
eAppendix

eAppendix to R.H.H. Groenwold, T.M. Palmer & K. Tilling: To adjust or not

to adjust? When a “confounder” is only measured after exposure.

Identifiability of the causal effect

The directed acyclic graph presented in Figure 1 in the main text could also be

expressed as a single world intervention graph (SWIG),[1] which provide a way

to incorporate counterfactuals in causal diagrams. Figure A.1 shows the SWIG

of an exposure (X), an outcome (Y ), a mediator (M), and two unmeasured

variables (U1 and U2). The node for exposure is split to distinguish between the

random part (to the left of the |) and the fixed part (to its right).

Figure A.1: Single world intervention graph (SWIG) of an exposure (X), an
outcome (Y ), a mediator (M), and two unmeasured variables (U1 and U2).

To identify the total effect of X on Y requires Y x ⊥⊥ X. This requirement

is not met, because X and Y are not d-separated, because of the path X ←

U1 → Y . Therefore, the total causal effect of X on Y, e.g., E[Y x=1]− E[Y x=0]

cannot be identified from data on (X,Y,M).

To identify the direct effect of X on Y requires Y x ⊥⊥ X|Mx. This require-
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ment is not met, because the counterfactual value of Mx cannot be estimated

from the data, one reason being that X and M are not d-separated (due to the

path X ← U1 → Mx). Therefore, the (natural) direct causal effect of X on Y,

e.g., E[Y x=1,Mx=1

]−E[Y x=0,Mx=1

] cannot be identified from data on (X,Y,M).

Hence, in case of the causal structure depicted in Figure A.1, where U1 and

U2 are considered unmeasured, neither the total or the direct effect of X on Y

can be identified from data on (X,Y,M).

Derivation of bias expressions

We consider the causal diagram presented in Figure A.2. Details of the model

are described in the section Notation and set-up of the main text.

Figure A.2: Directed acyclic graph of an exposure (X), an outcome (Y ), a
mediator (M), and two unmeasured variables (U1 and U2).

Using the path tracing rules, the observed covariance between X and Y is, in

expectation,

Cov(X,Y ) = βxy Var(X) + βxmβmy Var(X) + βu1x Var(U1)(βu1y + βu1mβmy).
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It follows that

β̂xy =
Cov(X,Y )

Var(X)

= βxy + βxmβmy +
βu1x Var(U1)(βu1y + βu1mβmy)

Var(X)

= βxy + βxmβmy +
βu1xσ

2
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(βu1y + βu1mβmy)
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+ σ2
x
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When conditioning on M the observed relation between X and Y is, in expec-

tation,

β̂xy|m =
Cov(X,Y ) Var(M)− Cov(Y,M) Cov(X,M)

Var(X) Var(M)− Cov(X,M)2
.

Here,

Var(X) = β2
u1x Var(U1) + σ2

x

Var(M) = β2
u1m Var(U1) + β2

u2m Var(U2) + β2
xm Var(X) + 2βu1mβxm Cov(X,U1) + σ2

m

Cov(X,Y ) = βxy Var(X) + βxmβmy Var(X) + βu1x Var(U1)(βu1y + βu1mβmy)

Cov(Y,M) = βmy Var(M) + βu1m Var(U1)βu1y + βu2m Var(U2)βu2y + βxmβu1x Var(U1)βu1y+

βxm Var(X)βxy + βu1m Var(U1)βu1xβxy

Cov(X,M) = βxm Var(X) + βu1x Var(U1)βu1m.

For completeness, we note that

Var(U1) = σ2
u1

Var(U2) = σ2
u2

and

Cov(X,U1) = βu1x Var(U1).

The bias expression above can be simplified when assuming all error terms are
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equal to 1, i.e., (σu1 , σu2 , etc. are 1). Then

Var(X) = β2
u1x + 1

Var(M) = β2
u1m + β2

u2m + β2
xm(β2

u1x + 1) + 2βu1mβxmβu1x + 1

Cov(X,U1) = βu1x

Cov(X,Y ) = βxy(β2
u1x + 1) + βxmβmy(β2

u1x + 1) + βu1x(βu1y + βu1mβmy)

Cov(Y,M) = βmy Var(M) + βu1mβu1y + βu2mβu2y + βxmβu1xβu1y+

βxmβxy(β2
u1x + 1) + βu1mβu1xβxy

Cov(X,M) = βxm(β2
u1x + 1) + βu1xβu1m,

in which case

β̂xy|m =
((β2

u2m + 1)βxy − βxmβu2mβu2y)(β2
u1x + 1) + β2

u1mβxy + (β2
u2m + 1)βu1xβu1y

(β2
u1x + 1)(β2

u2m + 1) + β2
u1m

−

(βxmβu1y + βu1xβu2mβu2y)βu1m

(β2
u1x + 1)(β2

u2m + 1) + β2
u1m

.

Verification of bias expressions

To check the expression for the bias with and without adjustment for M (i.e.,

expressions (1) and (2)), 10 000 scenarios were evaluated. These were obtained

by random sampling of values of the parameters of the data generating model.

Specifically, the values of each coefficient (βxy, βxm, etc.) and of each error term

(σu1
, σu2

, etc.) were sampled from a uniform distribution (∼ U(0, 2)), except

for σy, which was set to 1. For each scenario, data were then generated based

on the data generating model. To reduce the role of sampling variability, the

sample size was set to 200,000. For each scenario, the bias was calculated using

expressions (1) and (2). These were compared to estimates obtained from OLS

regression, with and without adjustment for M using the artificially generated
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data. As a reference, in each generated dataset also the total effect of X on Y

was estimated with adjustment for U1, which corresponds to the data generating

model.

The median difference between the expression-based and estimation-based

total effect of X on Y was 0.0000, with 95% of the differences in the interval

(−0.0461; 0.0441). The median difference between the expression-based and

estimation-based crude effect (i.e., without adjustment for U1 and M) was

0.0000, with 95% of differences lying in the interval (−0.0173; 0.0185). For

the adjusted effect (i.e., with adjustment for M , but no adjustment for U1,

nor for U2), the median difference was 0.0000, with 95% of differences lying in

the interval (−0.0117; 0.0123). Based on these numbers we conclude that the

bias-expressions appear to be correct.

References

1. Richardson, T. S. & Robins, J. M. Single world intervention graphs (SWIGs):

A unification of the counterfactual and graphical approaches to causality.

Center for the Statistics and the Social Sciences, University of Washington

Series. Working Paper 128, 2013 (2013).

A.5


	Identifiability of the causal effect
	Derivation of bias expressions

