eAppendix

eAppendix to R.H.H. Groenwold, T.M. Palmer & K. Tilling: To adjust or not

to adjust? When a “confounder” is only measured after exposure.

Identifiability of the causal effect

The directed acyclic graph presented in Figure 1 in the main text could also be
expressed as a single world intervention graph (SWIG),|1] which provide a way
to incorporate counterfactuals in causal diagrams. Figure shows the SWIG
of an exposure (X), an outcome (Y), a mediator (M), and two unmeasured
variables (U; and Us). The node for exposure is split to distinguish between the

random part (to the left of the |) and the fixed part (to its right).
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Figure A.1: Single world intervention graph (SWIG) of an exposure (X), an
outcome (Y'), a mediator (M), and two unmeasured variables (U; and Us).

To identify the total effect of X on Y requires Y* 1L X. This requirement
is not met, because X and Y are not d-separated, because of the path X <«
U; — Y. Therefore, the total causal effect of X on Y, e.g., E[Y*=!] — E[Y*=0]
cannot be identified from data on (X,Y, M).

To identify the direct effect of X on Y requires Y* 1l X|M?. This require-
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ment is not met, because the counterfactual value of M?® cannot be estimated
from the data, one reason being that X and M are not d-separated (due to the
path X < U; — M?). Therefore, the (natural) direct causal effect of X on Y,
e.g., E[Y*=LM""_ B[y ==0.M"""] cannot be identified from data on (X, Y, M).

Hence, in case of the causal structure depicted in Figure where U; and
U, are considered unmeasured, neither the total or the direct effect of X on Y

can be identified from data on (X,Y, M).

Derivation of bias expressions

We consider the causal diagram presented in Figure [A72] Details of the model

are described in the section Notation and set-up of the main text.
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Figure A.2: Directed acyclic graph of an exposure (X), an outcome (Y), a
mediator (M), and two unmeasured variables (U and Us).

Using the path tracing rules, the observed covariance between X and Y is, in

expectation,

COV(X7 Y) = Bazy Var(X) + ﬂwmﬁmy Var(X) + ﬁulw Var(Ul)(Buly + Bulmﬁmy)
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It follows that

~  Cov(X,Y)
B = ar(x)
_ ﬁu1$ Var(Ul)(ﬂm + ﬂulmﬁm( )
= By + BemBmy + Var( ;é) Y
Bulzo—ﬁl (ﬂul + ﬂulmﬁm )
= Bwy + 6wmﬁmy + zlzo_%l T 0_% Y .

When conditioning on M the observed relation between X and Y is, in expec-

tation,
_ Cov(X,Y) Var(M) — Cov(Y, M) Cov(X, M)

Baym = Var(X) Var(M) — Cov(X, M)?

Here,

Var(X) = 2, Var(Uy) + o
Var(M) = B2 ,, Var(U) + B2,,,, Var(Us) + 2, Var(X) + 2By, mBum Cov(X, Ur) + o2,
Cov(X,Y) = Boy Var(X) + BemBmy Var(X) + Bu,a Var(Ur)(Bu,y + BuymBmy)
Cov(Y, M) = By Var(M) + Buym Var(Ut) Buy + Buym Var(Uz) Busy + BemBuyx Var(Ut) Bu,y+
Bam Var(X)Buy + Buym Var(Un)Buyz By

Cov(X, M) = Bym Var(X) + By, Var(U1) Buym.-
For completeness, we note that

Var(Uy) = o3,
Var(Usy) = 032 and

Cov(X,U;) = By, Var(Uy).

The bias expression above can be simplified when assuming all error terms are
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equal to 1, i.e., (0y,, Ou,, etc. are 1). Then

Var(X) = Zlm +1
Var(M) = B2, + By + B (Ber + 1) + 28wy mBemBura + 1
Cov(X,U1) = Buyz
Cov(X,Y) = Bey(Bez + 1) + BemBmy (Barz + 1) + Bure (Bury + BurmBmy)
Cov(Y, M) = By Var(M) + BuymBury + BuzmBusy + Bam BuraBury+
BemBay Btz + 1) + BuymBus o Bay

Cov(X, M) = Bem (B2 + 1) + BuraBusm,
in which case

(( 52m + 1)69621 B 6ﬂcm5u2mﬂu2y)( 3132 + 1) =+ /Bglmlﬁxy + ( 32m + 1)Bu1xﬂu1y .
(Bare + DBoym +1) + 52,
(ﬂwmﬂuu} + ﬂulwﬁugmﬁuzy)ﬁuﬂn

Verification of bias expressions

To check the expression for the bias with and without adjustment for M (i.e.,
expressions (1) and (2)), 10 000 scenarios were evaluated. These were obtained
by random sampling of values of the parameters of the data generating model.
Specifically, the values of each coefficient (5zy, Bem, etc.) and of each error term
(Ouys Ouy, €tc.) were sampled from a uniform distribution (~ U(0,2)), except
for o,, which was set to 1. For each scenario, data were then generated based
on the data generating model. To reduce the role of sampling variability, the
sample size was set to 200,000. For each scenario, the bias was calculated using
expressions (1) and (2). These were compared to estimates obtained from OLS

regression, with and without adjustment for M using the artificially generated
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data. As a reference, in each generated dataset also the total effect of X on Y
was estimated with adjustment for Uy, which corresponds to the data generating
model.

The median difference between the expression-based and estimation-based
total effect of X on Y was 0.0000, with 95% of the differences in the interval
(—0.0461;0.0441). The median difference between the expression-based and
estimation-based crude effect (i.e., without adjustment for U; and M) was
0.0000, with 95% of differences lying in the interval (—0.0173;0.0185). For
the adjusted effect (i.e., with adjustment for M, but no adjustment for Uq,
nor for Us), the median difference was 0.0000, with 95% of differences lying in
the interval (—0.0117;0.0123). Based on these numbers we conclude that the

bias-expressions appear to be correct.
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