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Figure S1: General properties of the data – distribution of SNPs and reproducibility  

A.  Smoothed histograms show the distribution of minor allele frequencies of SNPs in regulatory 
elements (left) and regulatory element phyloP scores (right).  Regulatory elements are defined here as 
peaks of ATAC-seq, H3K27ac, or H3K4me3.  MAF are taken from the full 205 lines of release 2 of 
the Drosophila melanogaster Genetic Reference Panel.  B. Gene expression levels and read counts 
from accessible chromatin/ChIP-seq show consistently high levels of correlation between replicates.  
Pearson’s correlation coefficients indicated.  C. Box plots comparing the correlations of read count 
signal between samples from the same or different time points and/or genotypes.  D. Coverage plots 
comparing distal peaks of H3K27ac that do (left) and do not (right) overlap annotated ATAC-seq 
peaks, showing an overall lower read count for the second category. 
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Figure S2: Dispersion and distribution of allelic ratios across data types 

A. Dispersion is largely constant as a function of read count for RNA-seq and ATAC-seq.  Density 
plots show the beta-binomial dispersion parameter estimated across our pooled replicates for each 
feature per time point and per genotype (y-axis) plotted against the log2 averaged (arithmetic mean) 
total count across replicates (x-axis).  The grey line is a line of best fit. B. Density plots showing the 
distribution maternal ratios for each regulatory layer (colors), at each time-point (columns), for each 
line (rows), for TSS-proximal and TSS-distal regions separately. 
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Figure S3: Proportion and distribution of SNPs and allelic ratios 

A. Distribution of the absolute departure from allelic balance for each data type. For the same data 
type, distal features show a significantly higher amplitude of imbalance compared to proximal 
features (Tukey test, p<0.0001, three highest p-value shown).  B. Spearman’s correlations (ρ) between 
F1 allelic ratios in autosomes and the effect sizes of associated eQTL identified in Cannavo et al., 
2017, show consistent concordance across effect sizes.  Allele-specific expression predicts the 
direction of eQTL in 69% of cases for autosomes (X Chromosomes could not be analyzed here given 
the inherent bias towards the maternal genotype in F1 pools).  RNA-seq data from 2-4 hours were 
excluded from the analysis due to the presence of maternal transcripts that could bias allelic 
imbalance towards the mother (right quadrants).  C. The proportion of SNPs unique to the maternal 
line compared to any of the DGRP lines (green bars) is greater in highly imbalanced ATAC peaks at 
6-8 and 10-12 hours, indicating a correlation between the presence of rare (potentially de novo) 
mutations and large effect sizes.  Dotted line shows the average proportion across all the allelic 
imbalance (AI) values.  Green and red asterisks indicate a statistically significant depletion or 
enrichment, respectively, of maternal specific SNPs for each bin of AI values.   
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Figure S4: Allelic variation is consistently depleted for transcriptional regulation and enriched 
for the expression of metabolic genes 

Enrichments for all GLAD categories with statistically significant (p < 0.01, Fisher’s-Exact Test) 
enrichment or depletion of significant allelic imbalance for (A) RNA, (B) ATAC or (C-D) histone 
modifications.  Bubble size represents the number of genes/features per category. For regulatory 
elements, category assignments were made on the basis of closest gene annotations.   
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Figure S5: Regulatory changes on paternal haplotypes are enriched for genes related to 
pesticide resistance and environmental response.  

A. Gene categories involved in environmental response and immunity show consistent biases towards 
the paternal allele.  Coefficients from point-biserial correlation analyses are plotted, with red bars 
indicating correlation with the absolute value of allelic imbalance and blue bars (negative values) 
indicating correlation with allelic imbalance with the paternal allele being more highly expressed.         
B. Cyp6g1, a DTT resistant gene, shows an  upregulated paternal allele in every regulatory layer and 
in gene expression, with the maternal allele showing no evidence of expression (matching reports in 
FlyBase).  Grey bars indicate locations of non-uniform mappability across lines.  C. Coefficient of 
genetic variation for highly imbalanced genes vs. all others (left) or only those with significant line 
effects (right).    
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Figure S6: Time and genotype effect over development 
A. Flow diagram showing dynamics of allelic imbalance (AI) in chromatin marks across 
developmental time.  Proportions of AI and non-AI features are shown in black and grey, 
respectively, and represented by the line thickness.  Exact proportions for each category are provided 
as numbers. B. Histograms showing allelic imbalance for the pde8 gene.  Allelic imbalance changes 
across time for gene expression level and associated H3K27ac enrichment.  
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Figure S7: Partial and Pearson’s correlations on thresholded allelic ratios 
A-B. Heatmaps showing the correlation of allelic ratio between each regulatory layer, grouped by 
genotype (A) and by time points (B).  Values represent the 5% confidence interval for each pairwise 
correlation and significant results are emphasized in bold. C-D.  Partial correlation results for allelic 
ratio and total count values for TSS-proximal (C) and TSS-distal (D) features, grouped by time points. 
Whiskers represent the 95% confidence interval ascertained via bootstrapping.  See Supplemental 
Methods (M3) for the procedure used for thresholding. 
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Figure S8: Partial correlation analysis reveals potentially causal relationships among regulatory 
layers.  

A. Overall Pearson’s correlations in allelic ratios (black values, grey points and regression lines) 
between regulatory layers.  Correlations are generally modest with little correspondence in allelic 
ratios between overlapping non-coding features and associated genes.  B. Correlations in allelic ratios 
for more imbalanced features (thresholded AI 0.5 +/- 0.06 for all regulatory layers; blue values, points 
and regression line) are stronger.  C. Comparison between the partial (orange) and the Pearson’s 
(blue) correlation for total count (left) and allelic ratios (right).  A decrease in partial correlation 
denotes a lack of direct relationship within the overall correlations. 
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Figure S9: Differences in the frequency of cis and trans acting genetic variation among 
regulatory layers influences the heritability of regulatory phenotypes 

A. For each regulatory layer, cis-trans classified genes/features were assessed to evaluate the relative 
contributes of cis and trans to the cis/trans signal.  Only RNA has evidence for an unequal 
contribution (more trans than cis).  B. Scatterplots showing total read counts in the F1 lines vs. the 
mean of the two parents for genes/features classified as cis (top) or trans (bottom). Shown in black are 
genes/features with an F1 total read count significantly different (FDR <= 0.1) than the parental mean, 
indicating non-additive heritability.  Only trans-influenced RNA has a frequency of non-additive 
heritability meaningfully distinct from 0.  C. Maximum likelihood cis-trans classification composition 
for each data type (genes and regulatory layers).  Numbers and horizontal bars represent the size and 
relative proportions of each cis-trans class in each of the four regulatory layers.  See Supplementary 
Table S8 for a classification of each gene/feature including BIC.  D. Using the classification scheme 
of Landry et al, (Landry et al. 2005), we assessed the frequency of diversifying and compensatory 
evolution for genes and features showing both cis and trans influences.  For regulatory features, the 
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concordance of cis and trans effects suggests predominantly compensatory evolution, while RNA 
shows a pattern more consistent with diversifying selection.  E. An alternative classification of 
selective forces for cis-trans features following Goncalves et al. (2012), which is designed more 
explicitly for within species contrasts.  As in (d), likely positive selection (cis and trans working in the 
same direction) is significantly more common for RNA than for non-coding features.  
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Supplemental Methods 

Fly husbandry, crosses and embryo collection 

The virginizer line was maintained at 20 ̊C in bottles and flipped once per week.  100-200 

adult flies of 5-10 days age were transferred into fresh bottles.  The flies were left to lay 

embryos for about 24 hours at 20 ̊C before the adults were removed.  The bottles were placed 

inside a special “heat shocking tray” (a fly tray with holes on the bottom and sides) and the 

tray was placed inside a 38 ̊C water bath for 1 hour.  After removal from the water bath, the 

bottles were kept at 18 ̊C, 20 ̊C or 25 ̊C to synchronize bottles from multiple days.  Once the 

adult flies eclosed, they were flipped into fresh bottles, to be crossed with the males from the 

paternal line later.  

The virgins females that eclosed from the heat-shocked bottles were collected and mated 

to males from the paternal lines and placed in collection containers at 25 ̊C two days prior to 

embryo collections (Sisson 2007).  On the day of collection, three one hour prelays were 

performed to stimulate laying, and thereby clear females of any held embryos, followed by 2-

hour collections.  The plates with embryos were aged to the appropriate stages at 25 ̊C, 

followed by washed into sieves and dechorionated by incubating in 50% bleach for 2.5 min.  

The embryos were extensively washed and blotted dry on tissue paper.  Approximately 200 

embryos were transferred to an eppendorf tube and snap-frozen for subsequent RNA assays. 

The majority of embryos were fixed in 1.8% formaldehyde (9.5 ml cross-linking solution 

with 485 μl 37% formaldehyde) with vigorous shaking for 15 min at room temperature.  

Cross-linking was stopped by incubating with Glycine solution with vigorous shaking for at 

least 1 min.  After washing with PBT, the embryos were blotted dry.  A small aliquot of 

embryos (100-200) was transferred into a tube containing 0.5 mL heptane and 0.5 mL 

methanol and shaken vigorously for 2 min to devitellinize the embryos.  The embryos were 

left to settle and liquid was removed as much as possible, followed with 2 washes of 

methanol and store at -20 ̊C in methanol for evaluation of the developmental stage of each 

collection.  The bulk of cross-linked dry embryos were transferred into 1.5 mL eppendorf 

tubes, snap-frozen in liquid N2 and stored at -80 ̊C. 

The samples stored in methanol at -20 ̊C were rehydrated at room temperature by 

incubating with 50% methanol / 50% PBT for 5 min on a nutator.  Nuclei were stained by 

incubating the embryos in PBT with DAPI for 5 min on a nutator, followed by washing with 

PBT twice.  After removing as much liquid as possible, 80% glycerol was added to the 
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embryos and left to settle in glycerol and then mounted onto a microscope slide, covered with 

a cover slip and sealed with transparent nail polish.  The developmental stages of the embryo 

collection were evaluated by examining the morphological features under the Axio Imager 

M2 research microscope (Campos-Ortega 1997). 

Whole-embryo RNA-seq 

Embryos were thawed in 200 μl Trizol on ice and smashed with pestle and cordless motor. 

Another 800 μl Trizol was added to each sample and samples were shaken by hand for 2-3 

min, incubated at room temperature for 5 min.  200 μl of chloroform was added and samples 

were vigorously shaken for 30 sec by hand and centrifuged for 15 min at 12,000g at 4 ̊C.  The 

aqueous phase was transferred to a clean tube and 500 μl isopropanol added to precipitate the 

RNA by incubating at room temperature for 10 min, followed by centrifugation for 10 min at 

12,000g at 4 ̊C.  The RNA pellet was washed twice with freshly made 80% EtOH and 

resuspended in 44 μl nuclease-free water.  DNA was digested by adding 5 μl DNase 10x 

buffer, 1 μl DNase and incubated at 37 ̊C for 30 min.  RNA was purified using RNAclean XP 

beads.  The concentration of total RNA was measured with the Qubit RNA assay kit.  If 

necessary, the size distribution of the library was checked using RNA 6000 Pico kit on the 

Bioanalyzer. 

5 μg of total RNA was taken from each sample and mRNA was extracted using 

Dynabeads® mRNA Direct Purification Kit, following the manufacturer’s manual.  RNA 

tagmentation, reverse transcription, cDNA synthesis and sequencing library preparation were 

done using NEBNext Ultra Directional RNA Library Prep Kit following the manufacturer’s 

manual. 

Whole-embryo ATAC-seq 

Frozen embryos were transferred into a 7 mL douncer placed on ice, thawed in 4 mL HB 

buffer supplemented with proteinase inhibitor cocktail cOmpleteTM.  Embryos were dounced 

20 times with the loose pestle and 10 times with the tight pestle.  The homogenate was 

filtered through two layers of Miracloth that were positioned 90 ̊ to each other in a clean 15 

mL tube.  The sample was centrifuged for 7 min at 3500 rpm at 4 ̊C and the murky 

supernatant was discarded.  The nuclei pellet was resuspended in 3 mL HB buffer and 

transferred to a clean 15 mL tube.  The nuclei were dissociated by passing them 10 times 

through a 20G needle and 10 times through a 22G needle using a 5 mL syringe and then 

filtered through 20 μm Nitex membrane on a funnel into a clean 15 mL tube. 
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The nuclei extracted were quantified using the LSRFortessa system.  50 μl diluted nuclei 

were mixed with 50 μl CountBright Absolute Counting Beads, 197 μl PBS and 3 μl 100x 

DAPI and loaded onto the LSRFortessa.  The nuclei concentration was calculated as: 

55000*(nuclei detected/beads number detected)*dilution factor/50 = nuclei/μl. 

With the quantification of the nuclei solution, we kept 3 aliquots of 200,000 nuclei in 50 μl 

PBT for ATAC-seq and 6 aliquots of 40,000 nuclei in 10 μl PBT for iChIP for chromatin 

marks.  The remaining nuclei were centrifuged at 3500 rpm for 5 min at 4 ̊C, supernatant 

discarded, snap-frozen in liquid N2 and stored at -80 ̊C.   

For ATAC-seq, one aliquot of 200,000 nuclei in 50 μl PBT was thawed on ice 

supplemented with 50 μl permeabilization solution and incubated on a nutator for 30 min at 

4 ̊C.  The permeabilized nuclei were centrifuged at 3200 g for 5 min at 4 ̊C and supernatant 

removed.  The nuclei pellet was resuspended in 50 μl tagmentation mix, containing 5 μl 

TDE1, 25 μl 2x tagmentation buffer (both from Nextera kit) and 20 μl nuclease-free water, 

and incubated at 37 ̊C for 30 min.  50 μl STOP buffer and 5 μl of 1 mg/mL RNase A were 

added to stop the tagmentation reaction and digest RNA by incubating on a thermomixer at 

55 ̊C for 10 min with 900 rpm shaking.  The reverse cross-linking and protein digestion were 

done by adding 3 μl of 20 mg/mL Proteinase K and incubating at 65 ̊C overnight with 900 

rpm shaking.  The reaction was purified using a MinElute column with Qiagen PCR 

purification buffers.  The DNA concentration was measured using Qubit.  20 ng of DNA was 

brought to 10 μl with water.  2.5 μl i7 primer, 2.5 μl i5 primer, 2.5 μl Nextera primer cocktail 

and 7.5 μl Nextera PCR mastermix (all from Nextera kits) were added to complete the PCR 

reaction.  PCR was run using the following program: 72 ̊C, 3 min; 98 ̊C, 30 sec; cycle start: 

98 ̊C, 10 sec, 63 ̊C, 30 sec, 72 ̊C, 3 min, cycle close (run 12 cycles); Hold at 10 ̊C.  The PCR 

product was run on a 1.2% agarose gel supplemented with 1:20,000 GelGreen for ~50 min at 

80V.  On the gel, every two samples were separated by one empty lane to avoid cross 

contamination.  Gel piece from right above the primer dimer band (~100 bp) to 1 kb was cut 

with SafeXtractor (one-time use only) on a blue light transilluminator.  DNA was extracted 

from the gel using Qiagen gel extraction kit and eluted with 2 MinElute columns for each 

sample.  The concentration of the libraries was measured with Qubit, and the 8 samples were 

multiplexed in equal molarity and sequenced on Illumina HiSeq 2500 platform to obtain 125 

bp paired-end reads. 
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Whole-embryo iChIP 

iChIP experiments were performed as described in Lara-Astiaso et al. 2014 (Lara-Astiaso 

et al. 2014).  In brief, 40.000 D. melanogaster nuclei in a total volume of 10 μl PBS + 0.5% 

SDS were used per sample.  We usually processed 24 samples in one iChIP experiment.  The 

nuclei were sonicated in a 0.1 ml sonication tube (Diagenode Cat. No. C30010015) at 4°C for 

40 cycles 30’’/30’’ ON/OFF using the Bioruptor Pico (Diagenode).  For the first IP, 

Chromatin was immobilized with 1.3 μg of anti-H3 antibody (abcam ab1791) and Dynabeads 

Protein G (Invitrogen, Cat. No. 10003D) on a rotating wheel overnight at 4°C.  Following 

Chromatin End Repair and A-tailing, the samples were indexed by ligation of Y-shaped 

Index Adaptors containing P5 and P7 sequences. 

After Chromatin Release, samples were pooled by 8, resulting in three pools.  These pools 

were split into two second IPs each.  The chromatin was incubated at 4°C for 3h on a rotating 

wheel with 2.5 μg of antibody against H3K27ac (abcam, ab4729) or H3K4me3 (Millipore, 

07-473), followed by a 1 h incubation with Dynabeads Protein G.  The IPs were washed, the 

ChIPed DNA was eluted and purified.  For Library Amplification, KAPA HiFI Hot Start 

Ready Mix (KAPA Biosystems, KM2605) and primers containing the Illumina P5-Read1 and 

P7-Read2 sequences were used.  After a final clean-up with AmPure XP beads (Beckman, 

Cat No. 63880), the quality of the libraries was determined by qPCR.  To assess efficiency 

and specificity of the ChIP, we used a positive and a negative target region and compared the 

enrichments by qPCR before and after library amplification.  The libraries were run on a 

Bioanalyzer chip, multiplexed and sequenced with Illumina NextSeq500 high 150bp PE.  

Whole embryo gDNA-seq 

We isolated gDNA from ~100 embryos per F1 cross using an electric pestle and Solution 

A from Qiagen (0.1mM Tris-HCl pH9.0 / 0.1 M EDTA / 1% SDS).  Following this step, the 

lysate was incubated for 30 min at 65˚C followed by the addition of 28 μl 8M KAc and 

30min incubation on ice.  The debris was then spun down and the supernatant cleaned up 

using a standard Phenol/Chloroform extraction.  The resulting gDNA was processed in a 

75bp SE sequencing library using NEBNext DNA Ultra 2 protocol on a Hamilton automated 

Liquid Handling system and sequenced on an Illumina NextSeq.  
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Sequenced reads processing 

Personal genome construction 

As a starting point for all personal genomes, we began with Drosophila reference 

assembly dm3 as downloaded from the UCSC genome browser (version 5 from FlyBase) 

along with reference annotations r5.57 from FlyBase.  To generate reference genomes for our 

paternal lines, we downloaded variant calls for the full 205 lines of the DGRP 

(http://dgrp2.gnets.ncsu.edu/) made against the dm3/v5 D. melanogaster reference genome.  

For each paternal line from DGRP, we inserted SNPs and indels from the VCF file into the 

reference genome.  Changes in coordinates were recorded in a liftOver chain file for 

subsequent steps.  Heterozygous SNPs were replaced with the appropriate ambiguity code 

with missing data (‘.’) recorded as an N.  Heterozygous indels were inserted as a string of N 

equal to the length of the longer haplotype.  In the case of the Virginizer line, we made use of 

a VCF file generated for reference genome dm6/v6 (Ghavi-Helm et al. 2019) and converted 

the coordinates to dm3 using pslMap (http://genome.ucsc.edu/, v5).  The same steps for 

reference generation was used for the DGRP paternal lines.  For all parents, a genotype-

specific set of annotations was created using liftOver to translate the r5.57 reference GFF3 

file into the coordinate frame of the custom parental genome.  

Read mapping 

Read were trimmed for adaptor sequences and sequencing quality using skewer (v0.2.2) 

and seqtk (v1.0), respectively, with default parameters.  To avoid mappability bias, we used 

the parental genome mapping strategy (see mappability filter section, below) and mapped 

reads to both personalized parental genomes (Skelly et al. 2011).  Reads from ATAC-seq and 

ChIP-seq were mapped using BWA (v0.7.12) (Li and Durbin 2010), reads from RNA-seq 

were mapped using STAR (v2.5.1b) (Dobin et al. 2013) and FlyBase gene annotation version 

5.57.  Aligned reads were clipped when overlapping their read pairs using clipOverlap 

(v1.0.14).  Using the appropriate chain files and pslMap (http://genome.ucsc.edu/), alignment 

coordinates were converted into the reference Drosophila melanogaster r5.57 genome 

coordinate space, also used in the DGRP project for variant calling. 

Resulting alignments from both parental genome mappings were merged into a single 

alignment file, where reads aligned in both cases were reported only once (selecting the 

alignment with the highest mapping score). 
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Mappability filter 

To ensure equal mappability across the two parental genomes for a given F1 line, we made 

use of two approaches.  First, genomic DNA sequencing data from all the parental lines were 

mapped using STAR on their personalized genome and converted into the r5.57 reference 

using pslMap (http://genome.ucsc.edu/).  Coverage data was produced using pslToBed 

(http://genome.ucsc.edu/) from the UCSC genome browser utilities.  For each of our F1 

crosses, genomic regions showing a null coverage in either the mother or the father line were 

discarded from the analysis by trimming the portion of the aligned reads overlapping such 

regions.  Second, for each of the parental genotypes, we simulated transcriptomic and 

genomic reads spanning the entire genome with equal coverage (one read starting at each 

base pair, read length=100bp).  The resulting reads were mapped on the corresponding 

parental genome and converted to the reference genome coordinates in the same manner as 

the RNA-seq, ATAC-seq and ChIP-seq experiments.  For each of the F1 lines, regions 

showing a different coverage between the paternal and maternal synthetic read mapping were 

not considered when calling allele-specific measures.  This step captured mappability issues 

caused by ambiguous bases and Ns introduced during the construction of the parental 

reference genomes.  In order to compare total coverage measures across samples, a universal 

mappability filter encompassing all the line-specific filtered regions was applied to trim the 

reads before further analysis. 

Quality Control 

We evaluated the quality of our sequencing data in three ways.  First, we looked at 

pairwise correlations between each sample.  We observed a Spearman’s correlation of at least 

0.95 in all biological replicates (Supplemental Fig. S1b), while the median Spearman’s 

correlations between samples from different genotypes or different time points were lower, as 

expected, ranging between 0.84 and 0.98 for all data types (Supplemental Fig. S1c).  Second, 

we performed a principal component analysis at the level of total counts to look for evidence 

of issues for specific samples (e.g. failure to cluster with a replicate or clustering with the 

wrong time point).  Third, in the case of RNA, we looked for correlations between our 

samples and the modENCODE time series of development (Supplemental Fig. M1, below) 

(Graveley et al. 2011).  Through these last two steps, we realized significant issues with the 

6-8hr time point for the parental line 399 – while the replicate correlations are high, these 

samples appear closer to 10-12hr than they do 6-8hr.  We thus removed these two samples 
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from all analyses, reducing our cis/trans analyses for RNA to only the 10-12hr time point.  

No similar staging issues are apparent in the open chromatin or histone modification data.  

 

 

Figure M1: Total count data cluster with similar time points 

a.  Correlation of gene expression total count data with modENCODE time series.  As expected, the 
highest correlation corresponds to the comparison with equivalent time points.  b. Principal 
component analysis of total count data for each data type.  Parent-offspring trio is shown in color.  For 
gene expression data (upper, left), the two replicates of parental line 399 at 6-8hr cluster together with 
the 10-12hr samples.  We removed these samples from further analysis. 
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Peak-calling 

For ChIP-seq experiments targeting H3K4me3 and H3K27ac marks, peak calling was 

performed for each sample on each parental genome using Macs2 (v2.1.1) (Zhang et al. 

2008) with the broad option and default parameters.  After converting all peak calls to the 

dm3 coordinates, we merged peaks using the bedtools merge function to produce a single 

peak set used across all lines and all developmental time points (Quinlan and Hall 2010).  For 

ATAC-seq experiments, regions of chromatin accessibility were defined as the merge of peak 

summits called by Hotspot (v4.0.0) (John et al. 2011), with a score higher than 5 in at least 

one of the F1 samples after extending the summits by 200bp in both directions.  

Total signal quantification 

Read assignment 

For each individual sample, total coverage signal was evaluated at the feature level (genes 

or peaks) using scripts accessing the pysam package (Li et al. 2009).  Each read mapping to 

at least one of the two parental genomes and not filtered by the mappability filter was 

assigned to its overlapping feature.  Reads not overlapping a SNP were also included in this 

process, as this measure is not allele-specific.  

Differential expression across time points 

To quantify changes in total read counts between time points, we imported the total count 

data into DESeq2 and fit a model consisting of line + time (Love et al. 2014).  For any gene 

with a significant (FDR < 0.1) time effect, we subsequently looked for evidence of changes 

between neighboring time points using the contrasts option in DESeq2.  One concern is that 

some genes may have expression levels that are simply too low to provide statistical power.  

To avoid this issue, we presented results only from genes whose mean expression across all 

three time points was equal or greater to the read count threshold identified via DESeq2 

implementation of independent filtering (Bourgon et al. 2010). 

Library size normalization and other processing of total counts 

Upon visual inspection of the total count distribution across data types, we set the 

minimum of 20 reads per feature as the threshold for detecting expressed genes and non-

coding peaks.  Total counts were library scaled and TMM normalized using EdgeR 

(Robinson et al. 2010).  Values are expressed in log10 (Counts Per Million). 
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Allele-specific signal quantification 

Read assignment and gDNA correction 

For each dataset, allele-specific counts were performed at the feature level, i.e. per genes 

for RNA-seq and per peak for ATAC-seq and ChIP-seq.  Based on their genotype at the SNP 

location, reads overlapping a feature were assigned to the maternal or paternal haplotypes. 

Reads not overlapping a segregating SNP or reads with disagreeing assignment between 

SNPs were ignored in the measurement.  Cases of genotyping errors can potentially lead to 

incorrect allelic imbalance measure if a SNP is wrongly called as segregating in a given 

cross.  To correct for these events, we performed a genomic DNA-seq experiment for each of 

the F1 lines and processed it in the same manner as the ATAC-seq data.  Using a two-sided 

binomial test with false discovery rate correction, we tested for each SNP whether the 

number of reads assigned to the maternal and the paternal haplotypes were significantly 

different from an expected 50:50 ratio in the autosomes.  In chrX, the expected ratio was 

empirically measured from the 1000 SNPs with the highest coverage in chrX.  Only SNPs 

with a minimum coverage of 15 reads for autosomes and 10 reads for chrX were tested.  

SNPs considered as significantly imbalanced (p < 0.05) for the genomic DNA data were 

formatted as missing data (N) for alignment and were ignored when performing the allele-

specific measures.  In order to evaluate the sex ratio of our pool of embryos, allele-specific 

counts of gDNA reads were also performed at the feature level. 

Maternal transcript identification 

Due to the presence of maternally deposited transcripts, especially in the early 2-4hr time-

point, a portion of the genes has an allelic imbalance biased toward the mother in the RNA-

seq data.  In order to detect them, we used RNA-seq data from unfertilized eggs from the 

same developmental time windows as the F1 samples.  To identify genes with maternal 

deposition, we plotted the log10 read count of each gene as measured in freshly laid eggs (the 

first time window), and used the bimodality of this distribution to set a threshold for 

“expressed”.  The majority of these genes were excluded from subsequent analyses. 

However, as previously noted (Thomsen et al. 2010), we observed a population of these 

transcripts that decayed over time, becoming not detected by 6-8 hours.  Formally, we 

quantified this population as those transcripts showing significant evidence of decay (using 

DESeq2) between 2-4h and 10-12h (Supplemental Fig. M2, below).  As this population of 

transcripts shows a 50:50 autosomal ratio in the 6-8h and 10-12h datasets, we included them 

in our analyses.  
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In addition to maternal transcript removal, as we used a poly(A)+ selection step in the 

construction of our RNA-seq libraries, any genes that largely or entirely lack polyadenylation 

signal (e.g. ncRNA, snRNA, rRNA) were removed from our analyses categories.  

 
Figure M2: Maternally deposited transcripts show different rates of decay 

 Distribution of allelic ratios for gene expression data for line vgn28 at each time point.  The genes are 
separated into three categories, based on their expression in freshly laid eggs (i.e. purely maternally 
deposited transcripts).  Left: genes detected in unfertilized eggs (maternal transcripts) showing no 
evidence of decay at 10-12h.  Middle: genes detected in eggs and showing significant decay between 
2-4hr and 10-12h.  Right: genes not detected in eggs, only zygotically expressed.  Zygotic genes and 
maternally deposited genes with evidence of fast decay are included in the analysis. 
 

Statistical test for allelic imbalance  

Individual tests were performed for each line and for each time point.  Total F1 counts	

(𝑛!
",$,%	can be modeled on an allele-specific basis (𝑧!

",$,%) using a beta-binomial distribution.  

Specifically,	𝑧!
",$,%	denotes the number of reads from the maternal allele mapped to feature f 

for pool of individuals i, of paternal strain s, at time t.	𝑛!
",$,%	denotes the total number of reads 

mapping to genes for pool of individuals i of strain s, at time t.	 

𝑧&
",$,%~	𝐵𝑖(𝑛&

",$,% , 𝑝&
",$,%)	

𝑝!
",$,%	~	𝐵𝑒(𝛼, 𝛽)	

 

where	𝛼, 𝛽	are the shape parameters of the beta distribution.  We tested the following 

scenarios by maximum likelihood estimation: 

𝑁𝑜	𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒:	𝛼 = 𝛽	

𝐴𝑙𝑙𝑒𝑙𝑖𝑐	𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒:	𝛼 ≠ 𝛽 
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Due to limited replicates per condition, we used information across features to reduce the 

uncertainty of estimates and improve power by assuming that all features have the same 

mean-variance relationship (Robinson et al. 2010; Love et al. 2014).  Empirical data was used 

to estimate the over-dispersion parameter (𝜌) for each data type based on the beta-binomial 

distribution.  Maximum likelihood estimation was used to obtain		𝛼	and	𝛽	for each feature of 

time t and strain s. 𝜌 is calculated as follows:  

𝜌 =
1

𝛼 + 𝛽 + 1 

The mean over-dispersion value for all features was used as the shrinkage term and likelihood 

ratio tests (df=1) were used to obtain a p-value, which was adjusted using FDR (Benjamini 

1995).  Autosomes were tested separately to sex chromosomes; features on the X 

Chromosome were tested using a background allelic ratio of no imbalance centered on the 

averaged ratio of maternal versus paternal alleles across the data set being compared (i.e. 

RNA, ATAC, H3K4me3, H3K27ac).  Autosomal features were tested using a null 

distribution of 0.5.  

 

Allele-specific changes across lines and developmental time 

We use a linear mixed-effects model where a random effect is incorporated to estimate 

variability between strains.  Specifically, 𝑦&'"( represents the proportion of reads 
)*%+(,*-

)*%+(,*-./*%+(,*-
, mapped to a feature f in data type d of strain s, replicate r and time t. 

Random effect components were incorporated to estimate variability between pools of 

individuals, time points and lines. 

𝑦&
',",(,% =	𝜇& + 𝛿&% + 𝜔&" + (𝛿𝜔)&% 							𝜔&"	~	Ν(0, 𝜎&0) 

𝜇& is the intercept term. 𝛿&% is a random effect term denoting time. 𝜔&" is a random effect 

based on strain and (𝛿𝜔)&%  is a interaction term for time by strain. 

𝑀1:	𝜇& ≠ 0, 𝛿&% ≠ 0,𝜔&" ≠ 0, (𝛿𝜔)&% = 0 

𝑀2:	𝜇& ≠ 0, 𝛿&% = 0,𝜔&" ≠ 0, (𝛿𝜔)&% = 0 

𝑀0:	𝜇& ≠ 0, 𝛿&% ≠ 0,𝜔&" = 0, (𝛿𝜔)&% = 0 

𝑀3:	𝜇& ≠ 0, 𝛿&% ≠ 0,𝜔&" ≠ 0, (𝛿𝜔)&% ≠ 0 

To infer the significance of time or strain dependent allele bias, we restrict the values that the 

parameters can take where 𝑀1is the full model that controls for effects due to time, genotype 
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as well as the time by genotype effect.  𝑀2 is a model where we assume no allelic balance 

between time points after controlling for strain effects.  Conversely, 𝑀0 accounts for allelic 

imbalance changes by time points while controlling for strain effects.  𝑀3	specifies a non-

zero interaction term between time and line. Each model is fitted to the data in turn by 

maximizing the likelihood using the R library ‘lme4’ (Bates 2015).  Akaike information 

criterion (AIC) is used to assess the best model.  

Prior to analysis, count data filtered for reads with more than 20 allele-combined counts. 

Additionally, maternally deposited genes were removed for gene expression counts, as 

described above. For this analysis, the sex chromosome was removed.  Each feature is tested 

using read counts at SNPs common to all lines.  

 

Gene category enrichment of allelic imbalance 

To better understand the biological functions affected by cis-regulatory variation, we 

looked for the enrichment/depletion of allelic imbalance in functional categories using a 

Fisher’s exact test.  We focused on the gene-centric GLAD categories (Hu et al. 2015), which 

are broadly representative of the trends observed using other ontologies (Supplemental Table 

S5).  In these analyses, chromatin features (ATAC and histone mark peaks) were assigned to 

the closest gene, though similar results were obtained if we limit our analysis to only 

promoter-proximal elements (<500bp from the assigned TSS; Supplemental Table S5). 

With this analysis, we observe an enrichment of allelic imbalance in a set of genes and 

associated non-coding features that could not be assigned to any known GLAD category. 

Such set collectively represents fast-evolving and Drosophila-specific genes, referred as the 

‘unclassified’ category (Mi et al. 2003; Turner et al. 2008) (Supplemental Fig. S4).  

Enrichment analyses themselves were carried out using Fisher’s exact test (for binarized data) 

or a point-biserial correlation, i.e. a Pearson’s correlation coefficient for circumstances in 

which one variable is continuous and the other categorical (to ensure robust results, point-

biserial correlations were also compared to non-parametric rank-biserial correlation 

analyses).  In all enrichment analyses, features/genes from both the X Chromosome and 

autosomes were included.  Similar analyses were performed on evolutionary rate data 

(Supplemental Table S5) and the heritability measures H2 and the coefficient of genetic 

variation. 
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Allele-specific changes across regulatory layers 

Overlap definition across layers 

Each set of non-coding features were split into TSS-distal and TSS-proximal subsets. 

Features are considered as part of the TSS-proximal set if their nearest TSS is not further than 

500bp away or if they overlap a region called as a H3K4me3 peak.  For each subset, we 

defined regions of overlap between the regulatory layers as the overlap portion of two or 

more non-coding features.  In the case of the overlap of three features, at least one base pair 

must be shared with all the layers to create an overlap. 

For the proximal subset, genes features are assigned to a given overlap region if the 

distance between the overlap boundaries and the TSS is smaller or equal to 500bp.  For the 

distal subset, overlaps are associated with the gene having the closest TSS.  To avoid mis-

assignment of TSS to proximal cis-regulatory overlaps, we excluded TSS positioned in the 

600bp upstream region of other TSS.   

During our partial correlation (and related) analyses, as we noticed a clear drop in the 

correlation between the regulatory layers when the distance between the nearest TSS and the 

chromatin features exceed 1500bp (Supplemental Fig. M3a, below), we thus restricted the 

TSS-distal set to a maximum distance to TSS of 1500bp.   

The characterization of overlapping regions (i.e. regions of overlap between multiple non-

coding features) resulted in the definition of TSS-distal ATAC-only and H3K27ac-only 

peaks, which did not overlap each other (Fig. 1c).  We assessed the enrichment for regulatory 

signatures and transcription factor binding motifs of these peak sets using i-cisTarget 

(Imrichova et al. 2015) and RSAT (Nguyen et al. 2018) (Supplemental Table S3).  Strong 

enrichment for Polycomb and Su(Hw) ChIP-seq signal was observed in ATAC-only peaks 

(NES > 5), which was further supported by the enrichment for Su(Hw) binding motif in the 

de-novo motif discovery analysis (e-value = 3 x 10-11).  In H3K27ac-only peaks, strong 

enrichment for Polycomb, Elav and H3K27me3 ChIP-seq signal was observed (NES > 5). 

In both ATAC-only and H3K27ac-only peaks sets, an enrichment for RNA polymerase II 

ChIP-seq signal was also observed (mean NES of 10.26 and 6.02 for ATAC-only and 

H3K27ac-only peaks, respectively), although it did not reach the enrichment score observed 

in the overlapping peaks (mean NES = 10.81 and 10.2 for ATAC & H3K27ac overlapping 

peaks, respectively). 
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Figure M3: AI and TSS distance thresholding increases correlation between regulatory layers 

a.  Spearman’s correlation of allelic ratios between genes expression and the other regulatory layers, 
as a function of their distance from TSS.  Correlations are shown for non-coding features located from 
0 to 5kb upstream (upper row) or 0 to 5kb downstream (lower row) of the TSS.  As the correlation 
values show a clear drop for distances further than 1.5kb, we removed features greater than 1.5kb 
from TSS (upstream and downstream) from the TSS-distal overlap set.  b. Pearson’s correlation of 
allelic ratios between regulatory layers for TSS-proximal (upper row) and TSS-distal (lower row) 
features at 10-12hr.  Correlations are binned into 30 quantiles based on the absolute log2 fold change 
of allelic ratio.  Values on x-axis show the mean log2 fold change in the 1st, 10th, 20th and 30th 
quantiles from left to right.  Shaded regions indicate the 90% confidence intervals.  In most cases, we 
see an inflection point around the 18th quantile, which was used to set the AI threshold of 0.5 +/- 0.06 
in further analysis. 
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Partial correlation 

Partial correlation analysis was performed using the R package ‘GeneNet’ (Opgen-Rhein 

and Strimmer 2007) for both allelic ratios and total count data and for TSS-proximal and 

TSS-distal sets (excluding the X Chromosome).  We used features with no missing data in 

any of the regulatory layers (Supplemental Fig. S8).  For allelic ratio data, we observed a 

distinct increase in Pearson’s correlations between layers as the AI fold change increased, 

suggesting a threshold below which allelic imbalance was effectively “noise”.  To establish a 

filtering threshold for “noisy” allelic imbalance, we separated each dataset into 30 bins of 

total allelic imbalance and plotted the average correlation in allelic fold change between 

datasets for each bin (Supplemental Fig. M3b, above).  In each case, there is a general 

inflection point in the correlation at an allelic ratio of ~0.5 +/- 0.06.  We filtered loci that fell 

below this threshold to improve the covariance signal of AI datasets for partial correlation 

analysis (Supplemental Fig. S8).   

For both TSS-proximal and TSS-distal analysis, the Pearson’s and the partial correlation 

results are largely consistent between time points and genotypes (Supplemental Fig. S7). 

Samples from different time points and genotypes were thus pooled for this analysis.  

Because the different ratios for autosomes and X Chromosomes would lead to an artificially 

inflated correlation, X Chromosome genes/features were removed for this analysis.  We 

additionally performed bootstrapping over 2000 iterations and 80% sampling to compute 

confidence intervals (Supplemental Fig. S7). 

 

Copula directional dependence analysis 

Directional dependence modeling was done in a regression framework using copulas to 

describe the bivariate distribution between our pairwise datasets.  A copula is a multivariate 

distribution where the marginal distributions are uniform (Sklar 1973; Kim 2017).  Any 

multivariate function, F(x,y), can be represented in a copula as a function of its marginals,  

C(𝐹4(𝑥), 𝐹5(𝑦)).  Hence, given two random variables X and Y, the copula C(u,v) reflects this 

dependency, and 𝑈 = 𝐹4(𝑥), 𝑉 = 𝐹5(𝑦) are the marginal variables with uniform 

distributions.  Given an asymmetric copula, it is possible to infer directional dependence 

based on the proportion of total variance of V that can be explained by the copula regression 

𝑟6|8(𝑢) compared to the proportion of total variance of U that can be explained by the copula 

regression 𝑟8|6(𝑣) (Sungur 2005; Lee and Kim 2019).  We use the method of Lee and Kim 

2018 (Lee and Kim 2019) to infer the flow of information for pairwise relationships that 
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showed a significant relationship in partial correlation analyses.  Analyses were performed 

for allele-specific and total counts and at different developmental time points (excluding 2-

4hr and sex chromosomes).  X Chromosome data was kept for both analyses and it removal 

did not change the direction of findings but did increase effect size. 

Locus-specific test of gene expression with numbers of open chromatin regions 

ATAC-seq peaks were associated to genes at +-1500bp from the TSS and the relationship 

between the regulatory datasets was tested on a locus-specific basis.  We note that the results 

obtained from this analysis, showing less imbalance in expression with more local peaks, are 

unlikely to be due to differences in statistical power, as genes linked to shadow enhancers and 

multiple peaks are typically more highly expressed (wilcox test, p < 1.5 x 10-69).  Hence, 

there is greater power to detect allelic imbalance. 

 

Cis-trans analysis 

Statistical method for steady-state assignment of cis/trans regulatory mechanism 

For one F1 line (vgn x 399), we use maximum likelihood estimation (MLE) to compare 

parental and offspring ratios simultaneously to determine whether gene expression, chromatin 

accessibility, H3K4me and H3K27ac enrichments are influenced by cis-, trans, conserved or 

both cis- and trans- acting effects by modeling read counts in parents using negative binomial 

distributions and the F1 alleles using beta-binomial distribution.  We then find the most likely 

model for each gene.  

For each gene, F0 counts from each strain can be modeled as a negative binomial marginal 

distribution, while F1 counts were modeled using a beta-binomial distribution where the 

parameters of the beta distribution modeled the proportional contribution from each allele. 

For each data type, there were 2 replicates (i) for each F0 strain and 2 replicates (j) for F1 

samples.  F0 counts for each strain (𝑥$ , and	𝑦$) were assumed to follow negative binomial 

distributions while F1 counts (𝑛9),	were modeled on an allele-specific basis (𝑧9) using a beta-

binomial distribution: 

𝑥$ 	~	𝑃𝑜(𝜇$), 	𝑦$ 	~	𝑃𝑜(𝜐$), 𝑧9	~	𝐵𝑖(𝑛9 , 𝑝9) 

𝜇$~	𝐺𝑎 Q𝑟,
𝑝;

1 − 𝑝;
S , 𝑣$~	𝐺𝑎 T𝑟,

𝑝<
1 − 𝑝<

U , 𝑝9 	~	𝐵𝑒(𝛼, 𝛽) 

(1)	
	
(2)	
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where 𝑥$ is formally defined as the count of the variant in the ith vgn F0 line, 𝑦$ is the 

binding intensity of the variant in the ith dgrp399 F0 line, 𝑛9 is the number of reads mapping 

across both allelic variants in the jth F1 hybrid and 𝑧9is the number of reads mapping to the 

vgn allele in the jth F1 hybrid. 

We estimate the dispersion parameter r for F0 samples using the ‘estimateDispersions’ 

function within ‘DESeq2’ with local regression fit. r was used as the reciprocal of the fitted 

dispersion value from ‘DESeq2’. 

We constrained parameter estimation for each distribution based on four different 

regulatory scenarios and derived maximum likelihood values for each hypothetical case on a 

site-by-site basis.  The four models are described below: 

𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑:	𝑝; =	𝑝= 	𝑎𝑛𝑑	𝛼 = 𝛽 

𝐶𝑖𝑠:	𝑝; ≠	𝑝= 	𝑎𝑛𝑑	
𝛼

𝛼 + 𝛽 = 	

𝑝;
1 − 𝑝;

𝑝;
1 − 𝑝;

+ 𝑝<
1 − 𝑝<

 

 

𝑇𝑟𝑎𝑛𝑠:	𝑝; ≠	𝑝= 		𝑎𝑛𝑑	𝛼 = 𝛽 

𝐶𝑖𝑠𝑡𝑟𝑎𝑛𝑠:	𝑝; ≠	𝑝= 		𝑎𝑛𝑑	𝛼 ≠ 𝛽 

Figure 6c, showing the proportion of features assigned to each category, we presented the 

maximum likelihood assignment.  In subsequent analyses, we limited our analyses to features 

that showed a BIC difference ≥ 2.  

For the cis and trans assignments, we focused only on autosomal features.  This was in 

part due to the complications of calculating cis/trans components for two different sets of 

expected ratios, but also because the difference in expected ratio between the X Chromosome 

and the autosomes can influence the power to detect allelic imbalance and, thus, influence the 

assignments of cis vs. trans, with resulting complications for downstream analyses (e.g. 

categorical enrichment) 

Control for difference in staging between samples  

A challenge in assessing cis and trans proportions during development is the influence of 

differences in staging between samples, which can induce differences in read counts that will 

not be reflected in allelic ratios.  If these differences stem from genetically based differences 

in developmental rates, then the classification would reflect genuine trans differences. 
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Environmental variation or differences in sample handling, however, can also lead to 

developmental shifts.  To evaluate this possibility, we looked first to see if genes and features 

classified for trans frequently showed evidence of an increase in log2 fold-changes between 

time points.  For all regulatory layers, we observed a significant increase in log2 fold-changes 

between time points for genes and features classified as trans (p < 2.2 x 10-16).  However, we 

see no evidence for a coordinated shift in the parental ratios used to calculate trans relative to 

log2 fold-changes between time points. Indeed, genes and feature counts that increase during 

development are equally likely to show higher expression in either the maternal line (vgn) or 

paternal line (DGRP-399).  We thus conclude that while a portion of our observed trans 

effects may result from differences in developmental timing, the majority are likely genetic in 

origin, as global shifts in developmental staging (e.g. from handling errors or differences in 

collection temperature) would induce clear correlations between log2 fold-change over 

development and expression bias towards the more developmentally advanced parent.	

Calculating broad sense heritability and coefficient of genetic variation 

To avoid potential interaction effects with ‘time’, we fit a separate model for each time 

point (all three time points in the case of the chromatin data, and excluding 2-4h in the case 

of RNA).  For each gene/feature, we used the lmer function from lme4 to estimate a random 

effect for line after applying the vst function in DESeq2 to bring the trait values more closely 

in line with normality.  To evaluate the significance of the resulting fit, the model was 

compared to a null model consisting only of an intercept using the anova function.  FDR 

values were calculated from the resulting vector of p-values using the qvalue function in R 

(v3.5.1). Estimated line variances and residual variances were extracted from the model using 

the ‘VarCorr’ function.  Line variances were treated as proportional to broad-sense 

heritability (H^2).  We calculated the coefficient of genetic variation by scaling our estimated 

‘between-line variances’ by the variance stabilized mean read count of each feature such that 

genetic variation is presented as a percentage deviation from the average of the population 

(Berney et al. 1975; Garfield et al. 2013). We used the formula below: 

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑜𝑓𝑔𝑒𝑛𝑒𝑡𝑖𝑐𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 100 ×
√𝑙𝑖𝑛𝑒𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
𝑡𝑟𝑎𝑖𝑡𝑚𝑒𝑎𝑛  

In our analysis, H^2 and coefficient of genetic variation were considered meaningful as long 

as the line-model was significant with an FDR < 0.1.  
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The result of the above process generated one value per time point for each feature.  An 

alternative is to fit a similar model to the above for all times (excluding 2-4h in the case of 

RNA) and including a term for ‘time’.  The resulting distributions for H^2 and coefficient of 

genetic variation were qualitatively similar.  The enrichment calculations were carried out as 

described above.  

 

Measuring additive vs. non-additive heritability  

In the case of additively inherited gene expression (or read counts for any of our measured 

features), the signal observed in the F1 is expected to be equal to the midpoint (average) of 

the two parents, while non-additively inherited genes/features should show a significant 

departure from that midpoint.  To formally test for non-additivity, we made use of the 

standard workflow in DESeq2 with two modifications.  First, we set the betaPrior option 

equal to TRUE.  After setting the reference genotype to the F1 (vgn x 399) using the relevel 

function, we then extracted the results using the ‘results’ function and the contrast vector 

c(0,1,-.5, -.5) to contrast the full value of the F1 genotype with ½(vgn + 399).  Features with 

an FDR < .1 were considered as “non-additive”.  

 

The link between trans variation and gene category 

Mirroring our buffering results, genes with more regulatory elements in their vicinity are 

more likely to be classified as trans-acting having more peaks in their immediate regulatory 

domain (trans = 2.58 peaks per gene vs. 1.9, p = 0.00094). Similarly, there is a significant, 

though modest, enrichment of trans influences among TFs and a depletion among metabolic 

genes, two categories that are strongly distinguished in the complexity of their associated 

regulatory landscapes (Supplemental Table S9).  This appears to have downstream impacts 

on the heritability of gene expression for different gene categories. Among 80 tested gene 

categories, DNA-binding TFs (p = 3 x 10-3) and interestingly mitochondrial associated genes 

(p = 2 x 10-6) stand out as the two gene categories with statistically elevated frequencies of 

non-additive inheritance (Fisher’s exact test; Methods).  Thus, while TFs generally show 

reduced genetic variation among lines and reduced allelic imbalance in gene expression 

(Supplemental Fig. S4), they are still affected by trans-acting variants whose non-additive 

inheritance reduces the efficacy by which selection can alter gene expression differences 

among different lines.  
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The impact of cis and trans variation on patterns of selection 

Genes influenced by both cis and trans acting variants (cis-trans) provide an opportunity to 

understand patterns of recent selection: In the face of compensatory evolution, cis and trans 

acting influences are more likely to work in opposite directions, while directional selection 

will be more likely to reinforce cis and trans effects acting in the same direction.  Using the 

classification of cis and trans by Goncalves et al (Goncalves et al. 2012)(see below), we 

observed that cis and trans effects were much more likely to act in a compensatory manner as 

compared to gene expression: for chromatin accessibility and histone modifications, 13% of 

cis-trans features were classified as same vs. 37% for RNA (Fig. 6c: p < 2.2 x 10-16 chi^2).  

This suggests that for RNA there is either more frequent directional selection or less efficient 

selection against directional changes.  This result is robust to the method used to classify cis 

+ trans effects (Landry et al. 2005), with 63% of cistrans RNA features being classified as 

divergent for RNA vs. 22% for chromatin features (Supplemental Fig. S9d: p < 2.2 x 10-16; 

chi^2).  Taken together, these results suggest clear differences in evolutionary trajectory 

between regulatory layers which reflects population processes operating at different levels of 

organization, as well as differences between functional gene classes.  The classification of 

Goncalves et al. (Goncalves et al. 2012) is as follows.  For all genes, we asked if their cis and 

trans contributes act to reinforce one another (same direction) or if they operated in opposite 

directions.  Formally, for the i_th gene, we define the average log2 fold change for the 

parental lines as x_i and the average log2 allelic ratio from the F1 data as y_i. We then 

classified: 

Opposite – cis stronger: (0 < y_i < x_i) OR (0 > y_i > x_i) 

Opposite – trans stronger: (x_i < 0 < y_i) OR (y_i < 0 < x_i) 

Same – cis stronger (0 < x_i < y_i < 2x_i) OR (0 > x_i > y_i > 2x_i)  

Same – trans stronger (0 < 2x_i < y_i) OR (0 > 2x_i > y_i) 
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