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Methods 1 

Reference data 2 

To avoid unnecessary complexity, we restricted our analysis to the primary chromosomes of the 3 

GRCh38.12 human assembly (Graves-Lindsay et al. 2017), excluding all alternative scaffolds and 4 

patches. As reference annotation we used the version of CHESS 2.2 human gene catalog tailored for 5 

transcriptome assembly, which does not include pseudogenes, V|J|D|C segments, snoRNAs, 6 

snRNAs, telomerase RNAs, guide RNAs, or other small RNAs. 7 

Command: build_indices.py --idx_dir <output_directory> --reference <reference_genome.fasta> --8 

annotation <reference_annotation.gff> --hisat <path_to_hisat2_executable> --salmon 9 

<path_to_salmon_executable> --kallisto <path_to_kallisto_executable> --gffread 10 

<path_to_gffread_executable> 11 

Identification and typing of noisy transcription 12 

To identify other types of transcription observed across the GTEx dataset (Lonsdale et al. 2013), we 13 

relied on the set of ~30 million transcripts assembled as part of building the CHESS gene database 14 

(Pertea et al. 2018). These 30 million transcripts were the unfiltered results of assembling the GTEx 15 

data. 16 

Filtering and typing 17 

We first used gffcompare (Pertea and Pertea 2020) to identify overlaps between all ~30 million 18 

assembled transcripts and known features in the CHESS 2.2 annotation. We then used gffread 19 

(Pertea and Pertea 2020) to extract the loci of all intron-compatible transcripts that overlapped any of 20 

the annotated genes. Next, to reduce the number of confounding factors in our analysis, we removed 21 

any noisy isoforms that overlapped annotated loci on the opposite strand, contained annotated loci 22 

within their introns, or were in close proximity to known genes but did not overlap their exons. 23 

Together, our filtering criteria reduced the initial set of transcripts from ~30 million down to ~20 million 24 

assembled isoforms. 25 

Transcripts that did not represent annotated isoforms in CHESS were further classified into: 26 

https://github.com/alevar/tx_noise/blob/master/soft/build_indices.py
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1. Intronic noise: any assembled feature entirely contained within an intronic region of a gene, 1 

including both coding and noncoding genes. 2 

2. Splicing noise: transcripts that shared a splice site with any of the annotated transcripts in 3 

CHESS. These could either be un-annotated but nonetheless functional transcripts, or 4 

transcripts that occur due to errors produced by the splicing machinery, incompletely 5 

processed pre-mRNA, or other biological phenomena not accounted for by the annotation. 6 

3. Intergenic noise: the set of all transcripts that do not overlap any of the annotated transcripts. 7 

Multiple transcripts in the assembled dataset did not have a strand assigned to them. For consistency 8 

in the downstream analysis, we randomly assigned a strand to all intergenic transcripts, making sure 9 

that all transcripts in the same locus share the same strand. For all other transcripts, we assigned the 10 

strand of the annotated gene containing or overlapping the transcript. 11 

Command: setup.py --base_dir_data <directory_with_input_data> --base_dir_out <output_directory> 12 

--gtex_stats <gtex_stats> --filters <filters.sh>  --seed 101 13 

Extracting parameters of the simulation from GTEx 14 

Expression estimates and frequency of occurrence of each transcript and locus in the GTEx tissues 15 

and samples were computed based on the tracking information which gffcompare builds between 16 

merged transcripts and constituent assemblies. These summaries were computed for each type of 17 

real and noise transcripts and loci. 18 

Command: gtex_stats –t <path_to_tissues_list> -a ALL.merged.filtered.tracking -r real.gtf -g 19 

ALL.merged.filtered.gtf -s splicing.gtf -i intronic.gtf -p RNApol.gtf -o <output_basename> 20 

Simulation 21 

Selecting the loci to be expressed in a simulated tissue 22 

We assumed a Gaussian distribution of the number of real and intergenic loci per each tissue, where 23 

we determined the mean and the standard deviation based on the observations extracted from the 24 

GTEx analysis described in section 2.2. To generate the number of loci expressed in a tissue, we 25 

sampled from these two distributions independently. Furthermore, we assumed that if a locus is 26 

https://github.com/alevar/tx_noise/blob/master/soft/setup.py
https://github.com/alevar/gtex_stats
https://github.com/alevar/tx_noise/blob/master/soft/filters.sh
https://github.com/alevar/gtex_stats
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chosen to be expressed in a tissue, all transcripts at that locus can also be expressed in the given 1 

tissue. 2 

Command: step1_sim_tissues.py --out_dir <output_directory> --base_dir_data 3 

<input_directory_from_setup.py> --base_dir_out <output_directory_from_setup.py> --num_tissues 3 -4 

-seed 101 5 

Selecting expression levels for the transcripts in a simulated tissue 6 

During our analysis of the GTEx dataset, we noticed that the relationship between expression of real 7 

and noisy transcripts in a given locus is non-linear and strongly correlated, and annotated transcripts 8 

tend to dominate the expression of a locus (Fig. 1D). We also observed that the expression values of 9 

a transcript within a tissue are more correlated than the expression values of a transcript between 10 

different tissues. To preserve these and any other possible relationships existing in the data, we 11 

sampled the number of transcripts per each locus as well as corresponding expression values as they 12 

appeared in GTEx. To randomize our sampling algorithm without changing any potential relationships 13 

we relied on the following procedure: 14 

1. For each locus selected for a simulated tissue, we identified all loci with identical numbers of 15 

real, splicing noise and intronic noise isoforms. 16 

2. We then randomly selected one of the matching loci and obtained a list of expression values 17 

as computed in section 2.2. Each such list contained expression values of each transcript from 18 

the selected locus observed in a single tissue, with absent transcripts marked by a zero. 19 

Values within the list were grouped by sample and each group was sorted by unique transcript 20 

identifier, thus guaranteeing identical ordering between groups. Each group in the list 21 

represented a possible set of expressions for a single simulated sample. 22 

3. Keeping the groups unchanged, we shuffled a list of transcript identifiers for the selected locus 23 

to further randomize associations between isoforms and expression values, without changing 24 

any relationships in expression between values. This step produced a matrix in which rows 25 

denote individual transcripts of a locus, columns denote possible samples and values contain 26 

https://github.com/alevar/simann/blob/master/step1_sim_tissues.py
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expression values of transcripts in a sample, with zeros indicating that a transcript is not 1 

expressed in a sample. 2 

The current approach is limited by using observed values only. A possible addition to the method 3 

would be to replace observed values with a multivariate distribution of expression values of each type, 4 

which can be estimated from the observed values. This would allow creating more random samples. 5 

However, further work needs to be done to determine the types of distributions suitable for modeling 6 

expression values. 7 

Command: step2_sim_attach_exp.py --out_dir <output_directory_from_sim_tissues.py> --8 

base_dir_data <input_directory_from_setup.py> --base_dir_out <output_directory_from_setup.py> --9 

num_tissues 3 --seed 101 10 

Selecting transcripts for the simulated samples 11 

Given a set of loci to be expressed in a simulated tissue and a set of possible expression values for 12 

each real and noisy isoform at each locus, we randomly drew individual samples. Not all tissue loci 13 

are typically expressed in a single sample of that tissue. To simulate this process, we took a random 14 

subset of the tissue loci based on a random sampling from the distribution of the number of loci per 15 

sample as observed in GTEx. 16 

Most of the tissues in GTEx contain many more samples than are simulated in our analysis and not all 17 

loci that are detected in a tissue are expressed in all samples of that tissue, which may be caused by 18 

multiple intrinsic and extrinsic factors contributing to the stochasticity of gene expression in living 19 

organisms (Swain et al. 2002). As such, simulating a smaller number of samples per tissue often 20 

results, as evident from our simulation, in a lower total number of loci within simulated tissues than 21 

observed in GTEx. 22 

Next, for each locus we selected a random column from the simulated matrix of possible expression 23 

values as described in step 3 from section 3.2. The number of transcripts expressed for a given locus 24 

in a sample is then dictated by the number of non-zero values in the sampled column. 25 

https://github.com/alevar/simann/blob/master/step2_sim_attach_exp.py
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At the end of this step the simulation produces 4 groups of files for each type of transcription being 1 

simulated. Each group includes: 2 

1. an annotation in a GTF format, listing transcript and exon features only. 3 

2. a list of expression values in TPM format. 4 

Command: step3_sim_samples.py --out_dir <output_directory_from_sim_tissues.py> --5 

base_dir_data <input_directory_from_setup.py> --base_dir_out <output_directory_from_setup.py> --6 

num_tissues 3 –num_samples 10 --seed 101 7 

Normalization of transcript abundances in the simulated samples 8 

In the next step we randomly sample the number of reads to be simulated for a given sample from the 9 

observations in GTEx. To compute the target number of reads to be simulated for each transcript in a 10 

sample given the TPM of each molecule and the total number of reads, we reversed the TPM 11 

calculation as follows: 12 

𝐶𝑖 = (
𝐸𝑖 × 𝐿𝑖

∑ (𝐸𝑗 × 𝐿𝑗)
𝑁
𝑗=0

× 𝑁 × 𝑙) ÷ 𝐿𝑖 13 

where Ci is the coverage of transcript i, Ei is its expression measured in TPM, Li is length, and N is the 14 

number of reads in the sample and l is the read length (Li and Dewey 2011). 15 

Command: step4_sim_normalize.py --out_dir <output_directory_from_sim_tissues.py> --16 

base_dir_data <input_directory_from_setup.py> --base_dir_out <output_directory_from_setup.py> --17 

num_tissues 3 –num_samples 10 --seed 101 --readlen 101 18 

Visualization of summarized statistics for the GTEx and simulated datasets 19 

All scripts for re-producing visualizations from our analysis of GTEx and simulated datasets are 20 

provided in a public Python notebook at: evaluation_stage1_results.ipynb 21 

https://github.com/alevar/simann/blob/master/step3_sim_samples.py
https://github.com/alevar/simann/blob/master/step4_sim_normalize.py
https://github.com/alevar/tx_noise/blob/master/notebooks/evaluation_stage1_results.ipynb
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Simulating reads 1 

We used the simulated transcripts selected for each sample and their corresponding coverages to 2 

simulate reads for each experiment. Reads were simulated using the Polyester package (Frazee et al. 3 

2015), and the input FASTA file was prepared using gffread. 4 

In our preliminary analysis we found that Polyester is unable to accurately model the sequencing 5 

protocol when simulating paired-end reads. Specifically, for transcripts shorter than the fragment 6 

length, Polyester left gaps in coverage unless the fragment length was reduced, or the standard 7 

deviation was set high enough to cause frequent overlaps between pairs. Setting fragment length and 8 

standard deviation according to the minimum transcript length instead of realistic observations from 9 

sequencing data would inaccurately represent sequencing protocols. Therefore, to avoid introducing 10 

artificial coverage gaps we chose to simulate single-end reads instead.  11 

We also found that when simulating single-end reads Polyester was often unable to extend read 12 

coverage to the end of the last exon in the transcript. We assume that internally Polyester always 13 

simulates paired-end reads and only reports the first mate in the single-end mode. We found that 14 

setting the fragment length to be the same as the read length and standard deviation to zero fixed the 15 

issue. 16 

Each sample was simulated with 101-bp reads, as was done in the majority of the GTEx samples. 17 

Error rate was set at 0.4 percent. 18 

Next, we shuffled reads within each simulated experiment using a custom script. A non-random order 19 

could present issues for many alignment and quantification methods, which perform a quick scan 20 

through a subset of the reads for calibration. 21 

Lastly, we combined reads generated from real transcripts, splicing noise, intronic noise and 22 

intergenic noise transcripts together for each sample. 23 

Notebook: evaluation_stage2_genReads.ipynb 24 

https://github.com/alevar/tx_noise/blob/master/notebooks/evaluation_stage2_genReads.ipynb
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Ground truth alignment 1 

While not used in our final analysis, we found it useful to have a ground-truth alignment of the 2 

simulated reads, since any alignment algorithm inevitably introduces errors due to sequencing errors, 3 

splice-site detection, low-complexity or homologous regions. We designed a separate method to 4 

convert standard Polyester and RSEM output into SAM formatted alignments. 5 

Notebook: evaluation_stage3_process.ipynb 6 

Alignment of simulated reads and assembly-based quantification 7 

Reads were aligned with HISAT2 version 2.2 (Kim et al. 2019) against the indices constructed for this 8 

analysis. We used a copy of HISAT2 from the rna_sensitive branch which introduces the “--rna-9 

sensitive” flag. This flag guarantees that for all multimapping reads at least one mapping will be 10 

reported, unlike the default behavior of HISAT2, which skips reporting mappings for reads which align 11 

to more than “-k” locations on the genome. 12 

Alignments were sorted with samtools (Li et al. 2009) and assembled with StringTie2 (Kovaka et al. 13 

2019) providing chess2.2_assembly.gff as guides. 14 

Notebook: evaluation_stage4_align_assemble.ipynb 15 

Abundance quantification via pseudo-mapping 16 

Abundance of transcripts in each sample was estimated using Salmon version 0.14.0 (Patro et al. 17 

2017) and Kallisto version 0.46.1 (Bray et al. 2016). Salmon was run with “--validateMappings” flag in 18 

compliance with recommended parameters. For Kallisto, we set the read length to 101 using “-l” 19 

option and the standard deviation was set to 0.0001 with the “-s” option. 20 

Notebook: evaluation_stage5_quantify.ipynb 21 

Processing of transcript-level results 22 

We counted the number of simulated reads for each transcript in a sample using the metadata 23 

provided by Polyester. Read counts were used to compute the TPM of all real and noisy transcripts in 24 

each dataset. It must be noted that, since simulated transcripts came from independently assembled 25 

https://github.com/alevar/tx_noise/blob/master/notebooks/evaluation_stage3_process.ipynb
https://github.com/alevar/tx_noise/blob/master/notebooks/evaluation_stage4_align_assemble.ipynb
https://github.com/alevar/tx_noise/blob/master/notebooks/evaluation_stage5_quantify.ipynb
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data, the positions of the 3’ and 5’ ends may have been different from positions reported in the 1 

annotation provided to all methods. In our analysis expression was measured based on the true 2 

structure of the simulated molecules, to provide a more realistic simulated dataset. 3 

Additionally, TPM values were computed separately for each of the combinations of noisy and real 4 

transcripts, since fluctuations in the number of molecules of different effective lengths changes the 5 

TPM values of all transcripts. However, in our analysis we refer to simulated TPM values only in the 6 

context of abundance of false negatives reported by each method, while keeping other comparisons 7 

strictly based on the values reported by each method. 8 

Lastly, for StringTie2 we computed the raw number of reads assigned to each transcript based on the 9 

reported coverage with respect to the effective length of the assembled molecule. 10 

Notebook: evaluation_stage6_get_results.ipynb 11 

Processing of gene-level results 12 

To avoid differences in normalization and to measure raw effects of transcriptional noise, we 13 

computed gene-level abundances using only raw read counts from real transcripts for each gene in 14 

each sample. True read counts for each transcript in each sample were computed from the simulated 15 

data and labeled by whether the transcript was simulated as part of a real or noisy transcription. To 16 

obtain expected read counts per gene, transcript-level read counts were summed considering real 17 

transcripts only. For each gene, we computed the number of reads which came from noisy transcripts. 18 

Notebook: evaluation_stage7_get_gene_expression.ipynb 19 

Visualization of results 20 

All scripts for re-producing transcript-level visualizations from our analysis are provided in a Python 21 

notebook at: evaluation_stage8_results_tx.ipynb 22 

All scripts for re-producing gene-level visualizations from our analysis are provided in a Python 23 

notebook at: evaluation_stage9_results_gene.ipynb 24 

https://github.com/alevar/tx_noise/blob/master/notebooks/evaluation_stage6_get_results.ipynb
https://github.com/alevar/tx_noise/blob/master/notebooks/evaluation_stage7_get_gene_expression.ipynb
https://github.com/alevar/tx_noise/blob/master/notebooks/evaluation_stage8_results_tx.ipynb
https://github.com/alevar/tx_noise/blob/master/notebooks/evaluation_stage9_results_gene.ipynb


10 
 

References 1 

Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. Nature 2 

Biotechnology 34: 525–527. 3 

Frazee AC, Jaffe AE, Langmead B, Leek JT. 2015. Polyester: simulating RNA-seq datasets with differential 4 

transcript expression. Bioinformatics 31: 2778–2784. 5 

Graves-Lindsay T, Albracht D, Fulton RS, Kremitzki M, Magrini V, Meltz K, al et. 2017. Evaluation of GRCh38 and 6 

de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. 7 

Genome Research 27: 849–864. 8 

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with 9 

HISAT2 and HISAT-genotype. Nature Biotechnology 37: 907–915. 10 

Kovaka S, Zimin A v., Pertea GM, Razaghi R, Salzberg SL, Pertea M. 2019. Transcriptome assembly from long-11 

read RNA-seq alignments with StringTie2. Genome Biology 20. 12 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence 13 

alignment/map format and SAMtools. Bioinformatics 25: 2078–2079. 14 

Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Hasz R, Walters G, Garcia F, Young N, et al. 2013. The 15 

Genotype-Tissue Expression (GTEx) project. Nature Genetics 45: 580–585. 16 

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and bias-aware quantification 17 

of transcript expression. Nature Methods 14: 417–419. 18 

Pertea G, Pertea M. 2020. GFF Utilities: GffRead and GffCompare. F1000Research 9. 19 

Pertea M, Shumate A, Pertea G, Varabyou A, Breitwieser FP, Chang YC, Madugundu AK, Pandey A, Salzberg SL. 20 

2018. CHESS: A new human gene catalog curated from thousands of large-scale RNA sequencing 21 

experiments reveals extensive transcriptional noise. Genome Biology 19. 22 

Swain PS, Elowitz MB, Siggia ED. 2002. Intrinsic and extrinsic contributions to stochasticity in gene expression. 23 

Proceedings of the National Academy of Sciences 99: 12795–12800. 24 

  25 


