenic	AAGAT TA TATATATATATATATATATATATATATAATTAA	Dinucleotide
		_					repeat
HT-15	Chr3:18395159	2	-	AT	Intron	TAAAT <mark>at</mark> ATATATATATATATATATATATATATATATATATATAT	repeat
UT 1	Chr2.19792070	n		ΑΤ	Intergonic		Dinucleotide
	CIII 5.18782079	2	-	AI	intergenic		repeat
HT-15	Chr3:20067393	2	-	СТ	Intergenic	CCCTA <mark>ct</mark> CTCTCTCTCTCTCTCTCTCGCTA	Dinucleotide
							Dinucleotide
HT-21	Chr3:21676382	-2	ТА	-	Intergenic	CTCTC TA TATATATATATATATATATA	repeat
⊔ T_11	Chr3.21860810	_2	ΛΤ	_	Intergenic	ΩΤΑ Ω Α Τ Α ΤΑ	Dinucleotide
111-11	CIII 5.21009819	-2			intergenic		repeat
HT-11	Chr3:6172463	-2	AT	-	Intergenic	ATTTG <mark>AT</mark> ATATATATATATATATATAT	Dinucleotide
							Dinucleotide
HT-20	Chr3:7905919	-2	ТА	-	Intergenic	AATTG <mark>TA</mark> TATATATATATATATAATGTT	repeat
HT-20	Chr3.832839	2	_	ТΔ	Intergenic	CTATC ta TATATATATATCTCC	Dinucleotide
111-20	CIII 5.052055	2			intergenie		repeat
HT-20	Chr3:8644732	2	-	AT	Intergenic	ATTTA <mark>at</mark> ATATATATATATATATATATACATT	Dinucleotide
							Dinucleotide
HT-21	Chr4:15394126	-2	AT	-	UTR	GAGAG <mark>AT</mark> ATATATATATATATATAGAGA	repeat
HT-18	Chr4:17720802	-7	ТА	_	Intergenic	AGTTT TA TATATATATATATATATATAGAAAG	Dinucleotide
	0.11 1127 / 20002	-			intergenie	·····	repeat

HT-18	Chr4:18453389	-2	AT	-	Intergenic	CACACATATATATATATATATATATATATATATATATA	Dinucleotide
		_					repeat
HT-21	Chr4:2245472	-2	ТА	-	Intergenic	AACAT <mark>TA</mark> TATATATATATATAT	Dinucleotide repeat
HT-21	Chr5:13111696	-2	ТА	-	Intergenic	TATAT <mark>TA</mark> TATATATATATATATAAAAAG	Dinucleotide repeat
HT-18	Chr5:13863189	-2	AT	-	Intergenic	AATCA <mark>AT</mark> ATATATATATATATATATATATATATATATA	Dinucleotide repeat
HT-20	Chr5:19701445	-2	ТА	-	Intergenic	ACAAT <mark>TA</mark> TATATATATATATATATATATATA	Dinucleotide repeat
HT-21	Chr5:5165091	-2	ТА	-	Intergenic	TTAGG <mark>TA</mark> TATATATATATATATATAGTTAA	Dinucleotide repeat
HT-21	Chr5:5594780	2	-	СТ	UTR	TTTCC <mark>et</mark> CTCTCTCTCTCTCTCTCTCTG	Dinucleotide repeat
HT-21	Chr1:11339645	-1	А	-	Intron	СТАТТ <mark>А</mark> ААААААААААААА	Homopolymeric
HT-15	Chr1:13126991	-1	А	-	Intergenic	TATCT <mark>A</mark> AAAAAATCAAC	Homopolymeric
HT-15	Chr1:14606433	-1	А	-	Intergenic	GCCCT <mark>A</mark> AAAAAAAAAATTGAC	Homopolymeric
HT-1	Chr1:16680566	-1	А	-	Intergenic	TACAC <mark>A</mark> AAAAAAAAAATGTGT	Homopolymeric
HT-21	Chr1:19526965	-1	А	-	Intergenic	ААААG <mark>А</mark> АААААААААА	Homopolymeric
HT-15	Chr1:20686277	-1	А	-	Intergenic	AAGAT <mark>A</mark> AAAAAAAAGAAGA	Homopolymeric
HT-1	Chr1:20699996	-1	т	-	Intergenic	TATCA <mark>T</mark> TTTTTTTTTTTTAGAAA	Homopolymeric
HT-21	Chr1:21206782	-1	т	-	Intergenic	ACACA <mark>T</mark> TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Homopolymeric
HT-11	Chr1:22891358	-1	т	-	Intergenic	TCACA <mark>T</mark> TTTTTTTTTTTTTTTTTGTTAA	Homopolymeric
HT-1	Chr1:23286686	-1	А	-	UTR	CTCTG <mark>A</mark> AAAAAAAAAAAAAACTTTG	Homopolymeric
HT-21	Chr1:23690770	-1	т	-	UTR	TGACC <mark>T</mark> TTTTTTTTTCTATA	Homopolymeric
HT-15	Chr1:25695984	2	-	тт	Intergenic	TTCTC tt TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Homopolymeric
HT-15	Chr1:26950761	-1	А	-	Intron	tgctt <mark>aaaaaaaaaaa</mark> gtata	Homopolymeric
HT-20	Chr1:26977659	-1	т	-	Intron	AGATC <mark>TTTTTTTTA</mark> CGTC	Homopolymeric
HT-21	Chr1:27252098	1	-	А	Intron	AAAAG <mark>a</mark> AAAAAAAAAAAACAAGT	Homopolymeric
HT-1	Chr1:28209515	-1	A	-	UTR	ACAAG <mark>A</mark> AAAAAAAAAAAA	Homopolymeric
HT-15	Chr1:28297417	-1	т	-	Intron	TTGGC <mark>T</mark> TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Homopolymeric
HT-11	Chr1:28683950	-1	т	-	Intergenic	TTATG <mark>T</mark> TTTTTTAGTTG	Homopolymeric

HT-21	Chr1:29383045	-1	А	-	Intergenic	GATGG <mark>A</mark> AAAAAAAAAAAACTAAG	Homopolymeric
HT-11	Chr1:3381213	-1	Т	-	Intergenic	TTCAA T TTTTTTTTTTTGTGTT	Homopolymeric
HT-20	Chr1:3975532	-1	А	-	Intergenic	CCATT <mark>A</mark> AAAAAAAAAAAAAACAGGA	Homopolymeric
HT-18	Chr1:4076288	-1	А	-	Intergenic	CCGTC <mark>A</mark> AAAAAAAAAACAATC	Homopolymeric
HT-21	Chr1:6512154	-1	А	-	Intergenic	TAGAT <mark>A</mark> AAAAAAAAAGGAAA	Homopolymeric
HT-21	Chr1:7333806	-1	А	-	Intergenic	аааас <mark>а</mark> аааааааааааааттасс	Homopolymeric
HT-20	Chr1:8319580	-1	Т	-	Intergenic	GTTAC <mark>T</mark> TTTTTTTTTTGTCGT	Homopolymeric
HT-1	Chr1:9132314	-1	т	-	Intergenic	TCACG <mark>T</mark> TTTTTTTTTAATAT	Homopolymeric
HT-1	Chr1:9582862	-1	т	-	Intergenic	AGTAA <mark>T</mark> TTTTTTTTGTTAG	Homopolymeric
HT-18	Chr2:11728791	1	-	А	Intergenic	AAAAG <mark>a</mark> AAAAAAAAAGCAAA	Homopolymeric
HT-1	Chr2:12740680	-1	G	-	Intergenic	ACTTA <mark>G</mark> GGGGGGGGGGGTATTG	Homopolymeric
HT-1	Chr2:15963389	-1	т	-	Intergenic	TCATA <mark>T</mark> TTTTTTTTTGATTA	Homopolymeric
HT-1	Chr2:16816144	-1	Т	-	Intergenic	ATTTG <mark>T</mark> TTTTTTTTTTTTTTTGTTTT	Homopolymeric
HT-20	Chr2:169643	-1	А	-	Intergenic	TTGAC <mark>A</mark> AAAAAAAAAAAAAGCATT	Homopolymeric
HT-1	Chr2:17503175	-1	Т	-	Intergenic	TTTAC <mark>T</mark> TTTTTTTTGGGTA	Homopolymeric
HT-20	Chr2:17670545	1	-	Т	Intergenic	CACAG <mark>t</mark> TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAAAGG	Homopolymeric
HT-1	Chr2:17916933	-1	С	-	Intron	ataca <mark>c</mark> cccccactaa	Homopolymeric
HT-1	Chr2:2227013	-2	AA	-	Intergenic	TATAT <mark>AA</mark> AATCT	Homopolymeric
HT-20	Chr2:4458123	-1	Т	-	Intergenic	TATTG <mark>T</mark> TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Homopolymeric
HT-21	Chr2:5240832	-1	G	-	TE	TCCGT <mark>G</mark> GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	Homopolymeric
HT-21	Chr2:7084619	-1	Т	-	Intergenic	GTTAC <mark>T</mark> TTTTTTTTTTTTTTTTTAGTCA	Homopolymeric
HT-20	Chr2:7422128	-1	А	-	Intergenic	AAATT <mark>A</mark> AAAAAAAAAAAGGAGAG	Homopolymeric
HT-21	Chr2:8104061	-1	А	-	Intergenic	GAAGG <mark>A</mark> AAAAAAAAAAGGTGAT	Homopolymeric
HT-1	Chr2:8560007	-1	A	-	Intergenic	AAGTT <mark>A</mark> AAAAAAAGTAGA	Homopolymeric
HT-21	Chr2:8647449	-1	А	-	Intergenic	CACAT <mark>A</mark> AAAAAAAAAGGTTA	Homopolymeric
HT-20	Chr2:8706400	-1	т	-	Intron	CAAAC <mark>T</mark> TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Homopolymeric
HT-11	Chr2:9919932	-1	А	-	Intergenic	аааад <mark>а</mark> ааааааааасатат	Homopolymeric
HT-1	Chr3:11004372	1	-	т	Intergenic	TTTTC t TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Homopolymeric

HT-11	Chr3:1664694	-7	ΑΑΑΑΑΑ	-	Intron	АGGTG <u>ааааааааааааааааааааааааааааааа</u> GTGAA	Homopolymeric
HT-21	Chr3:16968246	-1	Т	-	Intergenic	TACAA <mark>T</mark> TTTTTTTTTAATCT	Homopolymeric
HT-1	Chr3:16975618	-1	Т	-	Intergenic	ACTTA <mark>T</mark> TTTTTTTTA	Homopolymeric
HT-18	Chr3:17260053	-1	А	-	Intergenic	AAATT <mark>A</mark> AAAAAAAAAAAAAAGAGGA	Homopolymeric
HT-21	Chr3:18619801	-1	т	-	Intergenic	TCTAA <mark>T</mark> TTTTTTTTTTTC	Homopolymeric
HT-18	Chr3:18950904	-1	т	-	Intergenic	TAATA <mark>T</mark> TTTTTTTTTTTTTTTGAGGA	Homopolymeric
HT-20	Chr3:19852394	-1	А	-	Intergenic	САААС <mark>А</mark> ААААААААААТСААА	Homopolymeric
HT-11	Chr3:20914031	1	-	А	Intergenic	AATGT <mark>a</mark> AAAAAAAAAACTCGA	Homopolymeric
HT-20	Chr3:21412423	-1	А	-	Intergenic	AAAGG <mark>A</mark> AAAAAAAAAAACAATT	Homopolymeric
HT-18	Chr3:3253223	-1	А	-	Intergenic	ААААС <mark>А</mark> ААААААААААА	Homopolymeric
HT-15	Chr3:5373167	-1	А	-	Intergenic	тттат <mark>а</mark> ааааааааааааааааааааааааааааааа	Homopolymeric
HT-20	Chr3:6463425	-1	т	-	Intergenic	ACAAC <mark>T</mark> TTTTTTTTTAGTTA	Homopolymeric
HT-1	Chr3:8824254	1	-	А	Intron	TAAAG <mark>a</mark> AAAAAAAAACAGTT	Homopolymeric
HT-18	Chr4:10786560	1	-	А	Intergenic	GCAAT <mark>a</mark> AAAAAAAAAAAAAAAGTTCA	Homopolymeric
HT-11	Chr4:12985506	-1	А	-	Intergenic	gaaat <mark>a</mark> aaaaaaactgat	Homopolymeric
HT-1	Chr4:13148371	-1	т	-	Intron	ACACA <mark>T</mark> TTTTTTTAACTC	Homopolymeric
HT-21	Chr4:13828476	-14	AAAAAAAAAGAAAA	-	UTR	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Homopolymeric
HT-15	Chr4:1439209	-1	А	-	Intergenic	ACAAT <mark>A</mark> AAAAAAAAAAAATAATG	Homopolymeric
HT-20	Chr4:15698587	-1	А	-	Intergenic	САААG <mark>А</mark> АААААААААААА	Homopolymeric
HT-20	Chr4:16597704	-1	А	-	Intergenic	CTAAG <mark>A</mark> AAAAAAACCCTC	Homopolymeric
HT-21	Chr4:17794647	-1	т	-	Intergenic	TTGTA <mark>T</mark> TTTTTTTTTTGTCTT	Homopolymeric
HT-1	Chr4:2659645	-1	т	-	Intergenic	TTTTC <mark>T</mark> TTTTTTTTTTCAATC	Homopolymeric
HT-15	Chr4:2867176	-1	А	-	Intergenic	TAGAG <mark>A</mark> AAAAAAAAATGCAT	Homopolymeric
HT-21	Chr4:3282646	-1	А	-	Intergenic	AAAAC <mark>A</mark> AAAAAAAAAAATTGAA	Homopolymeric
HT-15	Chr4:5403159	-1	т	-	Intergenic	ACTTA <mark>T</mark> TTTTTTTTTTTTTTGTATT	Homopolymeric
HT-15	Chr4:9886010	-1	А	-	Intergenic	AAAAG <mark>A</mark> AAAAAAAAAAAAAAA	Homopolymeric
HT-11	Chr4:9960777	-1	А	-	Intergenic	GGATG <mark>A</mark> AAAAAAAAAAAATAGAC	Homopolymeric
HT-1	Chr5:10391521	-1	Т	-	Intergenic	ATTAC <mark>T</mark> TTTTTTTCATAT	Homopolymeric

HT-20	Chr5:10457533	-1	А	-	Intergenic	AACCG <mark>A</mark> AAAAAAACTCGT	Homopolymeric
HT-21	Chr5:11365113	-1	G	-	Intergenic	GTGGA <mark>G</mark> GGGGGGGGGGCTTGG	Homopolymeric
HT-18	Chr5:1142548	-1	Т	-	Intergenic	AATTG <mark>T</mark> TTTTTTTTTAATTA	Homopolymeric
HT-11	Chr5:12004467	-1	Т	-	Intergenic	CTACG <mark>T</mark> TTTTTTTTTTGTCTT	Homopolymeric
HT-20	Chr5:13062411	-1	А	-	Intergenic	ACAAT <mark>A</mark> AAAAAAAAATAAAA	Homopolymeric
HT-15	Chr5:13754181	-1	А	-	Intergenic	attac <mark>a</mark> aaaaagatca	Homopolymeric
HT-20	Chr5:14537685	-1	А	-	Intron	ATTCG <mark>A</mark> AAAAAAAAAAACAATG	Homopolymeric
HT-15	Chr5:15630622	-1	А	-	Intergenic	CAAAT <mark>A</mark> AAAAAAAAAGTTAG	Homopolymeric
HT-11	Chr5:17148361	-1	А	-	Intergenic	AAAAT <mark>A</mark> AAAAAAAAAGGTTT	Homopolymeric
HT-18	Chr5:18986634	-1	т	-	Intergenic	ACAGA <mark>T</mark> TTTTTTTTTATCAT	Homopolymeric
HT-18	Chr5:21837733	-11	AGACCTACCTT	-	Intergenic	CGTCTAGACCTACCTTTTAAC	Homopolymeric
HT-11	Chr5:23393276	-1	Т	-	Intergenic	CGATC <mark>T</mark> TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Homopolymeric
HT-1	Chr5:24565073	-1	А	-	Intergenic	AAAAT <mark>A</mark> AAAAAAAATTGTA	Homopolymeric
HT-20	Chr5:25400022	-1	т	-	Intergenic	TAAAC <mark>T</mark> TTTTTTTTTTTTTTACATT	Homopolymeric
-							
HT-11	Chr5:26126363	1	-	Т	UTR	ATTCC <mark>t</mark> TTTTTTTTTTAGTTA	Homopolymeric
HT-11 HT-21	Chr5:26126363 Chr3:13017805	1 -22	- TGGGGGGGTGGCTTC ACTGTAAT	т -	UTR TE	ATTCC <u>LTTTTTTTTT</u> AGTTA ATCGA TGGGGGGTGGCTTCACTGTAAT CCTAC	Homopolymeric Random
HT-11 HT-21 HT-20	Chr5:26126363 Chr3:13017805 Chr3:18460777	1 -22 1	- TGGGGGGGTGGCTTC ACTGTAAT -	Т - А	UTR TE Intergenic	ATTCC <u>tTTTTTTTT</u> AGTTA ATCGA TGGGGGGTGGCTTCACTGTAAT CCTAC TTCTT a ATTAT	Homopolymeric Random Random
HT-11 HT-21 HT-20 HT-18	Chr5:26126363 Chr3:13017805 Chr3:18460777 Chr5:21837749	1 -22 1 2	- TGGGGGGGTGGCTTC ACTGTAAT - -	T - A CG	UTR TE Intergenic Intergenic	ATTCC <u>tTTTTTTTTTA</u> GTTA ATCGA TGGGGGGTGGCTTCACTGTAAT CCTAC TTCTT a ATTAT TTAAC cg TCCTT	Homopolymeric Random Random Random
HT-11 HT-21 HT-20 HT-18 HT-18	Chr5:26126363 Chr3:13017805 Chr3:18460777 Chr5:21837749 Chr5:21837751	1 -22 1 2 5	- TGGGGGGGTGGCTTC ACTGTAAT - - -	T - A CG TACAT	UTR TE Intergenic Intergenic Intergenic	ATTCCATTCCATCGATGGGGGGGGGGGGGCTCACTGTAATCCTACTTCTTAATTATTTAACcgTCCTTAACTCAACTC	Homopolymeric Random Random Random Random
HT-11 HT-21 HT-20 HT-18 HT-18 HT-21	Chr5:26126363 Chr3:13017805 Chr3:18460777 Chr5:21837749 Chr5:21837751 Chr4:8452944	1 -22 1 2 5 -1	- TGGGGGGGTGGCTTC ACTGTAAT - - - G	T - A CG TACAT -	UTR TE Intergenic Intergenic Intergenic UTR	ATTCC <u>tTTTTTTTTAG</u> TTA ATCGA TGGGGGGGTGGCTTCACTGTAAT CCTAC TTCTT a ATTAT TTAAC cg TCCTT AACTC tacat CTTGA GTAGT <u>GGG</u> AGAAA	Homopolymeric Random Random Random Random
HT-11 HT-21 HT-20 HT-18 HT-18 HT-21 HT-21	Chr5:26126363 Chr3:13017805 Chr3:18460777 Chr5:21837749 Chr5:21837751 Chr4:8452944 Chr5:3633511	1 -22 1 2 5 -1 -3	- TGGGGGGGTGGCTTC ACTGTAAT - - G G TGT	T - A CG TACAT - -	UTR TE Intergenic Intergenic UTR Intergenic	ATTCC <u>tTTTTTTTTAGTTA</u> ATCCGATGGGGGGTGGCTTCACTGTAATCCTAC TTCTTaATTAT TTAACcgTCCTT AACTCtacatCTTGA GTAGTGGGAGAAA TTAGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTG	Homopolymeric Random Random Random Random Trinucleotide repeat
HT-11 HT-21 HT-20 HT-18 HT-18 HT-21 HT-21 HT-21	Chr5:26126363 Chr3:13017805 Chr3:18460777 Chr5:21837749 Chr5:21837751 Chr4:8452944 Chr5:3633511 Chr1:14270590	1 -22 1 2 5 -1 -3 0	- TGGGGGGGTGGCTTC ACTGTAAT - - G G TGT G	T A CG TACAT - - A	UTR TE Intergenic Intergenic UTR Intergenic Intergenic TE	ATTCC <u>tTTTTTTTTTAGTTA</u> ATCCGATGGGGGGGGCGCCTCACTGTAATCCTAC TTCTTaATTAT TTAACcgTCCTT AACTCtacatCTTGA GTAGT <u>GGGA</u> GAAA TTAGT <u>TGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTT</u>	Homopolymeric Random Random Random Random Trinucleotide repeat
HT-11 HT-21 HT-20 HT-18 HT-18 HT-21 HT-21 HT-21 HT-1	Chr5:26126363 Chr3:13017805 Chr3:18460777 Chr5:21837749 Chr5:21837751 Chr4:8452944 Chr5:3633511 Chr1:14270590 Chr1:15110486	1 -22 1 2 5 -1 -3 0 0	- TGGGGGGGTGGCTTC ACTGTAAT - - G G TGT G G C	T - A CG TACAT - - A G	UTR TE Intergenic Intergenic UTR Intergenic TE Intergenic	ATTCC <u>tTTTTTTTTTAGTTA</u> ATCGATGGGGGGTGGCTTCACTGTAATCCTAC TTCTTaATTAT TTAACcgTCCTT AACTCtacatCTTGA GTAGTGGGAGAAA TTAGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTG	Homopolymeric Random Random Random Random Trinucleotide repeat
HT-11 HT-21 HT-20 HT-18 HT-18 HT-21 HT-21 HT-1 HT-1	Chr5:26126363 Chr3:13017805 Chr3:18460777 Chr5:21837749 Chr5:21837751 Chr4:8452944 Chr5:3633511 Chr1:14270590 Chr1:15110486 Chr1:23197490	1 -22 1 2 5 -1 -3 0 0 0 0	- TGGGGGGGTGGCTTC ACTGTAAT - - G G TGT G G C G G	T A CG TACAT - - A G A	UTR TE Intergenic Intergenic Intergenic UTR Intergenic TE Intergenic Intergenic	ATTCC <u>tTTTTTTTTTAGTTA</u> ATCCGATGGGGGGGGGCGCCTCACTGTAATCCTAC TTCTTaATTAT TTAACcgTCCTT AACTCtacatCTTGA GTAGTGGGAGAAA TTAGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTG	Homopolymeric Random Random Random Random Trinucleotide repeat
HT-11 HT-21 HT-20 HT-18 HT-18 HT-21 HT-21 HT-1 HT-1 HT-1	Chr5:26126363 Chr3:13017805 Chr3:18460777 Chr5:21837749 Chr5:21837751 Chr4:8452944 Chr5:3633511 Chr1:14270590 Chr1:15110486 Chr1:23197490 Chr2:275106	1 -22 1 2 5 -1 -3 0 0 0 0 0 0	- TGGGGGGGTGGCTTC ACTGTAAT	T A CG TACAT - A A G A G	UTR TE Intergenic Intergenic UTR UTR Intergenic TE Intergenic Intergenic	ATTCC <u>tTTTTTTTTTTAGTTA</u> ATCGATGGGGGGGGGGGCTGCCTTCACTGTAATCCTAC TTCTTaATTAT TTAACcgTCCTT AACTCtacatCTTGA GTAGTGGGAGAAA TTAGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTG	Homopolymeric Random Random Random Random Trinucleotide repeat
HT-11 HT-21 HT-20 HT-18 HT-18 HT-21 HT-21 HT-1 HT-1 HT-1 HT-1	Chr5:26126363 Chr3:13017805 Chr3:18460777 Chr5:21837749 Chr5:21837751 Chr4:8452944 Chr5:3633511 Chr1:14270590 Chr1:15110486 Chr1:23197490 Chr2:275106	1 -22 1 2 5 -1 -3 0 0 0 0 0 0 0 0 0	- TGGGGGGGTGGCTTC ACTGTAAT	T A CG TACAT - A G G G G C	UTR TE Intergenic Intergenic UTR Intergenic TE Intergenic Intergenic Intergenic	ATTCC <u>tTTTTTTTTTAGTTA</u> ATCCGATGGGGGGGGGCGCCTTCACTGTAATCCTAC TTCTTaATTAT TTAACcgTCCTT AACTCtacatCTTGA GTAGTGGGAGAAA TTAGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTG	Homopolymeric Random Random Random Random Trinucleotide repeat

HT-1	Chr2:10442268	0	А	т	Intergenic	
HT-1	Chr2:12002525	0	А	С	Intergenic	
HT-1	Chr3:2611048	0	G	С	Intron	
HT-1	Chr3:12619911	0	Т	А	Intergenic	
HT-1	Chr3:21971906	0	А	т	Intergenic	
HT-1	Chr4:3789271	0	G	А	TE	
HT-1	Chr4:4723209	0	G	А	Intergenic	
HT-1	Chr4:5480807	0	G	Т	TE	
HT-1	Chr5:8755519	0	Т	А	Intron	
HT-1	Chr5:8770714	0	G	А	Intergenic	
HT-1	Chr5:9460202	0	G	А	Intergenic	
HT-1	Chr5:9931692	0	G	А	Intergenic	
HT-1	Chr5:11126531	0	С	т	Intergenic	
HT-1	Chr5:21915294	0	G	А	Intergenic	
HT-11	Chr1:5759844	0	G	А	Intron	
HT-11	Chr1:8166201	0	G	А	Intergenic	
HT-11	Chr1:11117631	0	G	А	Intergenic	
HT-11	Chr1:13165211	0	C	Т	Intergenic	
HT-11	Chr1:15879385	0	С	т	Intergenic	
HT-11	Chr2:715687	0	G	А	Intergenic	
HT-11	Chr2:2639933	0	С	G	TE	
HT-11	Chr2:3721045	0	А	G	Intergenic	
HT-11	Chr2:3994058	0	С	т	Intergenic	
HT-11	Chr2:5510145	0	С	т	TE	
HT-11	Chr2:7171329	0	C	т	TE	
HT-11	Chr2:11373558	0	G	А	Intergenic	
HT-11	Chr2:19454254	0	Т	А	CDS	
HT-11	Chr3:7136342	0	С	Т	Intron	

HT-11	Chr3:12862151	0	А	С	TE	
HT-11	Chr3:13596662	0	G	С	Intergenic	
HT-11	Chr4:1507960	0	С	Т	Intergenic	
HT-11	Chr4:2101311	0	С	Т	Intergenic	
HT-11	Chr4:4512917	0	А	С	TE	
HT-11	Chr4:15261455	0	С	Т	Intergenic	
HT-11	Chr5:7300002	0	С	А	Pseudogene	
HT-11	Chr5:19675362	0	G	А	Intergenic	
HT-11	Chr5:26671119	0	т	А	Intergenic	
HT-15	Chr1:9454252	0	А	Т	Intergenic	
HT-15	Chr1:11127336	0	G	А	Intergenic	
HT-15	Chr1:12161374	0	G	А	Intergenic	
HT-15	Chr1:13447138	0	G	А	TE	
HT-15	Chr1:15720647	0	G	А	Pseudogene	
HT-15	Chr3:14534689	0	С	G	Intergenic	
HT-15	Chr4:8319421	0	С	Т	Intergenic	
HT-15	Chr4:8942472	0	G	А	Intergenic	
HT-15	Chr4:12484695	0	G	А	Intergenic	
HT-15	Chr5:12981924	0	G	А	Intron	
HT-15	Chr5:14002473	0	С	Т	Intergenic	
HT-15	Chr5:25663357	0	А	Т	Intergenic	
HT-18	Chr1:5970757	0	А	Т	Intergenic	
HT-18	Chr1:17874078	0	G	т	Intergenic	
HT-18	Chr1:21970368	0	G	Т	Intron	
HT-18	Chr1:28843265	0	G	Т	Intergenic	
HT-18	Chr4:10400859	0	С	Т	Intergenic	
HT-18	Chr4:16988590	0	G	С	CDS	
HT-18	Chr5:14087316	0	С	Т	TE	

HT-18	Chr5:19910144	0	G	А	Intergenic	
HT-18	Chr5:20785553	0	А	G	CDS	
HT-18	Chr5:21837746	0	А	G	Intergenic	
HT-18	Chr5:22534434	0	С	Т	Intergenic	
HT-20	Chr1:8042278	0	А	Т	Intergenic	
HT-20	Chr1:15538681	0	G	А	Intergenic	
HT-20	Chr1:23872766	0	А	G	CDS	
HT-20	Chr2:10603285	0	С	G	Intergenic	
HT-20	Chr3:11408296	0	G	А	Intergenic	
HT-20	Chr4:3035490	0	G	А	Intergenic	
HT-20	Chr4:3606221	0	А	G	Intergenic	
HT-20	Chr4:5840966	0	С	А	CDS	
HT-20	Chr5:250133	0	С	А	Intergenic	
HT-20	Chr5:24944428	0	С	Т	CDS	
HT-21	Chr1:6900138	0	т	С	Intergenic	
HT-21	Chr2:2471240	0	А	G	Intergenic	
HT-21	Chr2:5334363	0	т	G	TE	
HT-21	Chr2:6718575	0	А	С	TE	
HT-21	Chr2:10690015	0	С	Т	CDS	
HT-21	Chr2:12286260	0	G	А	CDS	
HT-21	Chr3:11187461	0	G	А	TE	
HT-21	Chr3:12718778	0	G	А	TE	
HT-21	Chr3:14397126	0	А	G	Intergenic	
HT-21	Chr3:14718365	0	G	А	TE	
HT-21	Chr3:15478326	0	G	С	Intergenic	
HT-21	Chr3:17451934	0	т	С	Intron	
HT-21	Chr4:4370464	0	G	А	TE	
HT-21	Chr4:4880703	0	С	Т	TE	

HT-21	Chr5:8107226	0	т	С	CDS	
HT-21	Chr5:9712336	0	G	А	TE	
СТ-10	Chr1:23761255	0	А	G	Intergenic	
CT-10	Chr1:24306494	-1	т	-	Intergenic	
CT-2	Chr1:57619	0	G	А	CDS	
CT-2	Chr2:15883885	-1	А	-	UTR	
CT-2	Chr2:8555726	0	G	А	Intergenic	
CT-2	Chr5:23097639	0	Т	С	CDS	
CT-2	Chr5:5707226	0	G	А	Intron	
CT-4	Chr2:13356157	0	А	С	Intron	
CT-4	Chr2:5586514	0	С	А	Pseudogene	
CT-4	Chr3:17006305	0	Т	С	Intron	
CT-4	Chr3:17465651	0	Т	G	CDS	
CT-4	Chr4:3775263	0	Т	А	Intergenic	
CT-4	Chr5:19360667	0	Т	G	TE	
СТ-6	Chr1:13104509	0	С	Т	Intergenic	
CT-6	Chr3:13532744	0	С	т	Intergenic	

Supplemental Table 2. Entire list of all detected HT- and CT-induced mutations. List shows each individual DNA sequence mutation identified in the six genome-sequenced G11 HT MA plants and five genome-sequenced G6 CT MA plants. * The column titled "Flanking indel mutation sequence" shows deletions in red uppercase text and insertions in red lowercase text. Also shown in underlined text are the dinucleotide repeats, trinucleotide repeat, and homopolymeric sequences the indel mutations are associated with.

Species	Organism	Organism and genotype	Description	Environmental temperature	Number of indel mutations reported	Number of SNV mutations reported	Indel/ SNV ratio	Reference
EUBACTERIA	Bacteria	Micrococcus sp. KBS0714	Wild type	ST	83	170	0.488	(Long et al. 2018)
EUBACTERIA	Bacteria	Kineococcus radiotolerans	Wild type	ST	122	280	0.436	(Long et al. 2018)
EUBACTERIA	Bacteria	Bacillus subtilis	Wild type	ST	29	69	0.420	(Sung et al. 2012)
EUBACTERIA	Bacteria	Deinococcus radiodurans	DNA repair-deficient	ST	35	127	0.276	(Long et al. 2015)
EUBACTERIA	Bacteria	Vibrio fischeri ES114	Wild type	ST	60	219	0.274	(Dillon et al. 2017)
EUBACTERIA	Bacteria	Escherichia coli	Wild type	ST	20	73	0.274	(Shewaramani et al. 2017)
EUBACTERIA	Bacteria	Vibrio cholerae 2740-81	DNA repair defective	ST	273	1022	0.267	(Dillon et al. 2017)
EUBACTERIA	Bacteria	Mycobacterium smegmatis MC2 155	Wild type	ST	207	856	0.242	(Kucukyildirim et al. 2016)
EUBACTERIA	Bacteria	Escherichia coli	Wild type	ST	17	74	0.230	(Shewaramani et al. 2017)
EUBACTERIA	Bacteria	Escherichia coli	Wild type	ST - 37°C	342	1636	0.209	(Chu et al. 2018)
EUBACTERIA	Bacteria	Escherichia coli	Wild type	CT - 28°C	214	1041	0.206	(Chu et al. 2018)
EUBACTERIA	Bacteria	Arthrobacter sp. KBS0703	Wild type	ST	88	451	0.195	(Long et al. 2018)
EUBACTERIA	Bacteria	Mesoplasma florum L1	Wild type	ST	101	527	0.192	(Sung et al. 2012)
EUBACTERIA	Bacteria	Ruegeria pomeroyi DSS-3	Wild type	ST	30	161	0.186	(Sun et al. 2017)
EUBACTERIA	Bacteria	Pseudomonas aeruginosa	Wild type	ST	8	44	0.182	(Dettman et al. 2016)
EUBACTERIA	Bacteria	Escherichia coli	Wild type	CT - 25°C	191	1108	0.172	(Chu et al. 2018)
EUBACTERIA	Bacteria	Vibrio cholerae 2740-80	Wild type	ST	22	138	0.159	(Dillon et al. 2017)
EUBACTERIA	Bacteria	Caulobacter crescentus NA1000	Wild type	ST	41	259	0.158	(Long et al. 2018)
EUBACTERIA	Bacteria	Pseudomonas aeruginosa	DNA repair defective	ST	108	690	0.157	(Dettman et al. 2016)
EUBACTERIA	Bacteria	Staphylococcus epidermidis ATCC 12228	Wild type	ST	45	294	0.153	(Sung et al. 2016)
EUBACTERIA	Bacteria	Rhodobacter sphaeroides ATCC17025	Wild type	ST	16	107	0.150	(Long et al. 2018)
EUBACTERIA	Bacteria	Gemmata obscuriglobus DSM5831	Wild type	ST	29	197	0.147	(Long et al. 2018)
EUBACTERIA	Bacteria	Flavobacterium sp. KBS0721	Wild type	ST	85	580	0.147	(Long et al. 2018)
EUBACTERIA	Bacteria	Burkhoderia cenocepacia HI2424	Wild type	ST	33	245	0.135	(Dillon et al. 2015)
EUBACTERIA	Bacteria	Escherichia coli - PFM35 uvrA	DNA repair defective	ST	40	316	0.127	(Foster et al. 2015)
EUBACTERIA	Bacteria	Staphylococcus aureus ATCC 25923	Wild type	ST	33	274	0.120	(Long et al. 2018)

EUBACTERIA	Bacteria	Agrobacterium tumefaciens	Wild type	ST	50	425	0.118	(Sung et al. 2016)
EUBACTERIA	Bacteria	Escherichia coli - PFM40 alkA tagA	DNA repair defective	ST	30	265	0.113	(Foster et al. 2015)
EUBACTERIA	Bacteria	Escherichia coli	DNA repair defective	ST	34	306	0.111	(Lee et al. 2012)
EUBACTERIA	Bacteria	Colwellia psychrerythraea 34H	Wild type	ST	44	400	0.110	(Long et al. 2018)
EUBACTERIA	Bacteria	Escherichia coli - PFM133 umuDC dinB polB	DNA repair defective	ST	27	252	0.107	(Foster et al. 2015)
EUBACTERIA	Bacteria	Escherichia coli - PFM180 xthA nfo	DNA repair defective	ST	36	339	0.106	(Foster et al. 2015)
EUBACTERIA	Bacteria	Escherichia coli - PFM2	Wild type	ST	24	246	0.098	(Foster et al. 2015)
EUBACTERIA	Bacteria	Escherichia coli	Wild type	ST	9	93	0.097	(Lee et al. 2012)
EUBACTERIA	Bacteria	Escherichia coli - PFM88 ada ogt	DNA repair defective	ST	24	250	0.096	(Foster et al. 2015)
EUBACTERIA	Bacteria	Escherichia coli - ED1a	Wild type	ST	37	407	0.091	(Foster et al. 2015)
EUBACTERIA	Bacteria	Vibrio fischeri ES115	DNA repair defective	ST	382	4313	0.089	(Dillon et al. 2017)
EUBACTERIA	Bacteria	Escherichia coli	Wild type	ST	12	140	0.086	(Lee et al. 2012)
EUBACTERIA	Bacteria	Escherichia coli - PFM101 umuDC dinB	DNA repair defective	ST	23	269	0.086	(Foster et al. 2015)
EUBACTERIA	Bacteria	Janthinobacterium lividum KBS0711	Wild type	ST	9	106	0.085	(Long et al. 2018)
EUBACTERIA	Bacteria	Escherichia coli - PFM91 nfi	DNA repair defective	ST	25	335	0.075	(Foster et al. 2015)
EUBACTERIA	Bacteria	Escherichia coli - IAI1	Wild type	ST	31	422	0.073	(Foster et al. 2015)
EUBACTERIA	Bacteria	Pseudomonas fluorescens	DNA repair defective	ST	2201	31106	0.071	(Long et al. 2014)
EUBACTERIA	Bacteria	Lactococcus lactis DSMZ20481	Wild type	ST	56	813	0.069	(Long et al. 2018)
EUBACTERIA	Bacteria	Deinococcus radiodurans	Wild type	ST	19	388	0.049	(Long et al. 2015)
EUBACTERIA	Bacteria	Escherichia coli - PFM2m	Wild type	ST	13	277	0.047	(Foster et al. 2015)
EUBACTERIA	Bacteria	Escherichia coli - PFM22 nth nei	DNA repair defective	ST	6	209	0.029	(Foster et al. 2015)
EUBACTERIA	Bacteria	Escherichia coli - PFM6 mutY	DNA repair defective	ST	6	485	0.012	(Foster et al. 2015)
EUBACTERIA	Bacteria	Escherichia coli - PFM94 mutM mutY	DNA repair defective	ST	6	4282	0.001	(Foster et al. 2015)
EUBACTERIA	Bacteria	Escherichia coli - PFM61 mutT	DNA repair defective	ST	1	2234	0.000	(Foster et al. 2015)
MULTICELLULAR EUKARYOTES	Plant	Arabiposis thaliana	Wild type	HT	138	92	1.500	This study
MULTICELLULAR EUKARYOTES	Plant	Arabiposis thaliana - Atmsh2-1	DNA repair defective	ST	4663	4048	1.152	(Belfield et al. 2018)

MULTICELLULAR EUKARYOTES	Fly	Chironomus riparius	Wild type	ST	25	26	0.962	(Oppold and Pfenninger 2017)
MULTICELLULAR EUKARYOTES	Plant	Arabiposis thaliana	Fast-neutron irradiated wild type	ST	44	64	0.688	(Belfield et al. 2012)
MULTICELLULAR EUKARYOTES	Plant	Arabiposis thaliana	Wild type	ST	30	72	0.417	(Jiang et al. 2014)
MULTICELLULAR EUKARYOTES	Honey bee	Apis mellifera	Wild type	ST	8	27	0.296	(Yang et al. 2015)
MULTICELLULAR EUKARYOTES	Plant	Oryza sativa	Wild type	ST	14	51	0.275	(Yang et al. 2015)
MULTICELLULAR EUKARYOTES	Plant	Prunus interspecific crosses (P. davidiana × P. persica)	Wild type	ST	28	144	0.194	(Xie et al. 2016)
MULTICELLULAR EUKARYOTES	Plant	Prunus intraspecific crosses (P. persica and P. mira)	Wild type	ST	18	96	0.188	(Xie et al. 2016)
MULTICELLULAR EUKARYOTES	Plant	Arabiposis thaliana	Wild type	ST	17	99	0.172	(Ossowski et al. 2010)
MULTICELLULAR EUKARYOTES	Plant	Arabiposis thaliana	Wild type	ST	7	44	0.159	(Jiang et al. 2014)
MULTICELLULAR EUKARYOTES	Fly	Drosophila melanogaster	Wild type	ST	188	1203	0.156	(Huang et al. 2016)
MULTICELLULAR EUKARYOTES	Nematode	Caenorhabditis elegans - N2	Wild type	ST	7	60	0.117	(Meier et al. 2014)
MULTICELLULAR EUKARYOTES	Mouse	Mus musculus	Wild type	ST	7	63	0.106	(Uchimura et al. 2015)
MULTICELLULAR EUKARYOTES	Water flea	Daphnia pulex - ASEX	Wild type	ST	58	569	0.102	(Keith et al. 2016)
MULTICELLULAR EUKARYOTES	Bumblebee	Bombus terrestris	Wild type	ST	2	23	0.087	(Liu et al. 2017)
MULTICELLULAR EUKARYOTES	Fly	Drosophila melanogaster	Wild type	ST	60	732	0.082	(Schrider et al. 2013)
MULTICELLULAR EUKARYOTES	Human	Homo sapiens	Wild type	ST	1282	17812	0.072	(Besenbacher et al. 2016)
MULTICELLULAR EUKARYOTES	Fly	Drosophila melanogaster	Wild type	ST	49	786	0.062	(Sharp and Agrawal 2016)
MULTICELLULAR EUKARYOTES	Western chimpanzee	Pan troglodytes verus	Wild type	ST	169387	3957360	0.043	(Venn et al. 2014)
MULTICELLULAR EUKARYOTES	Fly	Drosophila melanogaster	Wild type	ST	7	174	0.040	(Keightley et al. 2009)
MULTICELLULAR EUKARYOTES	Mouse	Mus musculus	Wild type	ST	4	118	0.034	(Uchimura et al. 2015)
MULTICELLULAR EUKARYOTES	Fly	Drosophila melanogaster	Wild type	ST	22	732	0.030	(Schrider et al. 2013)
MULTICELLULAR EUKARYOTES	Water flea	Daphnia pulex - CYC	Wild type	ST	4	164	0.024	(Keith et al. 2016)
MULTICELLULAR EUKARYOTES	Mouse	Mus musculus	Mutator Pold1exo/exo line C	ST	28	1304	0.021	(Uchimura et al. 2015)

MULTICELLULAR EUKARYOTES	Mouse	Mus musculus	Mutator <i>Pold1</i> ^{exo/exo} line D	ST	21	1472	0.014	(Uchimura et al. 2015)
MULTICELLULAR EUKARYOTES	Water flea	Daphnia pulex	Wild type	ST	6	477	0.013	(Flynn et al. 2017)
MULTICELLULAR EUKARYOTES	Butterfly	Heliconius melpomene	Wild type	ST	0	9	0.000	(Keightley et al. 2015)
UNICELLULAR EUKARYOTES	Protozoan parasite	Plasmodium falciparum - 3D7	Wild type	ST	164	15	10.93 3	(Hamilton et al. 2017)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae - rad27∆	DNA replication defective	ST	220	175	1.257	(Serero et al. 2014)
UNICELLULAR EUKARYOTES	Fission Yeas t	Schizosaccharomyces pombe	Wild type	ST	335	344	0.974	(Behringer and Hall 2015)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae - msh2∆	DNA repair defective	ST	706	965	0.732	(Serero et al. 2014)
UNICELLULAR EUKARYOTES	Green algae	Chlamydomonas reinhardtii	Wild type	ST	13	20	0.650	(Sung et al. 2012)
UNICELLULAR EUKARYOTES	Algae	Bathycoccus prasinos	Wild type	ST	10	22	0.455	(Krasovec et al. 2017)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae	Wild type	ST	95	279	0.341	(Liu and Zhang 2019)
UNICELLULAR EUKARYOTES	Green algae	Chlamydomonas reinhardtii - CC-2391	Mutator strain	ST	405	1215	0.333	(Ness et al. 2015)
UNICELLULAR EUKARYOTES	Green algae	Chlamydomonas reinhardtii - CC-2937	Wild type	ST	149	508	0.293	(Ness et al. 2015)
UNICELLULAR EUKARYOTES	Fission Yeas t	Schizosaccharomyces pombe	Wild type	ST	119	422	0.282	(Farlow et al. 2015)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae - mec1Δ tel1Δ	DNA reapir and replication defective	ST	6	24	0.250	(Serero et al. 2014)
UNICELLULAR EUKARYOTES	Ichthyospore an	Sphaeroforma arctica JP610	Wild type	ST	79	323	0.245	(Long et al. 2018)
UNICELLULAR EUKARYOTES	Algae	Ostreococcus mediterraneus	Wild type	ST	11	54	0.204	(Krasovec et al. 2017)
UNICELLULAR EUKARYOTES	Algae	Micromonas pusilla	Wild type	ST	14	71	0.197	(Krasovec et al. 2017)
UNICELLULAR EUKARYOTES	Green algae	Chlamydomonas reinhardtii - CC-2344	Mutator strain	ST	181	946	0.191	(Ness et al. 2015)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae	Wild type	ST	76	403	0.189	(Liu and Zhang 2019)
UNICELLULAR EUKARYOTES	Green algae	Chlamydomonas reinhardtii - CC-1952	Wild type	ST	66	366	0.180	(Ness et al. 2015)
UNICELLULAR EUKARYOTES	Protozoa	Paramecium tetraurelia	Wild type	ST	5	29	0.172	(Sung et al. 2012)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae - pol32∆	DNA replication defective	ST	8	47	0.170	(Serero et al. 2014)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae	Wild type	ST	21	125	0.168	(Liu and Zhang 2019)

UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae	Wild type	ST	20	132	0.152	(Liu and Zhang 2019)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae	Wild type	HT - 37-42°C	18	123	0.146	(Huang et al. 2018)
UNICELLULAR EUKARYOTES	Algae	Ostreococcus tauri	Wild type	ST	13	91	0.143	(Krasovec et al. 2017)
UNICELLULAR EUKARYOTES	Green algae	Chlamydomonas reinhardtii - CC-1373	Wild type	ST	222	1696	0.131	(Ness et al. 2015)
UNICELLULAR EUKARYOTES	Yeast	Rhodotorula toruloides ATCC10788	Wild type	ST	83	714	0.116	(Long et al. 2016)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae	Wild type	ST	19	166	0.114	(Liu and Zhang 2019)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae - mre11∆	DNA recombination defective	ST	5	49	0.102	(Serero et al. 2014)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae	Wild type	ST	11	112	0.098	(Liu and Zhang 2019)
UNICELLULAR EUKARYOTES	Green algae	Chlamydomonas reinhardtii - CC-2342	Wild type	ST	73	824	0.089	(Ness et al. 2015)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae	Wild type	ST	17	198	0.086	(Liu and Zhang 2019)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae - WT	Diploid	ST	83	1183	0.070	(Sharp et al. 2018)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae - clb5∆	Cell cycle defective	ST	7	156	0.045	(Serero et al. 2014)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae - WT	Haploid	ST	29	716	0.041	(Sharp et al. 2018)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae - pif1∆	Maintenance of mitochondrial genome and telomere length defective	ST	3	75	0.040	(Serero et al. 2014)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae - tsa1∆	Oxidative stress defective	ST	19	512	0.037	(Serero et al. 2014)
UNICELLULAR EUKARYOTES	Diatom	Phaeodactylum tricornutum	Wild type	ST	5	146	0.034	(Krasovec et al. 2019)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae	Wild type	ST	1	33	0.030	(Lynch et al. 2008)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae	Wild type	ST	26	873	0.030	(Zhu et al. 2014)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae	Wild type	ST	0	29	0.000	(Nishant et al. 2010)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae - cac1Δ cac3Δ	Nucleosome deposition defective	ST	0	40	0.000	(Serero et al. 2014)
UNICELLULAR EUKARYOTES	Yeast	Saccharomyces cerevisiae	Wild type	ST	0	41	0.000	(Serero et al. 2014)

Supplemental Table 3. Details of indel/SNV-ratio datasets used for Fig. 5C.

	Number of S			
		categories		
Chromosome	Nucleosome	Edge-of-nucleosome	Non-nucleosome	Total
Chr1	12,725,320	5,527,610	12,174,741	30,427,671
Chr2	8,421,820	3,643,330	7,633,139	19,698,289
Chr3	10,066,850	4,370,270	9,022,710	23,459,830
Chr4	7,975,490	3,454,000	7,155,566	18,585,056
Chr5	11,453,920	4,990,800	10,530,782	26,975,502
Total	50,643,400	21,986,010	46,516,938	119,146,348
Percentage	42.5%	18.5%	39.0%	100%
Percentage	61.0%		39.0%	100%

В

	Number of H			
		categories		
Chromosome	Nucleosome	Edge-of-nucleosome	Non-nucleosome	Total
Chr1	12,919,480	5,437,410	12,070,781	30,427,671
Chr2	8,549,770	3,582,010	7,566,509	19,698,289
Chr3	10,221,150	4,295,670	8,943,010	23,459,830
Chr4	8,086,600	3,391,510	7,106,946	18,585,056
Chr5	11,636,520	4,895,280	10,443,702	26,975,502
Total	51,413,520	21,601,880	46,130,948	119,146,348
Percentage	43.2%	18.1%	38.7%	100%
Percentage	61.3%		38.7%	100%

Supplemental Table 4. MNase-digested genomic DNA WGS data summary. MNase-digested genomic DNA extracted from plants grown at ST (A) and HT (B) was aligned to the TAIR10 reference using the improved nucleosome-positioning algorithm (iNPS (Chen et al. 2014)) to determine nucleosome occupancy profiles. Number of bases reported in nucleosome, edge-of-nucleosome and non-nucleosome regions in the genomes of plants are listed for Chromosomes 1–5. Also shown are the percentages of bases in nucleosomal, edge-of-nucleosome and non-nucleosomal categories, as well as the result of combining mutations located in nucleosome and edge-of-nucleosome regions into a single nucleosome-associated category.

Mutation	ST mutation count	ST mutation nucleosome category	Observed % of mutations in nucleosome category	Predicted % of mutations in nucleosome category
	8	Nucleosome	44.4%	42.5%
Indel	4	Edge-of-nucleosome	22.2%	18.5%
	6	Non-nucleosome	33.3%	39.0%
Total	18		100%	100%
SNV	68	Nucleosome	47.6%	42.5%
	24	Edge-of-nucleosome	16.8%	18.5%
	51	Non-nucleosome	35.7%	39.0%
Total	143		100%	100%

в

Α

Mutation	ST mutation count	ST mutation nucleosome category	Observed % of mutations in nucleosome category	Predicted % of mutations in nucleosome category
Indol	12	Nucleosome-associated	66.7%	61.0%
Inder	6	Non-nucleosome	33.3%	39.0%
Total	18		100%	100%
SNV	92	Nucleosome-associated	64.3%	61.0%
	51	Non-nucleosome	35.7%	39.0%
Total	143		100%	100%

Mutation	HT mutation count	HT mutation nucleosome category	Observed % of mutations in nucleosome category	Predicted % of mutations in nucleosome category
	35	Nucleosome	26.5%	43.2%
Indel	18	Edge-of-nucleosome	13.6%	18.1%
	79	Non-nucleosome	59.8%	38.7%
Total	132		100%	100%
	43	Nucleosome	46.7%	43.2%
SNV	18	Edge-of-nucleosome	19.6%	18.1%
	31	Non-nucleosome	33.7%	38.7%
Total	92		100%	100%

D

С

Mutation	HT mutation count	HT mutation nucleosome category	Observed % of mutations in nucleosome category	Predicted % of mutations in nucleosome category
Indel	53	Nucleosome-associated	40.2%	61.3%
	79	Non-nucleosome	59.8%	38.7%
Total	132		100%	100%
SNV	61	Nucleosome-associated	66.3%	61.3%
	31	Non-nucleosome	33.7%	38.7%
Total	92		100%	100%

Supplemental Table 5. Frequencies of indel and SNV mutations in different nucleosome categories. HT-induced (Supplemental Table 2) and ST (Ossowski et al. 2010; Jiang et al. 2014) mutations were overlaid onto the HT and ST MNase-seq nucleosome DNA profiles generated with iNPS (Chen et al. 2014) (see Methods and Supplemental Fig. 6). Shown are the observed genome-wide frequencies of ST indel and SNV mutations in different categories, versus the predicted (random distribution) expectation frequencies (see Supplemental Table 4A) in nucleosome, edge of nucleosome, and nonnucleosome regions (A). (B) Combined ST mutations located in nucleosome and edge-of-nucleosome regions shown as a single nucleosome-associated category (see Supplemental Table 4A). (C) and (D) Analyses of HT-induced indel and SNV mutations (as in (A) and (B), see Supplemental Table 4B predicted (random distribution) expectation frequencies).

References

- Behringer MG, Hall DW. 2015. Genome-wide estimates of mutation rates and spectrum in *Schizosaccharomyces pombe* indicate CpG sites are highly mutagenic despite the absence of DNA methylation. *G3 (Bethesda)* **6**: 149-160.
- Belfield EJ, Ding ZJ, Jamieson FJC, Visscher AM, Zheng SJ, Mithani A, Harberd NP. 2018. DNA mismatch repair preferentially protects genes from mutation. *Genome Res* 28: 66-74.
- Belfield EJ, Gan X, Mithani A, Brown C, Jiang C, Franklin K, Alvey E, Wibowo A, Jung M, Bailey K et al. 2012. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of *Arabidopsis thaliana*. *Genome Res* **22**: 1306-1315.
- Besenbacher S, Sulem P, Helgason A, Helgason H, Kristjansson H, Jonasdottir A, Jonasdottir A, Magnusson OT, Thorsteinsdottir U, Masson G et al. 2016. Multi-nucleotide *de novo* mutations in humans. *PLoS Genet* 12: e1006315.
- Chen W, Liu Y, Zhu S, Green CD, Wei G, Han J-DJ. 2014. Improved nucleosome-positioning algorithm iNPS for accurate nucleosome positioning from sequencing data. *Nat Commun* **5**: 4909.
- Chu XL, Zhang BW, Zhang QG, Zhu BR, Lin K, Zhang DY. 2018. Temperature responses of mutation rate and mutational spectrum in an *Escherichia coli* strain and the correlation with metabolic rate. *BMC Evol Biol* **18**: 126.
- Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. *Genome Res* 14: 1188-1190.
- Dettman JR, Sztepanacz JL, Kassen R. 2016. The properties of spontaneous mutations in the opportunistic pathogen *Pseudomonas aeruginosa*. *BMC Genomics* **17**: 27.
- Dillon MM, Sung W, Lynch M, Cooper VS. 2015. The rate and molecular spectrum of spontaneous mutations in the GC-rich multichromosome genome of *Burkholderia cenocepacia*. *Genetics* **200**: 935-946.
- Dillon MM, Sung W, Sebra R, Lynch M, Cooper VS. 2017. Genome-wide biases in the rate and molecular spectrum of spontaneous mutations in *Vibrio cholerae* and *Vibrio fischeri*. *Mol Biol Evol* **34**: 93-109.
- Farlow A, Long H, Arnoux S, Sung W, Doak TG, Nordborg M, Lynch M. 2015. The spontaneous mutation rate in the fission yeast *Schizosaccharomyces pombe*. *Genetics* **201**: 737-744.
- Flynn JM, Chain FJ, Schoen DJ, Cristescu ME. 2017. Spontaneous mutation accumulation in *Daphnia pulex* in selection-free vs. competitive environments. *Mol Biol Evol* **34**: 160-173.
- Foster PL, Lee H, Popodi E, Townes JP, Tang H. 2015. Determinants of spontaneous mutation in the bacterium *Escherichia coli* as revealed by whole-genome sequencing. *Proc Natl Acad Sci* USA 112: E5990-5999.
- Hamilton WL, Claessens A, Otto TD, Kekre M, Fairhurst RM, Rayner JC, Kwiatkowski D. 2017. Extreme mutation bias and high AT content in *Plasmodium falciparum*. *Nucleic Acids Res* 45: 1889-1901.
- Huang CJ, Lu MY, Chang YW, Li WH. 2018. Experimental evolution of yeast for high-temperature tolerance. *Mol Biol Evol* **35**: 1823-1839.
- Huang W, Lyman RF, Lyman RA, Carbone MA, Harbison ST, Magwire MM, Mackay TF. 2016.
 Spontaneous mutations and the origin and maintenance of quantitative genetic variation. *eLife* 5.
- Jiang C, Mithani A, Belfield EJ, Mott R, Hurst LD, Harberd NP. 2014. Environmentally responsive genome-wide accumulation of *de novo Arabidopsis thaliana* mutations and epimutations. *Genome Res* 24: 1821-1829.
- Keightley PD, Pinharanda A, Ness RW, Simpson F, Dasmahapatra KK, Mallet J, Davey JW, Jiggins CD. 2015. Estimation of the spontaneous mutation rate in *Heliconius melpomene*. *Mol Biol Evol* 32: 239-243.
- Keightley PD, Trivedi U, Thomson M, Oliver F, Kumar S, Blaxter ML. 2009. Analysis of the genome sequences of three *Drosophila melanogaster* spontaneous mutation accumulation lines. *Genome Res* **19**: 1195-1201.

- Keith N, Tucker AE, Jackson CE, Sung W, Lucas Lledo JI, Schrider DR, Schaack S, Dudycha JL, Ackerman M, Younge AJ et al. 2016. High mutational rates of large-scale duplication and deletion in *Daphnia pulex*. *Genome Res* 26: 60-69.
- Krasovec M, Eyre-Walker A, Sanchez-Ferandin S, Piganeau G. 2017. Spontaneous mutation rate in the smallest photosynthetic eukaryotes. *Mol Biol Evol* **34**: 1770-1779.
- Krasovec M, Sanchez-Brosseau S, Piganeau G. 2019. First estimation of the spontaneous mutation rate in diatoms. *Genome Biol Evol* **11**: 1829-1837.
- Kucukyildirim S, Long H, Sung W, Miller SF, Doak TG, Lynch M. 2016. The rate and spectrum of spontaneous mutations in *Mycobacterium smegmatis*, a bacterium naturally devoid of the postreplicative mismatch repair pathway. *G3 (Bethesda)* **6**: 2157-2163.
- Lee H, Popodi E, Tang H, Foster PL. 2012. Rate and molecular spectrum of spontaneous mutations in the bacterium *Escherichia coli* as determined by whole-genome sequencing. *Proc Natl Acad Sci USA* **109**: E2774-2783.
- Liu H, Jia Y, Sun X, Tian D, Hurst LD, Yang S. 2017. Direct determination of the mutation rate in the bumblebee reveals evidence for weak recombination-associated mutation and an approximate rate constancy in insects. *Mol Biol Evol* 34: 119-130.
- Liu H, Zhang J. 2019. Yeast spontaneous mutation rate and spectrum vary with environment. *Curr Biol* **29**: 1584-1591 e1583.
- Long H, Behringer MG, Williams E, Te R, Lynch M. 2016. Similar mutation rates but highly diverse mutation spectra in ascomycete and basidiomycete yeasts. *Genome Biol Evol* **8**: 3815-3821.
- Long H, Kucukyildirim S, Sung W, Williams E, Lee H, Ackerman M, Doak TG, Tang H, Lynch M. 2015. Background mutational features of the radiation-resistant bacterium *Deinococcus radiodurans*. *Mol Biol Evol* **32**: 2383-2392.
- Long H, Sung W, Kucukyildirim S, Williams E, Miller SF, Guo W, Patterson C, Gregory C, Strauss C, Stone C et al. 2018. Evolutionary determinants of genome-wide nucleotide composition. *Nat Ecol Evol* 2: 237-240.
- Long H, Sung W, Miller SF, Ackerman MS, Doak TG, Lynch M. 2014. Mutation rate, spectrum, topology, and context-dependency in the DNA mismatch repair-deficient *Pseudomonas fluorescens* ATCC948. *Genome Biol Evol* 7: 262-271.
- Lynch M, Sung W, Morris K, Coffey N, Landry CR, Dopman EB, Dickinson WJ, Okamoto K, Kulkarni S, Hartl DL et al. 2008. A genome-wide view of the spectrum of spontaneous mutations in yeast. *Proc Natl Acad Sci USA* 105: 9272-9277.
- Meier B, Cooke SL, Weiss J, Bailly AP, Alexandrov LB, Marshall J, Raine K, Maddison M, Anderson E, Stratton MR et al. 2014. *C. elegans* whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency. *Genome Res* 24: 1624-1636.
- Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, Cao J, Weigel D, Paszkowski J, Mathieu O. 2009. Selective epigenetic control of retrotransposition in *Arabidopsis. Nature* **461**: 427-430.
- Ness RW, Morgan AD, Vasanthakrishnan RB, Colegrave N, Keightley PD. 2015. Extensive *de novo* mutation rate variation between individuals and across the genome of *Chlamydomonas reinhardtii*. *Genome Res* **25**: 1739-1749.
- Nishant KT, Wei W, Mancera E, Argueso JL, Schlattl A, Delhomme N, Ma X, Bustamante CD, Korbel JO, Gu Z et al. 2010. The baker's yeast diploid genome is remarkably stable in vegetative growth and meiosis. *PLoS Genet* **6**: e1001109.
- Oppold AM, Pfenninger M. 2017. Direct estimation of the spontaneous mutation rate by short-term mutation accumulation lines in *Chironomus riparius*. *Evol Lett* **1**: 86-92.
- Ossowski S, Schneeberger K, Lucas-Lledo JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M. 2010. The rate and molecular spectrum of spontaneous mutations in *Arabidopsis thaliana*. *Science* **327**: 92-94.
- Schneider TD, Stephens RM. 1990. Sequence logos: a new way to display consensus sequences. *Nucleic Acids Res* **18**: 6097-6100.
- Schrider DR, Houle D, Lynch M, Hahn MW. 2013. Rates and genomic consequences of spontaneous mutational events in *Drosophila melanogaster*. *Genetics* **194**: 937-954.

- Serero A, Jubin C, Loeillet S, Legoix-Ne P, Nicolas AG. 2014. Mutational landscape of yeast mutator strains. *Proc Natl Acad Sci USA* **111**: 1897-1902.
- Sharp NP, Agrawal AF. 2016. Low genetic quality alters key dimensions of the mutational spectrum. *PLoS Biol* **14**: e1002419.
- Sharp NP, Sandell L, James CG, Otto SP. 2018. The genome-wide rate and spectrum of spontaneous mutations differ between haploid and diploid yeast. *Proc Natl Acad Sci USA* **115**: E5046-E5055.
- Shewaramani S, Finn TJ, Leahy SC, Kassen R, Rainey PB, Moon CD. 2017. Anaerobically grown *Escherichia coli* has an enhanced mutation rate and distinct mutational spectra. *PLoS Genet* **13**: e1006570.
- Sun Y, Powell KE, Sung W, Lynch M, Moran MA, Luo H. 2017. Spontaneous mutations of a model heterotrophic marine bacterium. *ISME J* **11**: 1713-1718.
- Sung W, Ackerman MS, Dillon MM, Platt TG, Fuqua C, Cooper VS, Lynch M. 2016. Evolution of the insertion-deletion mutation rate across the tree of life. *G3 (Bethesda)* **6**: 2583-2591.
- Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M. 2012. Drift-barrier hypothesis and mutationrate evolution. *Proc Natl Acad Sci USA* **109**: 18488-18492.
- Uchimura A, Higuchi M, Minakuchi Y, Ohno M, Toyoda A, Fujiyama A, Miura I, Wakana S, Nishino J, Yagi T. 2015. Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice. *Genome Res* **25**: 1125-1134.
- Venn O, Turner I, Mathieson I, de Groot N, Bontrop R, McVean G. 2014. Strong male bias drives germline mutation in chimpanzees. *Science* **344**: 1272-1275.
- Xie Z, Wang L, Wang L, Wang Z, Lu Z, Tian D, Yang S, Hurst LD. 2016. Mutation rate analysis via parent-progeny sequencing of the perennial peach. I. A low rate in woody perennials and a higher mutagenicity in hybrids. *Proc Biol Sci* 283.
- Yang S, Wang L, Huang J, Zhang X, Yuan Y, Chen JQ, Hurst LD, Tian D. 2015. Parent-progeny sequencing indicates higher mutation rates in heterozygotes. *Nature* **523**: 463-467.
- Zhu YO, Siegal ML, Hall DW, Petrov DA. 2014. Precise estimates of mutation rate and spectrum in yeast. *Proc Natl Acad Sci USA* **111**: E2310-2318.