Supporting Information

Reference glycan structure libraries of primary human cardiomyocytes and pluripotent stem cell-derived cardiomyocytes reveal cell-type and culture stagespecific glycan phenotypes

Christopher Ashwood^{1,3}, Matthew Waas^{1,3}, Ranjuna Weerasekera¹, Rebekah L. Gundry^{1,2,3}

¹Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA

²Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee,

WI 53226, USA

³Current Address: CardiOmics Program, Center for Heart and Vascular Research; Division of Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA

Content	Page
Supplemental Methods	S2
Figure S-0 Effect of make-up flow on glycan structure limit of detection	S5
Figure S-1 Examples of purity assessment for enriched primary CM and hiPSC-CM.	S6
Figure S-2 Cardiomyocyte enrichment artifact evaluation.	S7
Figure S-3 Identified O-glycan structures in primary CM and whole heart	S8
Figure S-4 Targeted data analysis evaluating the presence of a culture component non-human <i>N</i> -glycan structure (di-gal motif) in hiPSC-CM samples	S8
Figure S-5 Identified O-glycan structures in hiPSC-CM and relative signal of quantitative glycan structures over the differentiation period	S9
Figure S-6 Scatter plot of relative signal for <i>N</i> -glycans from hiPSC-CM significantly positively correlated (>0.7) to days of differentiation	S9
Figure S-7 Scatter plot of relative signal for N -glycans from hiPSC-CM significantly negatively correlated (<-0.7) to days of differentiation	S10
Figure S-8 Majority of glycan structural motifs do not majorly change for hiPSC-CM across days of differentiation.	S11
Figure S-9 Map of the enzymes and metabolites responsible for identified and quantified glycan structures of homogenized heart tissue, primary CM and hiPSC-CM	S12
Figure S-10 Example of annotated MS2 spectra for several glycan structures in Figures 4 and 5	S14

Table of Contents

Supplemental Methods

Table S1. Donor information				
Anonymized Donor Identification Number	Sex	Age	Cause of Death	
10960	F	75	Stroke	
11225	М	58	Gunshot wound to head	
11414	М	57	Intracranial hemorrhage	

Table S2. Chromatography and MS Instrument Acquisition Settings

	<i>N</i> -glycan analysis	O-glycan analysis	
Sample Amount for glycan release	64 µg of	protein	
Sample Volume Prepared, Injected	59 µL dried glycans dissolved in solven	t A + 1 μL Dextran Ladder ISTD, 20 μL	
Injection Mode	Full Loop D	Direct Inject	
Sample Loop	20	μL	
Stationary Phase	Thermo Scientific Hypercarb PG	C 250 Å, 180 µm x 10 cm, 3 µm	
LC Solvent A	100%	H ₂ O	
	10 mM Ammoni	um Bicarbonate	
LC Solvent B	90% N	leCN,	
	10 mM Ammoni	um Bicarbonate	
LC Gradient	0-25% B	in 70 min	
	100% B f	or 10 min	
	0% B foi	r 10 min	
LC Flow Rate	2 μL	/min	
Column Temperature			
Make-up Solvent	100% MeOH		
Make-up Flow Rate	2 uL/min for 15 min		
Mass Sportromotor	Thermo Orbitran Velos		
Method Type	Top 0 Data Dependent MS2		
Spray Voltage			
MS ¹ Detector	Orbi	tran	
MS ¹ Scan Range	570-2000 m/z	500-2000 <i>m/z</i>	
MS ¹ Resolution	15 000 @	200 m/z	
MS ¹ AGC Target	10,000 @ 200 11/2		
MS ¹ Maximum IT	100 ms		
MS ² Detector	IonTrap		
MS ² Scan Range	Auto Normal		
MS ² Resolution	Normal (0.5 m/z FWHM)		
Isolation Window	2 <i>m/z</i>		
MS ² AGC Target	1e5		
MS ² Maximum IT	150 ms		
Activation Type / Collision Energy	CID 33%, Wideband Activation		
Minimum Signal Req.	50		
Dynamic Exclusion	30 s,10 Repeats, 5 s	S Exclusion Duration	

Table S3. Flow c	vtometrv sam	ple preparation	and data acc	uisition details.
1 4 9 9 9 9 1 1 9 1 9	,	pie piepaianen	and data ave	anone actanoi

Sample Information				
Cell type(s)	hiPSC-CM			
Cell line(s)	DF6-9-9T			
Passage #				
Dissociation Conditions:	1 mL of 0.5U/mL Liberase-TH (Sigma #5401135001), 50U/mL DNase I (Sigma #10104159001) in RPMI (Thermofisher #11875-093) for 30 min at 37 °C, followed by addition of 1 mL of TrypLE (TrypLE Thermofisher #12605-010) for 5 min at 37 °C			
Total Cell Counts	6.5 – 13 x 10 ⁶			
# of Cells per Tube	1 x 10 ⁶			
Protocol Steps	Time	Reagents	Recipe, Catalog #s	

1. Fixation	20 min	Wash Solution	DPBS-/- (Sigma #D8537)
2. Wash	two x 3 mL	Fixation Solution	2% Formaldehyde (w/v) (ThermoFisher
			#20900) III IN DED3-/-
3. Permeabilization	Performed as	Block Solution	0.5% w/v BSA (Sigma #A7906) in DPBS-/-
4. Wash	one 15 min incubation	Permeabilization	0.5% Saponin (w/v) (Sigma #47036) in Block Solution
5. Block		Resuspension Solution	0.5% w/v BSA in DPBS-/-
6. 1°Antibody	45 min		
7. Wash	two x 3 mL		
8. Resuspension	500 µL		

Antibodies

Target	Clone	Vendor	Catalog #	Lot #
Troponin T2	1C11	Abcam	ab105439	various
Isotype control	-	eBiosciences	11-4714	various

Instrument Configu	ration
Instrument	BD LSR II
Laser line	488nm (50mw)
Emission filter	525/50
Fluorochrome	FITC

Table S4. Glycopeptides identified from Mills et al. which feature glycan compositions that were positively correlated to time of hiPSC-CM differentiation in our study.

Protein	Peptide	Starting AA	Glycan Composition	Sample
CERU_HUMAN	K.EN[+1914.697]LTAPGSDSAVFFEQGT TR.I	396	HexNAc(4)Hex(5) Fuc(2)	Heart tissue
HPT_HUMAN	K.VVLHPN[+1914.697]YSQVDIGLIK.L	236	HexNAc(4)Hex(5) Fuc(2)	Heart tissue
A1AT_HUMAN	K.YLGN[+1914.697]ATAIFFLPDEGK.L	268	HexNAc(4)Hex(5) Fuc(2)	Heart tissue
FETUA_HUMAN	K.AALAAFNAQNN[+1914.697]GSNFQL EEISR.A	166	HexNAc(4)Hex(5) Fuc(2)	Heart tissue
HRG_HUMAN	R.VIDFN[+1914.697]C[+57.021]TTSSVS SALANTK.D	121	HexNAc(4)Hex(5) Fuc(2)	Heart tissue
PGS2_HUMAN	K.LGLSFNSISAVDN[+2100.761]GSLANT PHLR.E	250	HexNAc(5)Hex(4) Fuc(1)NeuAc(1)	3D Organoid
CO6A2_HUMAN	R.GTFTDC[+57.021]ALAN[+1914.697] MTEQIR.Q	131	HexNAc(4)Hex(5) Fuc(2)	Heart tissue
CSPG2_HUMAN	R.FEN[+1914.697]QTGFPPPDSR.F	328	HexNAc(4)Hex(5) Fuc(2)	3D Organoid
LAMA2_HUMAN	R.YMQN[+1914.697]LTVEQPIEVK.K	2645	HexNAc(4)Hex(5) Fuc(2)	3D Organoid
LAMA2_HUMAN	K.N[+1914.697]ESGIILLGSGGTPAPPR.R	2558	HexNAc(4)Hex(5) Fuc(2)	3D Organoid
BCAM_HUMAN	R.TQN[+1914.697]FTLLVQGSPELK.T	437	HexNAc(4)Hex(5) Fuc(2)	Heart tissue
PGBM_HUMAN	R.SLTQGSLIVGDLAPVN[+1914.697]GTS QGK.F	3765	HexNAc(4)Hex(5) Fuc(2)	3D Organoid
PGBM_HUMAN	R.NQELEDNVHISPN[+1752.645]GSIITIV GTRPSNHGTYR.C	3060	HexNAc(4)Hex(5) Fuc(2)	3D Organoid
COEA1_HUMAN	R.SFMVN[+1914.697]WTHAPGNVEK.Y	368	HexNAc(4)Hex(5) Fuc(2)	Heart tissue

Figure S0. Effect of make-up flow on glycan structure limit of detection

Figure S1. Examples of quality assessment for enriched primary CM and hiPSC-CM. **A** Brightfield image of cardiomyocyte-enriched samples from human heart tissue. **B** Representative example of percent troponin positivity in hiPSC-CM as determined by flow cytometry (isotope control is represented in blue, antibody for troponin is represented in red)

Figure S2. Evaluation of the possibility of artifacts owing to residual enzymatic activity during CM enrichment. **A** Experimental design to compare fixed and unfixed heart tissue homogenate and enriched CM. **B** Quantitative analysis of enriched CM glycans compared to cardiac tissue homogenate. For each sample type, no major differences are observed between unfixed and fixed samples.

Figure S3. Identified O-glycan structures in primary CM and whole heart tissue

Figure S4. Targeted data analysis evaluating the presence of a culture component non-human *N*-glycan structure (di-gal motif) in hiPSC-CM samples

Figure S5. Identified O-glycan structures in hiPSC-CM and relative signal of quantitative glycan structures over the differentiation period

Figure S6. Scatter plot of relative signal for *N*-glycans from hiPSC-CM significantly positively correlated (>0.7) to days of differentiation

Figure S7. Scatter plot of relative signal for *N*-glycans from hiPSC-CM significantly negatively correlated (<-0.7) to days of differentiation

Figure S8. A majority of glycan structural motifs do not significantly change among hiPSC-CM collected throughout 100 days of differentiation. **A** Model *N*-glycan structure with motifs mapped to structure. **B-F** Scatter plots of relative signal for *N*-glycan structural motifs shown in A.

Figure S9. Map of the enzymes and metabolites responsible for identified and quantified glycan structures of homogenized heart tissue, primary CM and hiPSC-CM

Figure S10. Example annotated MS2 spectra for several glycan structures in Figures 4 and 5.