1	
2	Supplementary Materials for
3	
4	Synthetic nanobody-SARS-CoV-2 receptor-binding domain structures identify distinct epitopes
5	
6	Javeed Ahmad ^{1†} , Jiansheng Jiang ^{1†} , Lisa F. Boyd ¹ , Kannan Natarajan ¹ ,
7	David H. Margulies ^{1*}
8	
9	Correspondence to: <u>dmargulies@niaid.nih.gov</u> (D.H.M)
10	
11	This PDF file includes:
12	
13	Materials and Methods
14	Supplementary Text
15	Figs. S1 to S8
16	Tables S1 to S3
17	
18	
19	
20	
21	

22 Materials and Methods

23 Subcloning, expression and purification of RBD, spike, and sybody proteins

24	The sequences encoding the RBD of the SARS-CoV-2 spike protein (amino acids 333 to
25	529) were subcloned into pET21b(+), (Novagen) via NdeI and EcoRI restriction sites, using
26	pcDNA3-SARS-CoV-2-RBD-8his (Addgene #145145, (33)) as template. The primers used were
27	forward primer, 5'-TGCAGTCATATGAATCTTTGTCCGTTCGGTGAG and reverse primer,
28	5'-TGCAGTGAATTCTCACCCTTTTTGGGCCCACAAACT. The RBD was expressed as
29	inclusion bodies in E. coli strain BL21(DE3) (Novagen). Expression, isolation of inclusion
30	bodies, denaturation and reduction was done in 6 M guanidine hydrochloride and 0.1 mM DTT
31	as described elsewhere (34) . Briefly, refolding was carried out in a refolding buffer
32	supplemented with oxidized and reduced glutathione and arginine for 3 days at 4 °C followed by
33	dialysis against HEPES buffer (25 mM HEPES, pH 7.3, 150 mM NaCl). Concentrated and
34	filtered protein was analyzed by size-exclusion chromatography on a Superdex 200 10/300 GL
35	column (GE Healthcare) equilibrated with HEPES buffer. The peak corresponding to 24 kDa
36	(monomeric) protein was collected, concentrated and further purified by ion-exchange
37	chromatography on Mono-Q® (Cytiva).
38	Plasmids pSb-init encoding sybodies Sb16, Sb45. and Sb68 (Addgene #153524,
39	#153526, and #153527, respectively) were originally reported by Walter et al (35) and
40	generously made available. All plasmids were verified by DNA sequencing. Purification of the
41	recombinant proteins from the periplasm of E. coli MC1061 was based on a protocol described
42	elsewhere (36). Briefly, E. coli MC1061, transformed with a sybody-encoding plasmid, was
43	grown in Terrific Broth (TB) medium (Gibco) supplemented with 25 μ g/ml chloramphenicol, at
44	37 °C with shaking at 160 rpm for 2 hrs. The temperature was then decreased to 22 °C until A ₆₀₀

45	reached 0.5. Protein expression was induced by addition of L-(+)-arabinose (Sigma) to a final
46	concentration of 0.02% (w/v) and expression continued overnight at 22 $^{\circ}$ C and 160 rpm. The
47	next day cells were collected by centrifugation at 2000 x g for 15 minutes. The cell pellet was
48	then washed twice in PBS and resuspended in periplasmic extraction buffer (50 mM Tris/HCl pH
49	8.0, 0.5 mM EDTA, 0.5 μ g/ml lysozyme, 20% w/v sucrose (Sigma)) at 4 °C for 30 min followed
50	by addition of TBS (pH 8.0) and 1 mM MgCl ₂ . Cells were then centrifuged at 10,000 rpm
51	(Fiberlite TM F21-8 x 507 Fixed Angle Rotor) for 30 min. Following transfer of the supernatant to
52	a fresh tube, imidazole was added to a final concentration of 10 mM. Ni-NTA resin (Qiagen)
53	equilibrated with TBS was added to the supernatant and incubated for 1 hr at RT with mild
54	agitation. The resin was collected, washed three times with buffer supplemented with 30 mM
55	imidazole and sybody proteins were eluted with 300 mM imidazole in TBS.
56	Plasmid encoding spike HexaPro (designated "S" throughout) was procured from
56 57	Plasmid encoding spike HexaPro (designated "S" throughout) was procured from Addgene (#154754) and transfected into Expi293F [™] cells (ThermoFisher Scientific) using
56 57 58	Plasmid encoding spike HexaPro (designated "S" throughout) was procured from Addgene (#154754) and transfected into Expi293F TM cells (ThermoFisher Scientific) using manufacturer's protocol. Briefly, Expi293F TM cells were seeded to a final density of 2.5-3 × 10 ⁶
56 57 58 59	Plasmid encoding spike HexaPro (designated "S" throughout) was procured from Addgene (#154754) and transfected into Expi293F TM cells (ThermoFisher Scientific) using manufacturer's protocol. Briefly, Expi293F TM cells were seeded to a final density of 2.5-3 × 10 ⁶ viable cells/ml and grown overnight at 37 °C in Expi293 TM Expression Medium (Gibco). The
5657585960	Plasmid encoding spike HexaPro (designated "S" throughout) was procured from Addgene (#154754) and transfected into Expi293F TM cells (ThermoFisher Scientific) using manufacturer's protocol. Briefly, Expi293F TM cells were seeded to a final density of $2.5-3 \times 10^6$ viable cells/ml and grown overnight at 37 °C in Expi293 TM Expression Medium (Gibco). The following day, cell viability was determined, and cell density was adjusted to 3×10^6 viable
 56 57 58 59 60 61 	Plasmid encoding spike HexaPro (designated "S" throughout) was procured from Addgene (#154754) and transfected into Expi293F TM cells (ThermoFisher Scientific) using manufacturer's protocol. Briefly, Expi293F TM cells were seeded to a final density of 2.5-3 × 10 ⁶ viable cells/ml and grown overnight at 37 °C in Expi293 TM Expression Medium (Gibco). The following day, cell viability was determined, and cell density was adjusted to 3 × 10 ⁶ viable cells/ml with fresh, prewarmed Expi293 TM Expression Medium. Transfection was then done as
 56 57 58 59 60 61 62 	Plasmid encoding spike HexaPro (designated "S" throughout) was procured from Addgene (#154754) and transfected into Expi293F TM cells (ThermoFisher Scientific) using manufacturer's protocol. Briefly, Expi293F TM cells were seeded to a final density of 2.5-3 × 10 ⁶ viable cells/ml and grown overnight at 37 °C in Expi293 TM Expression Medium (Gibco). The following day, cell viability was determined, and cell density was adjusted to 3 × 10 ⁶ viable cells/ml with fresh, prewarmed Expi293 TM Expression Medium. Transfection was then done as per manufacturer's instructions using 1 µg/ml plasmid DNA. Cultures were grown for 6 days
 56 57 58 59 60 61 62 63 	Plasmid encoding spike HexaPro (designated "S" throughout) was procured from Addgene (#154754) and transfected into Expi293F TM cells (ThermoFisher Scientific) using manufacturer's protocol. Briefly, Expi293F TM cells were seeded to a final density of 2.5-3 × 10 ⁶ viable cells/ml and grown overnight at 37 °C in Expi293 TM Expression Medium (Gibco). The following day, cell viability was determined, and cell density was adjusted to 3 × 10 ⁶ viable cells/ml with fresh, prewarmed Expi293 TM Expression Medium. Transfection was then done as per manufacturer's instructions using 1 µg/ml plasmid DNA. Cultures were grown for 6 days following transfection and supernatant was collected, filtered through a 0.22 µm filter and passed
 56 57 58 59 60 61 62 63 64 	Plasmid encoding spike HexaPro (designated "S" throughout) was procured from Addgene (#154754) and transfected into Expi293F TM cells (ThermoFisher Scientific) using manufacturer's protocol. Briefly, Expi293F TM cells were seeded to a final density of 2.5-3 × 10 ⁶ viable cells/ml and grown overnight at 37 °C in Expi293 TM Expression Medium (Gibco). The following day, cell viability was determined, and cell density was adjusted to 3 × 10 ⁶ viable cells/ml with fresh, prewarmed Expi293 TM Expression Medium. Transfection was then done as per manufacturer's instructions using 1 µg/ml plasmid DNA. Cultures were grown for 6 days following transfection and supernatant was collected, filtered through a 0.22 µm filter and passed over Ni-NTA resin for affinity purification. Further purification was accomplished by size-
 56 57 58 59 60 61 62 63 64 65 	Plasmid encoding spike HexaPro (designated "S" throughout) was procured from Addgene (#154754) and transfected into Expi293F TM cells (ThermoFisher Scientific) using manufacturer's protocol. Briefly, Expi293F TM cells were seeded to a final density of $2.5-3 \times 10^6$ viable cells/ml and grown overnight at 37 °C in Expi293 TM Expression Medium (Gibco). The following day, cell viability was determined, and cell density was adjusted to 3×10^6 viable cells/ml with fresh, prewarmed Expi293 TM Expression Medium. Transfection was then done as per manufacturer's instructions using 1 µg/ml plasmid DNA. Cultures were grown for 6 days following transfection and supernatant was collected, filtered through a 0.22 µm filter and passed over Ni-NTA resin for affinity purification. Further purification was accomplished by size- exclusion chromatography using a Superose 6 10/300 GL column (Cytiva) in a buffer consisting

68 Preparative and analytical size-exclusion chromatography

69	Sybodies purified by Ni-NTA affinity chromatography were concentrated using Amicon
70	10K MWCO concentrators and purified on a Sepax SRT-10C SEC100 column at a flow rate of 1
71	ml/min. Monomeric sybodies elute at a retention volume of 11–12.5 ml from the Sepax SRT-
72	10C SEC100 column. Monomeric peak fractions were collected and analyzed by SDS-PAGE.
73	Analytical SEC of RBD sybody complexes was performed on a Shodex KW-802.5 column at a
74	flow rate of 0.75 ml/min in TBS buffer (pH. 8.0). (The interaction of individual sybodies with
75	the column matrix is a well-documented phenomenon (36)).
76	
77	Surface Plasmon Resonance
78	SPR experiments were performed on a Biacore T200 (Cytiva) at 25 °C in 10 mM HEPES
79	pH 7.2, 150 mM NaCl, 3 mM EDTA, 0.05% Tween-20. RBD was immobilized on a series S
80	CM5 sensor chip (Cytiva) by amine (NHS/EDC) coupling to flow cells. For background
81	subtraction a reference cell was mock coupled. Binding and kinetic studies were performed
82	multiple times for each sybody. Graded and increasing concentrations of SB16, SB45 and SB68
83	were injected over the RBD-immobilized surface at a flow rate of 30 μ l/min with an association
84	time of 120 s and dissociation time of 2000 s. Binding data were analyzed by surface site affinity
85	distribution analysis by EVILFIT (37, 38). In general, these values were consistent with fits to
86	the Langmuir binding equation for a 1:1 interaction model using Biacore T200 Evaluation
87	Software v3.0, but revealed better statistics.
88	

89 Thermal stability

90	Thermal melt analysis of the recombinant proteins was performed in triplicate in 96-well
91	plates in a QuantStudio 7 Flex real time PCR machine (Applied Biosystems). Each well
92	contained 2-4 μg protein in buffer (25mM TRIS pH 8, 150 mM NaCl) and 5x Sypro Orange
93	(Invitrogen, stock 5000x) in a total volume of 20 μ l. Following an initial two-minute hold at 25
94	°C, the plate was heated to 99 °C at a rate of 0.05 °C/sec. Data were analyzed with Protein
95	Thermal Shift Software v1.3 (Invitrogen) to obtain T_m values for RBD, S, Sb16, Sb45, and Sb68
96	(Figure S8).
97	
98	Crystallization, data collection, structure determination and crystallographic refinement
99	Purified sybodies (Sb16, Sb45 and Sb68) and RBD were mixed in approximate 1:1 molar
100	ratio to a final concentration of 8 mg/ml. The protein mixtures were incubated on ice for 1 hour
101	prior to screening. Initial screening for crystals was carried out using the hanging drop vapor
102	diffusion method using the Mosquito robotic system (sptlabtech.com). Crystals of SB16-RBD
103	and SB45-RBD complexes and Sb16 alone were observed within one week using Protein
104	Complex (Qiagen) and Wizard Classic 4 (Rigaku). Conditions for Sb16–RBD were either 0.1M
105	HEPES pH 7.0, 15% PEG 20000, or 0.1M HEPES pH 7.0, 18% PEG 12000; and for Sb45–RBD
106	was 18% PEG 12000 and 12% PEG 8000, 0.1 M HEPES pH 7.5, 0.2 M NaCl. Sb16 alone
107	crystallized in 20% PEG 4000, 0.1 M MES pH 6.0, 0.2 M LiSO ₄ . We also screened mixtures of
108	two or three sybodies with RBD. Crystals of Sb45-RBD-Sb68 were obtained after one month
109	following mixing the three proteins in an equimolar ratio in 10% PEG 8000, 0.1M sodium
110	cacodylate pH 6.0.
111	Crystals of protein complexes were optimized with slight adjustments of the
112	concentration of PEG components. Crystals were cryoprotected in mother liquor containing 5%

113 ethylene glycol and 5% glycerol and flash frozen in liquid nitrogen for data collection.

- 114 Diffraction data were collected at the Southeast Regional Collaborative Access Team (SER-
- 115 CAT) beamline 22ID-D at the Advanced Photon Source, Argonne National Laboratory and data
- 116 were processed with XDS (39). Multiple data sets were collected for the protein complexes from
- 117 2.3-3.2 Å resolution. The initial model of Sb16 and Sb45 for the molecular replacement search
- 118 were built by the MMM server (manaslu.fiserlab.org/MMM (40)), using the heavy chain V
- 119 domain and the RBD of the Fab B38–RBD complex (PDBid: 7BZ5) (41). The initial model of
- 120 Sb68 for molecular replacement was built based on the V_H domain of 7BZ5. Molecular
- 121 replacement solutions were found using Phaser (42, 43). Subsequent refinements were carried
- 122 out with PHENIX (44). CDR loops were manually rebuilt by fitting to the electron density maps
- 123 with Coot (45). In particular, Sb68 CDR loops were deleted before refinement and built in
- 124 manually based on electron density maps. Illustrations and calculations of superpositioned
- 125 models were prepared in PyMOL (The PyMOL Molecular Graphics System, Version 2.4.0
- 126 Schrödinger, LLC). Calculation of hinge relationships of domains was accomplished with
- 127 HINGE (https://niaidsis.niaid.nih.gov/hinge.html), provided courtesy of Peter Sun, NIAID.
- 128 Buried surface area (BSA) calculations were performed with PISA
- 129 (https://www.ebi.ac.uk/pdbe/pisa/).
- 130 The final structures for the RBD-SB16 and RBD-SB45 complexes showed $R_{\text{work}}/R_{\text{free}}$ (%)
- 131 25.4/27.7 and 18.6/21.6 respectively, and for SB16 alone with $R_{\text{work}}/R_{\text{free}}$ 22.4/25.9. Data
- 132 collection and structure refinement statistics are provided in Table S1.
- 133
- 134

135

136 **Fig. S1.** SEC profiles and purification of sybodies, RBD, and spike. (A, B, C) Monomeric

- 137 sybodies, as indicated, were purified on SRT-10C-SEC100 columns. Elution time of each
- 138 sybody is indicated above each peak. The y axis represents A_{280} nm absorbance units (mAu). (D)
- 139 SEC profile of trimeric spike protein (SuperoseTM 6 10/300 GL. (E) SDS-PAGE image of
- 140 purified sybodies, RBD and spike protein.

141

Figure S2.

144 **Fig. S2.** Sybodies bind RBD with K_D values in the nanomolar range. RBD (A, B, C) or S protein

- 145 (E, F, G) was coupled to a biosensor chip as described in Materials and Methods. Graded
- 146 concentrations (31 to 500 nM) were flowed over the coupled surfaces (from t=0 to t= 120 s, 147
- 147 followed by buffer washout) and net RU signal (compared to mock-coupled surface) was
- 148 measured by SPR for Sb16 (A, E); Sb45 (B, F); and Sb68 (C, G). Summary of triplicate mean \pm
- 149 SD determinations is shown in Tables (D, H). Global analysis (curve fits in red, residuals below
- the curves) was accomplished using EVILFIT (*37, 38*), and the major components of binding are
- 151 shown.
- 152

Figure S3.

- **Fig. S3.** SEC profiles reveal direct interaction of sybodies with RBD. (A) Sybodies (50 μg) and
- 155 RBD (50 μg) were injected onto a Shodex-KW-802.5 column (0.75 ml/min) in 100 μl
- 156 individually and elution times are shown. Sb16 and RBD (B), Sb45 and RBD (C), or Sb68 and
- 157 RBD (D) were mixed in equal concentrations (50 µg in 100 µl), incubated at 4 °C overnight and
- 158 then analyzed on the Shodex column.
- 159

B Sb45

Figure S4.

160

161 **Fig. S4.** Electron density (as blue) maps (2mFo-DFc) for CDR loops and those residues in

- 162 contact with RBD: (A) Sb16 on RBD surface, resolution=2.6 Å, R_{free} =0.277; (B) Sb45 on RBD
- 163 surface, resolution=2.3 Å, R_{free} =0.216; (C) Sb68 on RBD surface, resolution=2.6 Å, R_{free} =0.255;
- 164 (D) Sb16 alone, resolution=2.1 Å, R_{free} =0.259. Contour at 1.0 σ , CDR1 loop as pink, CDR2 loop
- as orange, CDR3 loop as red, non-CDR residues as lime, and RBD is in background as gray.

166

Figure S5.

- 169 Fig. S5. A superimposition of Sb16 alone ("unliganded", free, green) and Sb16–RBD
- 170 ("liganded", complexed, slate) reveals the large movement of CDR2 loop (about 6 Å).
- 171 Particularly, Y54 moved about 15 angstroms and dipped into a binding pocket which surrounded
- 172 by epitopic residues of Q409, E406, D405, R403, G416, K417, I418, N422, L455, Y453, Y495.
- 173 (RBD surface as gray).
- 174

Figure S6

176 **Fig. S6.** Sybodies, nanobodies, and antibodies bind different epitopic regions of the RBD. (A)

- 177 Definition of Classes according to Barnes et al. (*31*) and Epitope area according to Xiang et 178 al.(*12*). Epitope I to IV are almost the same as Class 1 to 4, except for Epitope V which spans
- 178 al.(12). Epitope 1 to 1 v are annost the same as class 1 to 4, except for Epitope v which spans 179 Class 3 and Class 4 (not shown). Color codes are for representative Fab (only shown are the
- 180 variable domains) or sybody/nanobody. Sb68 falls into Class-4/Epitope-IV overlapping with
- $V_{\rm HH}$ 72 and HH-E, and CR3022. RBD is in gray and two N-glycans (N165 and N343 in red) are
- shown. (B) Sb16 clashes with L-chain of B38 (7BZ5) of Class-1 and H-chain of COVA2-39
- 183 (7JMP) H-chain Class-2. It falls between Class-1/Epitope-I and Class-2/Epitope-II but almost

- 184 covers SR4. (C) Sb45 overlaps with H-chain of COVA2-39 (7JMP) of Class-2 and lies in the
- 185 same orientation as Nb20 (7JVB) Epitope-II.

Figure S7

187

188	Fig. S7. Co	omparison of	he ternary sybod	y structure (Sb45-	-RBD-Sb68,	, 7KLW) with the	he ternary
-----	--------------------	--------------	------------------	--------------------	------------	------------------	------------

189 nanobody structure (V_{HH}-E–RBD–V_{HH}-U, 7KN5), Koenig et al. (32). Sb45 in cyan, Sb68 in

190 purpleblue, RBD in gray, V_{HH} -E in green, V_{HH} -U in blue. CDR1, CDR2, and CDR3 of Sb45,

191 CDR3 of Sb68 are highlighted in pink, orange, and red. Three views are each rotated by 90°.

- 192 CDR3 and CDR2 loops of Sb45 ride along both sides of the RBD, while V_{HH} -E uses only an
- 193 extended CDR3 loop on the side. Sb68 is slightly lower than V_{HH}-U while V_{HH}-E is similar to

194 V_{HH}72.

196

Fig. S8. Sybodies, RBD, and spike protein reveal unique thermal stability. T_m of each of the indicated purified proteins was determined by thermal melt analysis as described in Materials

and Methods. Note the biphasic behavior of the trimeric S protein.

	Sb16-RBD	Sb45-RBD	Sb45-RBD-Sb68	Sb16
PDBID	7KGK	7KGJ	7KLW	7KGL
Data collection				
Space group	P6 ₅ 22	P3 ₂ 21	C222 ₁	P6 ₃ 22
Cell dimensions				
a, b, c (Å)*	65.64, 65.64, 344.69	62.55, 62.55, 168.82	74.50, 102.40, 138.97	69.32, 69.32, 105.57
α, β, γ(°)	90.0, 90.0, 120.0	90.0, 90.0, 120.0	90.0, 90.0, 90.0	90.0, 90.0, 120.0
Resolution (Å)	57.34-2.60 (2.69-2.60)	45.59-2.30 (2.38-2.30)	44.12-2.60 (2.69-2.60)	60.0-2.10 (2.18-2.10)
R _{sym} or R _{merge}	0.080 (0.455)	0.101 (0.849)	0.095 (0.739)	0.055 (0.714)
I/σ(I)	18.0 (3.3)	14.9 (3.4)	13.1 (2.1)	17.8 (2.7)
Completeness (%)	98.8 (99.1)	99.3 (98.3)	98.8 (98.7)	98.9 (98.4)
Redundancy	10.3 (10.9)	7.9 (8.2)	7.2 (7.4)	6.1 (6.5)
R _{pim}	0.024 (0.134)	0.038 (0.293)	0.038 (0.287)	0.025 (0.311)
CC _{1/2}	0.999 (0.987)	0.997 (0.919)	0.998 (0.895)	0.999 (0.891)
Estimated twin fraction	0.0 (none)	0.06 (-h, -k, l)	0.0 (none)	0.0 (none)
Refinement				
Resolution (Å)	56.09-2.60 (2.69-2.60)	45.59-2.30 (2.38-2.30)	36.72-2.60 (2.69-2.60)	32.9-2.10 (2.18-2.10)
No. reflections	13219 (1185)	17592 (1687)	16508 (1627)	9278 (823)
$R_{ m work}/R_{ m free}$ (%)	25.8/27.7 (36.3/44.2)	18.6/21.6 (24.1/29.8)	20.6/25.5 (29.3/34.5)	22.4/25.9 (31.9/31.4)
No. atoms	2486	2641	3552	980
Protein	2486	2500	3456	913
Water + ligands	0	141	96	67
B-factor Wilson/Average	39.3/59.8	26.9/32.9	33.9/31.5	23.2/36.9
Protein	59.8	32.8	31.5	37.0
Water + ligands	0	34.7	29.5	35.0
R.m.s. deviations				
bond length (Å)	0.002	0.005	0.003	0.003
bond angle (°)	0.54	0.74	0.64	0.57
Ramachandran				

favored (%)	92.9	97.4	96.3	93.0	
allowed (%)	7.1	2.6	3.7	6.1	
outliers (%)	0.0	0.0	0.0	0.9	

201 Table S1. X-ray data collection and refinement statistics

202 *Values in parenthesis are for highest resolution shell.

RBD	Sb16	DIST	Sb16	DIST	CDR
R403	Y54	3.00			CDR2
E406	Y54	2.70			CDR2
K417	Y54	3.30			CDR2
V445	E44	3.00			
G446	Y37	3.30			CDR1
G447	Y37	3.20			CDR1
Y449	198	3.60	Q104	3.70	CDR3
L452	W100	3.29			CDR3
Y453	S53	2.95	Y54	3.50	CDR2
L455	Y31	3.49	S53	3.44	CDR1
F456	Y31	3.37			CDR1
E484	K32	2.39	F27	3.30	CDR1
G485	P28	3.38			CDR1
Y489	Y31	3.41	A30	3.34	CDR1
F490	W100	3.38			CDR3
L492	W100	3.85			CDR3
Q493	K32	3.51	T33	3.70	CDR1
S494	T33	3.73			CDR1
Y495	W35	3.13	Y54	4.30	CDR2
G496	W35	3.71			CDR1
Q498	Y37	2.91	W47	3.48	
N501	R60	2.38			
G502	R60	3.60			
Y505	A57	3.50	E52	3.80	

ACE2+RBD (6M0J)

2015						
203	RBI	D ACE	2 DI	ST /	ACE2	DIST
206	К41	7 D3() 2.	90		
200	Y44	9 04	2 2.	79 I	038	2.70
	Y45	3 H34	4 2.	86		2.70
207	L45	5 H34	4 3.	62		
	F45	6 T27	7 3.	49		
208	A47	5 02	4 3.	65 7	F27	3.97
200	G47	76 02	4 4.	43	/	0.07
200	F48	6 Y83	3 3.	.s 52 I	M82	3.64
209	N48	37 Y83	3 2.	79 (724	2.69
	Y48	9 F28	, <u>-</u> . , ,	55	/83	3 55
210	049	93 K31) <u> </u>	93 1	- 35	3 1 3
	G40	96 K31	- <u>-</u> . I 3	08		5.15
211	049	18 O4	2 2	93 V	/41	3 59
211	T50	0 R31	22. 573	55 51 I	1330	3.64
	N50	0 K3. 01 K3.	57 5. 32 3	61	1550	5.04
212	650	10 K3		78		
	V50	5 F3	7 2. 7 2	76 76 I	(252	3 61
212	150	5 257	· J.	40 1	(333	5.01
215		~ ~ ~		- /-		
		Sb45	+KR	D (7	KGJ)	
A14						
214	DBD	Sh/E	דזוח	Sh/E	דאות	CDP
214	RBD	Sb45	DIST	Sb45	DIST	CDR
214 215	<u>RBD</u> Y351	Sb45	DIST 3.80	Sb45	DIST	CDR2
214 215	RBD Y351 R403 G446	Sb45 A54 H103 E27	DIST 3.80 3.00 3.70	Sb45 G102	DIST 3.30 3.90	CDR2 CDR2 CDR3 CDR1
214 215 216	RBD Y351 R403 G446 G447	Sb45 A54 H103 F27 P28	DIST 3.80 3.00 3.70 3.50	Sb45 G102 G26	DIST 3.30 3.90	CDR2 CDR2 CDR3 CDR1 CDR1
214 215 216	RBD Y351 R403 G446 G447 Y449	Sb45 A54 H103 F27 P28 D100	DIST 3.80 3.00 3.70 3.50 3.80	Sb45 G102 G26 R31	DIST 3.30 3.90 3.20	CDR2 CDR2 CDR3 CDR1 CDR1 CDR3
214 215 216	RBD Y351 R403 G446 G447 Y449 N450	Sb45 A54 H103 F27 P28 D100 Y30	DIST 3.80 3.00 3.70 3.50 3.80 3.50	Sb45 G102 G26 R31	DIST 3.30 3.90 3.20	CDR2 CDR3 CDR3 CDR1 CDR1 CDR3 CDR3
214 215 216 217	RBD Y351 R403 G446 G447 Y449 N450 L452	Sb45 A54 H103 F27 P28 D100 Y30 S53	DIST 3.80 3.00 3.70 3.50 3.80 3.50 3.50 3.90	Sb45 G102 G26 R31	DIST 3.30 3.90 3.20	CDR2 CDR2 CDR3 CDR1 CDR1 CDR3 CDR1 CDR2
214 215 216 217	RBD Y351 R403 G446 G447 Y449 N450 L452 Y453	Sb45 A54 H103 F27 P28 D100 Y30 S53 V101	DIST 3.80 3.00 3.70 3.50 3.80 3.50 3.90 3.40	Sb45 G102 G26 R31	DIST 3.30 3.90 3.20	CDR2 CDR3 CDR1 CDR1 CDR1 CDR3 CDR1 CDR2 CDR3
214 215 216 217 218	RBD Y351 R403 G446 G447 Y449 N450 L452 Y453 T470	Sb45 A54 H103 F27 P28 D100 Y30 S53 V101 G55	DIST 3.80 3.00 3.70 3.50 3.80 3.50 3.90 3.40 3.40	Sb45 G102 G26 R31 R59	DIST 3.30 3.90 3.20 2.95	CDR CDR2 CDR3 CDR1 CDR1 CDR3 CDR1 CDR2 CDR3 CDR2
214 215 216 217 218	RBD Y351 R403 G446 G447 Y449 N450 L452 Y453 T470 I472 C 192	Sb45 A54 H103 F27 P28 D100 Y30 S53 V101 G55 R59 P50	DIST 3.80 3.00 3.70 3.50 3.80 3.50 3.90 3.40 3.80 3.90	Sb45 G102 G26 R31 R59	DIST 3.30 3.90 3.20 2.95	CDR CDR2 CDR3 CDR1 CDR1 CDR3 CDR1 CDR2 CDR3 CDR2
214 215 216 217 218	RBD Y351 R403 G446 G447 Y449 N450 L452 Y453 T470 I472 G482 Y483	Sb45 A54 H103 F27 P28 D100 Y30 S53 V101 G55 R59 R59 R59 Y60	DIST 3.80 3.00 3.70 3.50 3.80 3.50 3.90 3.40 3.80 3.90 3.30 3.60	Sb45 G102 G26 R31 R59	DIST 3.30 3.90 3.20 2.95 4.10	CDR CDR2 CDR3 CDR1 CDR1 CDR3 CDR1 CDR2 CDR3 CDR2
214 215 216 217 218 219	RBD Y351 R403 G446 G447 Y449 N450 L452 Y453 T470 I472 G482 V483 F484	Sb45 A54 H103 F27 P28 D100 Y30 S53 V101 G55 R59 R59 Y60 R33	DIST 3.80 3.00 3.70 3.50 3.80 3.50 3.90 3.40 3.80 3.90 3.30 3.60 2.50	Sb45 G102 G26 R31 R59 D62 Y52	DIST 3.30 3.90 3.20 2.95 4.10 2.60	CDR CDR2 CDR3 CDR1 CDR1 CDR3 CDR1 CDR2 CDR3 CDR2
214 215 216 217 218 219	RBD Y351 R403 G446 G447 Y449 N450 L452 Y453 T470 I472 G482 V483 E484 Y489	Sb45 A54 H103 F27 P28 D100 Y30 S53 V101 G55 R59 R59 R59 Y60 R33 K99	DIST 3.80 3.70 3.50 3.50 3.90 3.40 3.90 3.40 3.90 3.30 3.60 2.50 4.20	Sb45 G102 G26 R31 R59 D62 Y52	DIST 3.30 3.90 3.20 2.95 4.10 2.60	CDR CDR2 CDR3 CDR1 CDR3 CDR1 CDR3 CDR1 CDR2 CDR3 CDR2 CDR1 CDR3
214 215 216 217 218 219 220	RBD Y351 R403 G446 G447 Y449 N450 L452 Y453 T470 I472 G482 V483 E484 Y489 F490	Sb45 A54 H103 F27 P28 D100 Y30 S53 V101 G55 R59 R59 R59 Y60 R33 K99 A54	DIST 3.80 3.00 3.70 3.50 3.80 3.90 3.40 3.80 3.90 3.30 3.60 2.50 4.20 3.70	Sb45 G102 G26 R31 R59 D62 Y52	3.30 3.90 3.20 2.95 4.10 2.60	CDR CDR2 CDR3 CDR1 CDR1 CDR3 CDR1 CDR2 CDR3 CDR2 CDR1 CDR3 CDR2
214 215 216 217 218 219 220	RBD Y351 R403 G446 G447 Y449 N450 L452 Y453 T470 I472 G482 V483 E484 Y489 F490 L492	Sb45 A54 H103 F27 P28 D100 Y30 S53 V101 G55 R59 R59 Y60 R33 K99 A54 A54	DIST 3.80 3.00 3.70 3.50 3.50 3.90 3.40 3.90 3.40 3.90 3.30 3.60 2.50 4.20 3.70 3.70	Sb45 G102 G26 R31 R59 D62 Y52	3.30 3.90 3.20 2.95 4.10 2.60	CDR CDR2 CDR3 CDR1 CDR1 CDR3 CDR1 CDR2 CDR3 CDR2 CDR1 CDR3 CDR2 CDR1 CDR3 CDR2 CDR2
214 215 216 217 218 219 220	RBD Y351 R403 G446 G447 Y449 N450 L452 Y453 T470 I472 G482 V483 E484 Y489 F490 L492 Q493	Sb45 A54 H103 F27 P28 D100 Y30 S53 V101 G55 R59 R59 R59 Y60 R33 K99 A54 A54 K99	DIST 3.80 3.00 3.70 3.50 3.50 3.90 3.40 3.90 3.40 3.90 3.30 3.60 2.50 4.20 3.70 3.70 3.70 3.10	Sb45 G102 G26 R31 R59 D62 Y52 D32	3.30 3.90 3.20 2.95 4.10 2.60 3.41	CDR CDR2 CDR3 CDR1 CDR1 CDR3 CDR1 CDR2 CDR3 CDR2 CDR1 CDR3 CDR2 CDR2 CDR2 CDR2 CDR3
214 215 216 217 218 219 220 221	RBD Y351 R403 G446 G447 Y449 N450 L452 Y453 T470 I472 G482 V483 E484 Y489 F490 L492 Q493 S494	Sb45 A54 H103 F27 P28 D100 Y30 S53 V101 G55 R59 Y60 R33 K99 A54 A54 K99 D32	DIST 3.80 3.00 3.70 3.50 3.80 3.90 3.40 3.80 3.90 3.30 3.60 2.50 4.20 3.70 3.70 3.70 3.10 2.80	Sb45 G102 G26 R31 R59 D62 Y52 D32	3.30 3.90 3.20 2.95 4.10 2.60 3.41	CDR CDR2 CDR3 CDR1 CDR1 CDR3 CDR1 CDR2 CDR3 CDR2 CDR1 CDR2 CDR2 CDR2 CDR3 CDR2 CDR3 CDR1
214 215 216 217 218 219 220 221	RBD Y351 R403 G446 G447 Y449 N450 L452 Y453 T470 I472 G482 V483 E484 Y489 F490 L492 Q493 S494 Y495	Sb45 A54 H103 F27 P28 D100 Y30 S53 V101 G55 R59 Y60 R33 K99 A54 A54 K99 D32 V101	DIST 3.80 3.00 3.70 3.50 3.90 3.40 3.90 3.40 3.90 3.30 3.60 2.50 4.20 3.70 3.70 3.70 3.70 3.70 3.70 3.20 3.70 3.70 3.70 3.20	Sb45 G102 G26 R31 R59 D62 Y52 D32	3.30 3.90 3.20 2.95 4.10 2.60 3.41	CDR CDR2 CDR3 CDR1 CDR1 CDR3 CDR1 CDR3 CDR2 CDR3 CDR2 CDR3 CDR2 CDR3 CDR2 CDR3 CDR2 CDR3 CDR2 CDR3 CDR2 CDR3 CDR3 CDR3 CDR3 CDR3 CDR3 CDR3 CDR3
214 215 216 217 218 219 220 221 222	RBD Y351 R403 G446 G447 Y449 N450 L452 Y453 T470 I472 G482 V483 E484 Y489 F490 L492 Q493 S494 Y495 Q498 N501	Sb45 A54 H103 F27 P28 D100 Y30 S53 V101 G55 R59 R59 Y60 R33 K99 A54 A54 K99 D32 V101 G26 H102	DIST 3.80 3.00 3.70 3.50 3.50 3.90 3.40 3.90 3.40 3.90 3.40 3.90 3.40 3.90 3.70 3.60 2.50 4.20 3.70 3.70 3.70 3.70 3.80 3.80 3.80 3.80 3.80	Sb45 G102 G26 R31 R59 D62 Y52 D32	3.30 3.90 3.20 2.95 4.10 2.60	CDR CDR2 CDR3 CDR1 CDR1 CDR3 CDR1 CDR3 CDR2 CDR3 CDR2 CDR3 CDR2 CDR3 CDR2 CDR3 CDR2 CDR3 CDR1 CDR3 CDR3 CDR1 CDR3 CDR3 CDR3 CDR3 CDR3 CDR3 CDR3 CDR3
214 215 216 217 218 219 220 221 222	RBD Y351 R403 G446 G447 Y449 N450 L452 Y453 T470 I472 G482 V483 E484 Y489 F490 L492 Q493 S494 Y495 Q498 N501 G502	Sb45 A54 H103 F27 P28 D100 Y30 S53 V101 G55 R59 Y60 R33 K99 A54 A54 K99 D32 V101 G26 H103 H103	DIST 3.80 3.00 3.70 3.50 3.80 3.90 3.40 3.90 3.40 3.90 3.40 3.90 3.40 3.90 3.20 3.20 3.20 3.20 3.20	Sb45 G102 G26 R31 R59 D62 Y52 D32	3.30 3.90 3.20 2.95 4.10 2.60 3.41	CDR CDR2 CDR3 CDR1 CDR1 CDR3 CDR1 CDR3 CDR2 CDR3 CDR2 CDR3 CDR2 CDR3 CDR2 CDR3 CDR2 CDR3 CDR1 CDR3 CDR1 CDR3 CDR1 CDR3 CDR1 CDR3 CDR2 CDR3 CDR2 CDR3 CDR2 CDR3 CDR1 CDR3 CDR3 CDR1 CDR3 CDR3 CDR1 CDR3 CDR3 CDR3 CDR3 CDR3 CDR3 CDR3 CDR3
 214 215 216 217 218 219 220 221 222 221 	RBD Y351 R403 G446 G447 Y449 N450 L452 Y453 T470 I472 G482 V483 E484 Y489 F490 L492 Q493 S494 Y495 Q498 N501 G502 Y505	Sb45 A54 H103 F27 P28 D100 Y30 S53 V101 G55 R59 Y60 R33 K99 A54 A54 K99 D32 V101 G26 H103 H103 V101	DIST 3.80 3.00 3.70 3.50 3.50 3.90 3.40 3.90 3.40 3.90 3.40 3.90 3.40 3.90 3.40 3.90 3.70 3.70 3.70 3.10 2.80 3.30 3.50 3.30 2.86	Sb45 G102 G26 R31 R59 D62 Y52 D32 H103	3.30 3.90 3.20 2.95 4.10 2.60 3.41 3.80	CDR CDR2 CDR3 CDR1 CDR3 CDR1 CDR3 CDR2 CDR3 CDR2 CDR3 CDR2 CDR3 CDR2 CDR3 CDR2 CDR3 CDR1 CDR3 CDR1 CDR3 CDR1 CDR3 CDR1

Sh68+RBD (7KIW)

				,	
RBD	Sb68	DIST	Sb68	DIST	CDR
Y369	T32	3.30	Y103	3.50	CDR1
N370	N55	3.30	V54	3.90	CDR2
S371	N55	4.40			CDR2
A372	H57	3.20			CDR2
F374	Y103	2.90	Y59	3.40	CDR3
S375	A104	3.40	W105	2.80	CDR3
T376	A104	3.40	Y103		CDR3
F377	G102	3.40	Y103	2.90	CDR3
K378	D111	3.30	W101	3.40	CDR3
C379	W101	2.80			CDR3
V382	S29	4.30			CDR1
S383	A100	4.40			CDR3
P384	G101	3.60	A100	3.60	CDR3
T385	T32	3.70			CDR1
R408	H108	3.20	D111	2.60	CDR3

204

224 Table S2A. Interactions between RBD Residues and either ACE2 or sybody residues. In each 225 rectangle (first column) is listed the identification of an RBD amino acid in contact with one or 226 two residues of the indicted chain. Distance between residues is given in Å. For the sybodies, the

particular CDR designation is also indicated. 227

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.27.428466; this version posted January 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license.										
	370 	380 	390 	400 	410 4 	20				
RBD	YNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDF									
ACE2					*					
Sb16				* *	*					
Sb45										
Sb68	**** *****	* * * *		*						
	445 450	460	470	480	490	500				
RBD	VGGNYNYLYRI	FRKSNLKPFE	RDISTEIYQ	AGSTPCNGVE	GFNCYFPLQSYG	FQPTNGVGY				
ACE2	* * *	* * *		*	** * *	* * * * *				
Sb16	*** * ** *	ŧ		*	* ** ****	* ** *				
Sb45	** ** **		* *	***	** ****	* ** *				

229 Table S2B. Tabulation of residues of RBD that contact each of the indicated chains, based on

230 6M0J for ACE2–RBD, 7KGK for Sb16–RBD, 7KGJ for Sb45–RBD, and 7KLW for the Sb68–

RBD interface. Note that ACE2 contacts broadly overlap those for Sb16 and Sb45, but that Sb68

contacts are distinct.

233

234

235

236

Complex (A + B)	$BSA(\text{\AA}^2)$	ANres	_B N _{res}	N _{HB}	N _{SB}	PDB	Res. Å
ACE2+RBD	844	26	26	13	2	6M0J	2.45
Sb16+RBD	1003	26	29	8	1	7KGK	2.60
Sb45+RBD	976	27	33	15	4	7KGJ	2.10
*(Sb45)+RBD	1010	26	35	14	4	7KLW_B	2.60
*(Sb68)+RBD	640	21	17	9	4	7KLW_C	2.60
*(Sb45+Sb68)+RBD	1650	47	52	23	8	7KLW	2.60
*(VHH-E)+RBD	821	29	27	13	1	7KN5_C	1.87
*(VHH-U)+RBD	625	16	20	17	0	7KN5_E	1.87
*(VHH-E+VHH-U)+RBD	1446	45	47	30	1	7KN5	1.87
H11D4+RBD	599	20	20	11	4	6YZ5	1.80
H11H4+RBD	637	17	19	5	4	6ZBP	1.85
(CR3022)+RBD	991	19	20	7	4	6XC7_HL	2.88
VHH72+RBD	796	21	25	9	2	6WAQ_A	2.20
Nb20+RBD	705	22	21	9	4	7JVB	3.29
Nb6+Spike	788	24	21	9	1	7KKK_D	3.03
Sb23+Spike	772	21	22	5	0	7A25_D	3.06
Sb23+Spike	585	18	21	5	0	7A29_D	2.94
Ty1+Spike	795	23	26	3	0	6ZXN_D	2.93
C144+Spike	689	22	24	7	0	7K90_H	3.24
C002+Spike	728	22	23	7	1	7K8S_H	3.40
*(REGN10933)+RBD	935	28	30	9	1	6XDG_BD	3.90
*(REGN10987)+RBD	607	21	19	5	0	6XDG_AC	3.90
*(REGN10933)+RBD *(REGN10987)+RBD	935 607	28 21	30 19	9 5	1 0	6XDG_BD 6XDG_AC	3.90 3.90

*(REGN10933+	1542	49	49	5	0	6XDG	3.90
REGN10987)+RBD							

238

Table S3. Variety of Buried Surface Area (BSA) at interfaces of Sybodies, Nanobodies, and Fabs with RBD or Spike. BSA of each of indicated interface was calculated from the relevant chains using PISA (https://www.ebi.ac.uk/pdbe/pisa/), to account for the non-overlapping surface area. BSA in Å². N_{res} indicates the number of residues in contact; N_{HB}, the number of potential hydrogen bonds; N_{SB}, the number of potential salt bridges.

244