A new genome allows the identification of genes associated with natural variation in aluminium tolerance in *Brachiaria* grasses

- Supplementary table S1: Root length, diameter and biomass in the *B. decumbens* CIAT 606 and *B. ruziziensis* BRX 44-02 (cv. Basilisk) progenitors after growing for 20 days in control and high 200 µM AICl₃ concentration hydroponic solutions.
- **Supplementary Table S2:** Statistics of the intermediate steps, alternative assemblies, final assembly and pseudo-molecules for the *B. ruziziensis* CIAT 26162 genome.
- **Supplementary Table S3:** Classification of the repeat content in the Brachiaria genome.
- **Supplementary Table S4:** Alignment of the transcripts and proteins from five sequenced species in the Panicoideae subfamily in the *Brachiaria ruziziensis* genome.
- **Supplementary Table S5:** EggNOG clusters in six sequenced species in the Panicoideae subfamily classified by number of proteins per cluster.
- **Supplementary Table S6:** Peak and interval positions for the identified QTLs, as well as corresponding *S. italica* chromosome.
- Supplementary Table S7: Enrichment analysis of the GO SLIM terms overrepresented among DE genes in B. ruziziensis BRX 44-02 (Bruz), B. decumbens CIAT 606 (cv. Basilisk) (Bdec), or PRJNA314352 from Salgado *et al.* (2017).
- **Supplementary Figure S1:** 31mer frequency analysis comparing the short-reads assemblies produced with *Platanus assembler* or ABySS and SOAP2.
- **Supplementary Figure S2:** Divergence (Kimura) rates between the flanking tails in each *Gypsy* and *Copia* LTR duplication events in the *Brachiaria* genome.
- Supplementary Figure S3: Species of the top Blastp hit for each 35,982 of the coding transcripts which had a homologous protein in the NCBI non-redundant (nr) database.
- Supplementary Figure S4: Shared eggnog clusters of proteins among *Brachiaria ruziziensis* (Bruz), foxtail millet, *S. viridis*, maize, *Panicum halli* and switchgrass.
- Supplementary Figure S5: Kimura rates between homologous gene pairs between *B. ruziziensis* and sequenced relatives including foxtail millet, *S. viridis*, maize, and *P. halli*.

- **Supplementary Figure S6:** Phylogenetic tree based on nucleotide divergence rate between sequences in the same eggnog cluster from *B. ruziziensis* and sequenced relatives.
- **Supplementary Figure S7:** The final genetic map for the B. decumbens CIAT 606 (cv. Basilisk) progenitor of the interspecific population included 4,427 markers placed at LOD 10 in 18 linkage groups.
- Supplementary Figure S8: RNA-seq from stem and root tissue samples extracted from the *B. decumbens* and *B. ruziziensis* progenitors. We also incorporated a reanalysis of public RNA-seq data (PRJNA314352) from *B. decumbens* var. Basilisks roots.
- **Supplementary Figure S9:** Enrichment analysis of the "Molecular function" GO terms overrepresented among differentially expressed upregulated (red) or downregulated (blue) genes in roots in *B. decumbens* CIAT 606 and *B. ruziziensis* BRX 44-02.
- Supplementary Figure S10: Enrichment analysis of the "Biological Process" GO terms overrepresented among differentially expressed upregulated (red) or downregulated (blue) genes in roots in *B. decumbens* CIAT 606 and *B. ruziziensis* BRX 44-02.
- **Supplementary Figure S11:** Correlation matrix plot among GO terms based on the DE genes included in each annotation.
- Supplementary Figure S12: Comparison the enriched GO Slim terms between *B. decumbens* cv. Basilisk exposed to 200 µM AlCl₃ for 72 hours and 8 hours, the latter from the reanalysis of public raw data from Salgado *et al.* 2017.

Supplementary table S1: Root length, diameter and biomass in the *B. decumbens* CIAT 606 and *B. ruziziensis* BRX 44-02 (cv. Basilisk) progenitors after growing for 20 days in control and high 200 μ M AICl₃ concentration hydroponic solutions

	Root Length (mm)			Root	Tip Diar (mm)	neter	Root biomass (milligrams)			
	Control	Stress Ratio Control Stres				Ratio	Control	Stress	Ratio	
<i>B. decumbens</i> CIAT 606	428	261	0.61	0.29	0.31	0.109	54	34	0.63	
<i>B. ruziziensis</i> BRX 44-02	177	72	0.41	0.39	0.46	0.118	30	17	0.55	
Mean population	474	212	0.45	0.32	0.38	0.118	64	39	0.61	

Supplementary Table S2: Statistics of the intermediate steps, alternative assemblies, final assembly and pseudo-molecules for the *B. ruziziensis* CIAT 26162 genome.

Step	Total length (Mbp)	% Ns	Sequences	N50 (Kbp)
WGS Platanus	712.4	17.45	196,321	17.4
ABySS+SOAP2 (Discarded)	815.4	12.74	268,486	5.5
Pacbio Gapfilling	796.8	11.39	191,540	23.3
Deposit WGS (GCA_003016355)	732.5	10.59	102,579	27.8
Unanchored reference (Sequences over 10Kb)	533.9	11.7	23,076	44.6
Anchored in 9 chrs	525.1	12.18	9	55.88*Mbp

Category	Superfamily	Coverage (bps)	Fraction genome*
Class 1	Gypsy	156,824,480	23.9
Transposable	Соріа	62,486,851	9.5
elements (TEs)	Рао	55,071	0.0
	Other LTRs	972,934	0.1
	SINEs	2,939,316	0.4
	LINEs	11,929,645	1.8
		(235,208,297)	(35.8)
Class 2 (DNA)	hAT	631,797	0.1
Transposable	hAT_Ac 2,534,322		0.4
elements (TEs)	hAT_Tag1	1,082,474	0.2
	hAT_Tip100	306,963	0.0
	Harbinger/PIF	9,477,600	1.4
	MULE	7,895,375	1.2
	Stowaway	4,436,872	0.7
	CMC_EnSpm	27,724,058	4.2
	Helitron	1,339,398	0.2
		(55,428,859)	(8.4)
Non TEs	Unclassified TE	40,000,354	6.1
	Simple Repeats	482,035	0.1
	Satellites	2,999,591	0.5
		(43,481,980)	(6.6)
Unclassified TE	Other	335,155	0.1
TOTAL		334,454,291	51.0

Supplementary Table S3: Classification of the repeat content in the Brachiaria genome.

*656Mbp after excluding ambiguous nucleotides (Ns)

Supplementary Table S4: Alignment of the transcripts and proteins from five sequenced species in the Panicoideae subfamily [foxtail millet (*Setaria italica*), green foxtail (*Setaria viridis* (L.) Beauv.), *Panicum halli* Vasey, switchgrass (*Panicum virgatum* L.), and maize (*Zea mays* L.)], in the *Brachiaria ruziziensis* genome with a minimum identify of 70 %. Transcripts (longest one per gene) were aligned with GMAP and proteins were aligned with Exonerate. Sequences were obtained from Phytozome v.12 or Ensembl (v.284) in the case of maize.

	Species	Total	PID>	•70%	PID>7 PCOV	70% & />50%
	S. italica	43,001	37,449	87.1	29,534	68.7
Transcripts	S. viridis	47,205	36,372	77.1	23,110	49
	P. halli	49,852	40,818	81.9	31,599	63.4
	P. virgatum	91,838				
	Z. mays	88,760	58,312	65.7	36,642	41.3
	S. italica	43,001	34,749	80.8	29,975	69.7
	S. viridis	47,205	33,157	70.2	27,953	59.2
Proteins	P. halli	49,852	37,516	75.3	32,753	65.7
	P. virgatum	91,838				
	Z. mays	88,760	54,091	60.9	45,951	51.8

Supplementary Table S5: EggNOG clusters in six sequenced species in the Panicoideae subfamily, *B. ruziziensis*, foxtail millet (*Setaria italica*), green foxtail (*Setaria viridis* (L.) Beauv.), *Panicum halli* Vasey, switchgrass (*Panicum virgatum* L.), and maize (*Zea mays* L.), classified by number of proteins per cluster.

	P. virg	gatum	S. ita	alica	S.vi	ridis	P. I	halli	B. ruzi	ziensis	Z. n	nays
GENES	Num	%	Num	%	Num	%	Num	%	Num	%	Num	%
1	1897	8.4	18629	84.4	18508	83.4	18413	86.2	12572	66.7	14369	70.3
2	11955	53.1	2432	11.0	2534	11.4	2176	10.2	3908	20.7	4250	20.8
3	4602	20.5	559	2.5	630	2.8	464	2.2	1164	6.2	1040	5.1
4	1808	8.0	193	0.9	235	1.1	157	0.7	472	2.5	381	1.9
>4	2237	9.9	263	1.2	285	1.3	163	0.8	733	3.9	411	2.0
total	22499		22076		22192		21373		18849		20451	

Supplementary Table S6: Peak and interval positions for the identified QTLs, as well as corresponding *S. italica* chromosome.

Trait*	LG	Peak marker	Peak Position (cM)	Position interval (cM)	Marker interval	LOD	R2	additiv e effect	Si*
RLA	1	scaf_7018 3_123	12.65	5.22 - 31.250	scaf_245_124360 - scaf_1729_44015	4.81	13.6	-22.31	8
RLC	1	scaf_2065 _28271	26.027	5.22 - 28.893	scaf_1787_41196 - scaf_3809_36896	5.78	16.1	-45.05	8
RRL	3	scaf_1152 _23964	96.802	88.62- 98.851	scaf_2718_14282 - scaf_5425_26287	4.75	13.4	3.12	7
RBA	1	scaf_1948 _47501	5.22	5.22 - 32.481	scaf_245_124360 - scaf_1218_39495	5.14	14.4	-0.003	8
RBC	1	scaf_1801 0_6509	25.797	17.162 - 28.893	scaf_7830_644 - scaf_3809_36896	5.25	14.7	-0.004	8
RRD	3	scaf_1423 8_7306	79.738	79.738 - 83.853	scaf_14238_7306 - scaf_298_25199	4.02	11.5	-2.36	7
RRD	4	scaf_1104 2_5202	50.423	49.12 - 62.127	scaf_1413_25183 - scaf_1181_29646	4.54	12.8	2.48	3

*Si: Setaria italica chromosome.

RLA: Root length in Al³⁺ stress; RLC: Root length in control; RRD: Relative root length ratio (stress/control); RB: Root biomass; RD: Root tip diameter.

Supplementary Table S7: Enrichment analysis of the GO SLIM terms over-represented among DE genes in B. ruziziensis BRX 44-02 (Bruz), B. decumbens CIAT 606 (cv. Basilisk) (Bdec), or PRJNA314352 from Salgado *et al.* (2017).

		Bdec	CIAT	606	Bruz BRX 44-02			Salgado <i>et al,</i> 2017		
GO term	MOLEC. FUNC.	Pval	RE G	GEN ES	Pval	RE G	GEN ES	Pval	RE G	GEN ES
GO:0003 723	RNA binding (3723)	0.05709	do wn	14	0.40064	do wn	40	0.988	do wn	3
GO:0003 729	mRNA binding (3729)	0.13999	do wn	2	0.00358	do wn	8	0.419	do wn	1
GO:0003 735	structural constituent of ribosome (3735)	5.5E-12	do wn	24	1E-30	do wn	112	0.93632	up	5
GO:0005 198	structural molecule activity (5198)	0.19102	up	4	0.02756	do wn	120	0.583	do wn	2
GO:0008 092	cytoskeletal protein binding (8092)	0.58493	do wn	1	0.25288	do wn	5	0.035	do wn	3
GO:0008 134	transcription factor binding (8134)	0.0312	up	3	0.85829	do wn	1	1	0	0
GO:0008 289	lipid binding (8289)	0.09253	up	5	0.21271	do wn	9	0.26684	up	5
GO:0008 565	protein transporter activity (8565)	0.08093	up	3	0.14489	do wn	5	0.446	do wn	1
GO:0016 491	oxidoreductase activity (16491)	0.00034	do wn	40	6.8E-09	do wn	143	0.00081	up	69
GO:0016 757	glycosil transferase (16757)	0.63379	up	7	0.0438	up	22	0.20773	up	14
GO:0016 765	alkyl transferase (16765)	0.46513	do wn	3	0.03894	do wn	16	0.00001 9	up	17
GO:0016 798	glycosyl hydrolase (16798)	0.00084	up	18	0.0002	do wn	39	0.00041	up	24
GO:0016 829	lyase activity (16829)	0.01422	up	10	0.16411	do wn	16	2E-12	up	30
GO:0016 853	isomerase activity (16853)	0.43965	do wn	4	0.00077	do wn	26	0.302	do wn	4
GO:0016 874	ligase activity (16874)	0.11268	up	8	0.1587	up	13	0.0492	up	12
GO:0019 843	rRNA binding (19843)	0.04791	do wn	3	0.00000 21	do wn	14	0.81806	up	1
GO:0019 899	enzyme binding (19899)	0.00567	do wn	8	0.90566	do wn	7	0.65	do wn	2
GO:0022 857	transmembrane transporter activity (22857)	0.00000 018	up	44	0.00000 031	up	70	0.00000 015	up	57
GO:0030 234	enzyme regulator activity (30234)	0.58307	do wn	3	0.00354	do wn	22	0.09403	up	10
GO:0030 674	protein binding bridging (30674)	1	0	0	0.06958	do wn	2	1	0	0
GO:0043 167	ion binding (43167)	0.23666	up	44	0.0042	up	100	0.261	do wn	26
GO:0051 082	unfolded protein binding (51082)	0.09328	do wn	2	0.32559	do wn	3	1	0	0

REG: Either up-regulated (up) or down-regulated (down)

Supplementary Table S7 -Cont.-

		Bdec	CIAT	606	Bruz	BRX 4	4-02	Salgad	2017	
GO term	BIOLOG. PROCESS.	Pval	RE	GEN	Pval	RE	GEN	Pval	RE	GEN
GO:0005	carbohydrate metabolic process	0.0000	1	21	0.0051	-1	42	0.0019	1	24
GO:0006	generation of precursor	0.4401	-1	4	0.0175	1	15	0.0000	-1	13
GO:0006	mRNA processing (6397)	0.0674	-1	5	0.6105	1	5	0.9186	1	2
GO:0006 412	translation (6412)	0.0002	-1	18	1E-30	-1	103	0.9092	1	9
GO:0006 457	protein folding (6457)	0.1752 9	-1	3	0.0158 8	-1	12	0.7229	-1	1
GO:0006 464	cellular protein modification process (6464)	0.0397 7	-1	23	0.9702	1	28	0.3059	-1	16
GO:0006 520	cellular amino acid metabolic process (6520)	0.4388	1	6	0.4677	1	11	0.0317 3	1	14
GO:0006 629	lipid metabolic process (6629)	0.0064 5	-1	14	0.0061 3	-1	41	0.0237 5	1	20
GO:0006 810	transport (6810)	0.0114	1	35	0.0305 7	-1	83	0.6354	-1	12
GO:0006 913	nucleocytoplasmic transport (6913)	0.0052	1	7	0.232	1	6	0.7814	-1	1
GO:0006 914	autophagy (6914)	1	-1	0	0.1436	1	3	0.0812	1	3
GO:0006 950	response to stress (6950)	0.591	1	14	0.4765	1	29	0.0521	-1	16
GO:0007 005	mitochondrion organization (7005)	0.0812 8	-1	3	0.0237 4	-1	9	0.5715 8	1	2
GO:0007 010	cytoskeleton organization (7010)	0.7643 3	-1	1	0.1370 5	-1	9	0.0371	-1	4
GO:0007 155	cell adhesion (7155)	1	-1	0	0.0699	1	1	1	-1	0
GO:0007 165	signal transduction (7165)	0.1634	1	15	0.0845	1	29	0.0951 1	1	23
GO:0009 056	catabolic process (9056)	0.1351 9	-1	17	0.2088 9	-1	58	1.2E-09	1	58
GO:0009 058	biosynthetic process (9058)	0.0986 9	-1	52	0.0267	1	95	0.1459	-1	35
GO:0019 748	secondary metabolic process (19748)	0.011	1	13	0.0066	1	22	0.0006 4	1	21
GO:0022 618	ribonucleoprotein complex assembly (22618)	0.0004 1	-1	8	0.0000 12	-1	21	0.8513 2	1	2
GO:0030 154	cell differentiation (30154)	0.5706	1	1	0.0593 2	-1	6	0.4517	-1	1
GO:0030 198	extracellular matrix organization (30198)	1	-1	0	0.0699	1	1	0.0544 1	1	1
GO:0042 592	homeostatic process (42592)	0.3365	1	7	0.0526	1	17	0.0056 8	1	17
GO:0044 281	small molecule metabolic process (44281)	0.0406 8	-1	19	0.0001 7	-1	75	3.6E-09	1	60
GO:0048 856	anatomical structure development (48856)	0.4292	1	13	0.0384	1	29	0.8382	-1	7
GO:0051 186	cofactor metabolic process (51186)	0.1532	-1	6	0.0146 9	-1	24	0.0000 04	1	21
GO:0051 301	cell division (51301)	1	-1	0	0.0045 8	-1	7	1	0	0
GO:0055 085	transmembrane transport (55085)	0.1468 5	-1	3	0.3099 4	-1	7	0.0120 3	1	7
GO:0071	cell wall organization or biogenesis (71554)	0.0000	1	17	2.8E- 14	-1	51	0.0115	1	14

Supplementary Figure S1: 31mer frequency analysis comparing the short-reads assemblies produced with *Platanus assembler* or the alternative approach using the combination of ABySS for isotigs assembly and SOAP2 for scaffolding. The area under the curve of the Kmer spectra has been coloured according to the number of times that such K-mers appear in the assembly: none in back, once in red, twice in orange, etc.

Supplementary Figure S2: Divergence (Kimura) rates between the flanking tails in each *Gypsy* and *Copia* LTR duplication events in the *Brachiaria* genome.

Supplementary Figure S3: Species of the top Blastp hit for each 35,982 of the coding transcripts which had a homologous protein in the NCBI non-redundant (nr) database.

	Number of best BLAST aligments									
	0 50	00 100	0015	000200	0025000					
Setaria italica					21109					
Dichanthelium oligosanthes		4610								
Sorghum bicolor		3900								
Zea mays	22	29								
Oryza sativa Japonica Group	1 68	34								
Oryza sativa Indica Group	484									
Brachypodium distachyon	399									
Aegilops tauschii	291									
Oryza brachyantha	266									
Triticum urartu	211									
Hordeum vulgare subsp	101									
Saccharum hybrid cultivar R570	98									
Triticum aestivum	47									
Phyllostachys edulis	43									
Daucus carota subsp. sativus	23									
Vitis vinifera	23									
Panicum virgatum	22									
Ananas comosus	21									
Oryza sativa	21									
Cephalotus follicularis	15									
Phoenix dactylifera	15									
Elaeis guineensis	15									
Cajanus cajan	14									
Tinamus guttatus	14									
Oryza australiensis	13									
Populus trichocarpa	13									
Saccharum officinarum	10									
Hordeum vulgare	10									
Zea mays subsp. mays	10									
Musa acuminata subsp	10									

Supplementary Figure S4: Shared eggnog clusters of proteins among *Brachiaria ruziziensis* (Bruz), foxtail millet [*S. italica* (Sita)], *S. viridis* (Svir), maize [*Z. mays* (Zmays)], *Panicum halli* (Phal) and switchgrass [*P. virgatum* (Pvir)]. The "UpSet" plot format provides an efficient way to visualize the intersections (columns) of six species (Rows).

Supplementary Figure S5: Kimura rates between homologous gene pairs between *B. ruziziensis* and sequenced relatives including foxtail millet [*S. italica* (Sita)], *S. viridis* (Svir), maize [*Z. mays* (Zmays)], and *P. halli* (Phal)]. Gene pairs were build based on eggNOG clusters.

Supplementary Figure S6: Phylogenetic tree based on nucleotide divergence rate between sequences in the same eggnog cluster from *B. ruziziensis* and sequenced relatives including foxtail millet [*S. italica* (Sita)], *S. viridis* (Svir), maize [*Z. mays* (Zmays)], and *P. halli* (Phal)].

Supplementary Figure S7: The final genetic map for the B. decumbens CIAT 606 (cv. Basilisk) progenitor of the interspecific population included 4,427 markers placed at LOD 10 in 18 linkage groups

Supplementary Figure S8: RNA-seq from stem and root tissue samples extracted from the *B. decumbens* and *B. ruziziensis* progenitors. We also incorporated a reference-based reanalysis of public RNA-seq data (PRJNA314352) from *B. decumbens* var. Basilisks roots (Salgado et al., 2017, Plant Growth Regulation, 83,1:157-170). When the normalised counts for all the genes were used to cluster the samples, these clusters firstly grouped by tissue, secondly by genotype, and thirdly by treatment.

0.06

Supplementary Figure S9: Enrichment analysis of the "Molecular function" GO terms overrepresented among differentially expressed upregulated (red) or downregulated (blue) genes in roots in B. decumbens CIAT 606 and B. ruziziensis BRX 44-02.

Supplementary Figure S10: Enrichment analysis of the "Biological Process" GO terms overrepresented among differentially expressed upregulated (red) or downregulated (blue) genes in roots in *B. decumbens* CIAT 606 and *B. ruziziensis* BRX 44-02.

Supplementary Figure S11: Correlation matrix plot among GO terms based on the DE

genes included in each annotation.

Supplementary Figure S12: Comparison the enriched GO Slim terms between *B. decumbens* cv. Basilisk exposed to 200 μ M AlCl₃ for 72 hours and 8 hours, the latter from the reanalysis of public raw data from Salgado *et al.* 2017.

E	B. decu cv. B	ımben: asilisk	5	B. decumbens cv. Basilisk		
Molecular function GO terms	8h	72h	Biological process GO terms	8h	72h	
water channel activity	•		water transport	•		
ubiquitin protein ligase binding			UDP-glucose metabolic process	•	-	
abiquititi protein ilgase binding			ubiquinone biosynthetic process	•		
transporter activity		\bigcirc	transmembrane transport			
structural constituent of ribosome		•	translation			
peroxidase activity	•		toxin catabolic process	•	•	
ovidoraductase activity ovidizing metal			sucrose metabolic process	•	•	
oxidoreductase activity, oxidizing metal			starch metabolic process	•	•	
oxidoreductase activity, acting on singl	•		ribosome biogenesis			
oxalate decarboxylase activity	•	•	response to oxidative stress	•	-	
nutrient reservoir activity	•		response to biotic stimulus		•	
nitrate transmembrane transporter activi			plant-type secondary cell wall biogenesi		•	
nitrate transmemorane transporter activi			oxidation-reduction process			
NADH dehydrogenase (ubiquinone) activity	•		oxalate metabolic process	ŏ	•	
manganese ion binding	•		nitrate transport	•		
identical protein binding	_		mannose metabolic process	•		
			lignin catabolic process		•	
nydroquinone:oxygen oxidoreductase activ			leucine catabolic process			
heme binding			glyoxylate metabolic process	•	•	
glycerol channel activity	•		glycolytic process	•		
glutathione transferase activity			glutathione metabolic process	•	•	
			glucose import	-	•	
glucose transmembrane transporter activi			gluconeogenesis	•		
copper ion binding	-	•	galactose metabolic process	•		
chitinase activity	•		fructose metabolic process	•		
chitin bindina			defense response		•	
			cellular water homeostasis	•		
cellulose synthase (UDP-forming) activit	•		cellular oxidant detoxification	•	•	
calcium ion binding		•	cell wall organization	•	•	
amino acid transmembrane transporter act	-	•	cell wall macromolecule catabolic proces	•		
			carbon utilization	•	•	
NUMBER OF GENES			auxin efflux		•	
CORREC	CTED P-		amino acid transmembrane transport		•	
• • • • • • • • • • • • • • • • • • •	0 +5 +	10 5	abscisic acid-activated signaling pathwa		•	