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Appendix 
 
 
Estimation of Reff(t) 
 
Classically Reff(t) is estimated by the ratio of the number of new infections generated at time t, to 
the total infectiousness of infected individuals at time t. For the COVID-19 epidemic, considering 
of the data needed for the estimation of the reproductive numbers, these methods have many 
shortcomings due to the characteristics of the transmission of this virus namely its silent 
transmission and major time variation in the reporting of cases due to lack of timely or appropriate 
testing (O’Driscoll et al., 2020; Pitzer et al., 2020; Gostic et al., 2021). 
 
A complementary approach is to infer changes in transmission using mathematical models, and 
computing Reff based on its proportionality with the transmission rate. Accounting for all 
uncertainties associated with SARS-Cov-2 transmission, we propose using a framework that has 
been introduced to tackle non-stationarity in epidemiology (Cazelles et al., 2018). This framework 
uses diffusion models driven by Brownian diffusion to model time-varying parameters of major 
epidemiological significance embedded in a stochastic framework coupled with Bayesian 
inference methods (Cazelles et al., 2018).  
 
For estimating Reff(t) we have proposed a simple model that incorporates the available information 
to examine the dynamics of Covid-19 epidemics. The model is described in Fig. A1 (Cazelles et 
al., 2021). Our model is an extended stochastic SEIR model also accounting for asymptomatic 
transmission and the hospital system. It includes the following variables: the susceptibles S, the 
infected non-infectious E, the symptomatic infectious I, the asymptomatic infectious A, the 
removed people R, and the hospital variables: hospitalized people H, people in intensive care unit 
ICI, cured people G, and deaths at hospital D. We have also introduced Erlang-distributed stage 
durations (with a shape parameter equal tow 2) for the E, I, A and H compartments. The 
differential equations below describe the deterministic version of our model, however it is 
important to note that we have used its stochastic version: 
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The main characteristic of this model is the time-varying transmission rate β(t) that follows a 
Brownian diffusion process: 

         (A2) 
In the model ν is the volatility of the Brownian process (dB), σ is the incubation rate, γ the 
recovery rate, 1/κ the average hospitalized period, 1/δ the average time spent in ICU, τA the 
fraction of asymptomatics, τH the fraction of infectious hospitalized, τI the fraction of ICU 
admission, τD death rate, q1 and q2 reduction of transmissibility. As the peaks of those hospitalized 
and those admitted to ICU are concomitant we consider that a weak fraction, qI,.τI of infectious 
with severe symptoms go directly to ICU. Even if the majority of deaths occur in the ICU, a small 
fraction, qD,.τD, can occur in hospital but not in intensive care. Then qI and qD are the reduction of 
admission in ICU and of death rate respectively.  
With this model Reff can be computed as: 

     (A3) 
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Inference 
 
Accounting for all the numerous shortcomings associated with positive cases, we used, for the 
model inference, hospitalized multiple datasets for France and Ireland. For these two countries the 
hospitalized data are published on open platform. 
 
Due to the use of a diffusion equation (A2) for the dynamic of the time-varying parameters, the 
model is stochastic. Thus equations (A1-A2) are considered in a stochastic framework solved with 
the Euler-Maruyama algorithm (Kloeden and Platen, 1999) implemented in the SSM platform 
(Dureau et al., 2013). Since the epidemiological propagation mode is stochastic, its likelihood is 
intractable and it is estimated with particle filtering methods (Sequential Monte Carlo). In order to 
estimate the parameters of the system, the particle filter is embedded in a Markov Chain Monte 
Carlo framework, leading to the PMCMC algorithm (Andrieu et al., 2010). More precisely, the 
likelihood estimated by the particle filter is used in a Metropolis Hasting scheme (particle 
marginal Metropolis Hastings) (Andrieu et al., 2010).  
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FIGURE A1 – Flow diagram of the model used. It ncludes the following variables : the susceptibles S, the infected non-infectious

E, the infectious symptomatic I , the infectious asymptomatic A, the removed people R, and the hospital variables : hospitalized

people H , people in intensive care unit ICU , hospital discharge G, and deaths at hospital D. Erlang-distributed stage durations is

also introduced for theE, I ,A andH compartments to mimic a gamma distribution for stage duration in these compartments.λ′(t) =

β(t).(I1 + q1.I2 + q2.(A1 + A2))/N then the force of infection is λ(t) = λ′(t).S(t). β(t) is the time-varying transmission rate,

σ the incubation rate, γ the recovery rate, 1/κ the average hospitalized period, 1/δ the average time spent in ICU, τA the fraction

of asymptomatics, τH the fraction of infectious hospitalized, τI the fraction of ICU admission, τD the death rate, q1 and q2 the

reduction of transmissibility of I2 and Ai, qI the reduction of the fraction of people admitted in ICU and qD the reduction of the

death rate. The subscripts 1 and 2 are for the 2 stages of the Erlang distribution of the considered variable. Flows in blue are from

hospital (Hi) and flow in red from ICU .



FIGURE A2 – Correlations between the effective reproduction number and retail and recreation mobility. Left column : Time

evolution of the estimated Reff (t) (black line) and retail and recreation mobility (blue line). Right column : Cross-correlation

functions between the estimated Reff (t) and retail and recreation mobility computed between 15-05-2020 and 15-10-2020. The

dashed black lines delimit the significant region at 0.1%. (A-B) Ile de France region, (C-D) Ireland ; (E-F) Provence Alpes Côte

d’Azur region, (F-G) Occitanie region, (H-I) Nouvelle-Aquitaine region, (J-K) Auvergne Rhône Alpes region.



FIGURE A3 – Correlations between the effective reproduction number and public transport mobility. Left column : Time evolution

of the estimated Reff (t) (black line) and public transport mobility (blue line). Right column : Cross-correlation functions between

the estimated Reff (t) and public transport mobility computed between 15-05-2020 and 15-10-2020. The dashed black lines delimit

the significant region at 0.1%. (A-B) Ile de France region, (C-D) Ireland ; (E-F) Provence Alpes Côte d’Azur region, (F-G) Occitanie

region, (H-I) Nouvelle-Aquitaine region, (J-K) Auvergne Rhône Alpes region.
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