SUPPLEMENTARY INFORMATION

HIGH SINK-STRENGTH PREVENTS PHOTOSYNTHETIC DOWN-REGULATION IN

CASSAVA GROWN AT ELEVATED CO2 CONCENTRATION

Ursula M. Ruiz-Vera¹, Amanda P. De Souza¹, Michael R. Ament¹, Roslyn M. Gleadow², Donald R. Ort^{1,3*}

¹ Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

² School of Biological Sciences, Monash University, Clayton, Victoria, Australia

³ Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

*Corresponding author: Donald R. Ort: <u>d-ort@illinois.edu</u>

Dataset S1

Raw data to which the A/C_i curves at 28°C were fit from eight cultivars of cassava grown at ambient and elevated [CO₂]. See excel file.

Figure S1. Per day average of gas exchange parameters from eight cultivars of cassava at ambient (AMB CO2) and elevated [CO₂] (ELE CO2). Photosynthetic carbon uptake (A, μ mol CO₂ m⁻² s⁻¹), stomatal conductance (g_s , mol H₂O m⁻² s⁻¹), intrinsic water use efficiency (iWUE, μ mol mol⁻¹), and [CO₂] inside the leaf (C_i , μ mol mol⁻¹) from eight cultivars of cassava at grown ambient (AMB CO2) and elevated [CO₂] (ELE CO2). The days of the year (DOY) when the measurements were taken are indicated in each panel. Error bars are mean \pm standard error (SE; n=4). Treatments with different letters represent significant differences (p<0.1), underlying is used to help differentiate group of letters.

.

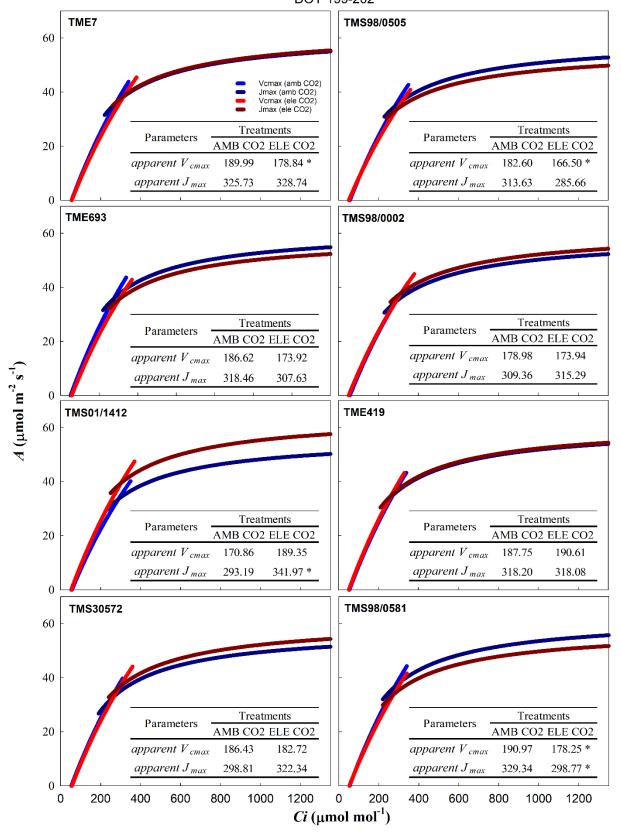


Figure S2. Fitted responses of A/C_i curves at 28°C from eight cultivars of cassava grown at ambient (AMB CO2) and elevated [CO₂] (ELE CO2) during the day of the year (DOY) 199-202. The mean apparent V_{cmax} (µmol m⁻² s⁻¹, SE <3.6-9.1>) and apparent J_{max} (µmol m⁻² s⁻¹, se <8.1-17.8>) are indicated in the inserted tables. Significant differences are indicated with '*' (p<0.1). Ambient [CO₂] treatments are represented by blue lines and the elevated [CO₂] treatments by red lines. The raw data to which the lines are fit are in Supplementary Dataset S1. Mean leaf temperature for the raw data was between 30.7°C for TME7 and 31.8°C for TMS98/0581.

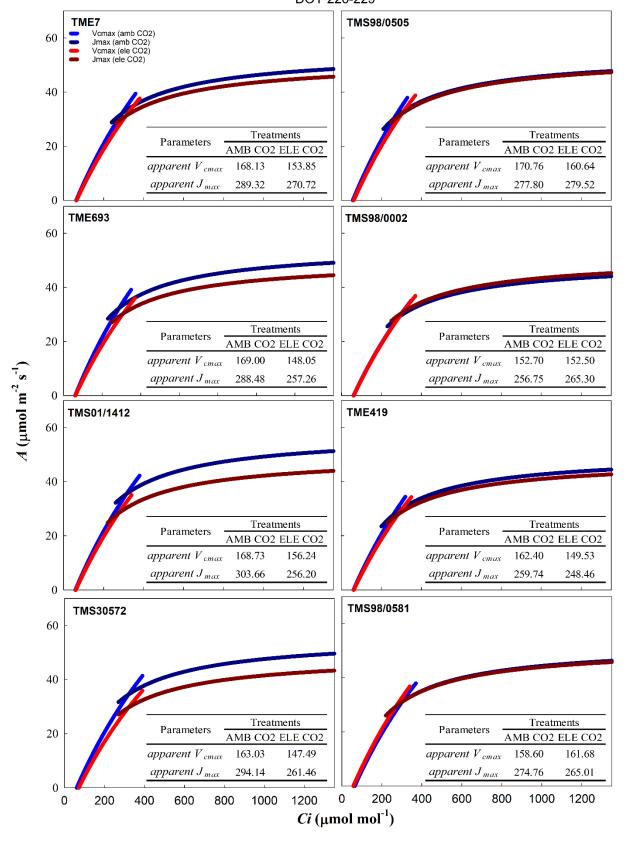


Figure S3. Fitted responses of A/C_i curves at 28°C from eight cultivars of cassava grown at ambient (AMB CO2) and elevated [CO₂] (ELE CO2) during the day of the year (DOY) 226-229. The mean apparent V_{cmax} (µmol m⁻² s⁻¹, SE <5.6-16.2>) and apparent J_{max} (µmol m⁻² s⁻¹, se <9.4-27.6>) are indicated in the inserted tables. Elevated CO2 had non-significant effect in apparent V_{cmax} and apparent J_{max} . Ambient [CO₂] treatments are represented by blue lines and the elevated [CO₂] treatments by red lines. The data to which the lines are fit are in Supplementary Dataset 1. Mean leaf temperature for the raw data was between 29.1°C for TMS30572 and 30.3°C for TME419.

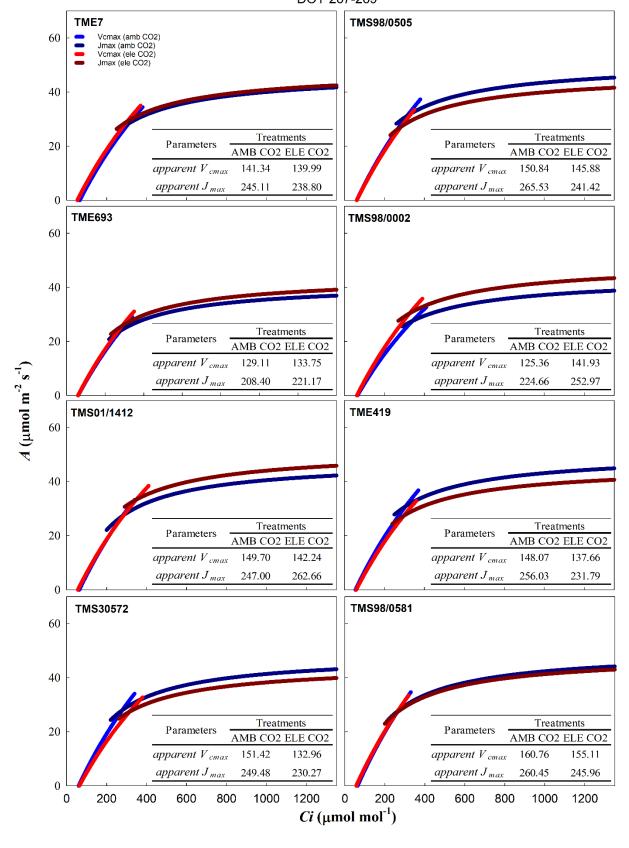


Figure S4. Fitted responses of A/C_i curves at 28°C from eight cultivars of cassava grown at ambient (AMB CO2) and elevated [CO₂] (ELE CO2) during the day of the year (DOY) 267-269. The mean apparent V_{cmax} (µmol m⁻² s⁻¹, SE <3.2-12.9>) and apparent J_{max} (µmol m⁻² s⁻¹, se <6.7-19.5>) are indicated in the inserted tables. Elevated CO2 had non-significant effect in apparent V_{cmax} and apparent J_{max} . Ambient [CO₂] treatments are represented by blue lines and the elevated [CO₂] treatments by red lines. The data to which the lines are fit are in Supplementary Dataset 1. Mean leaf temperature for the raw data was between 30.7°C for TME7 and 32.5°C for TMS98/0581

.

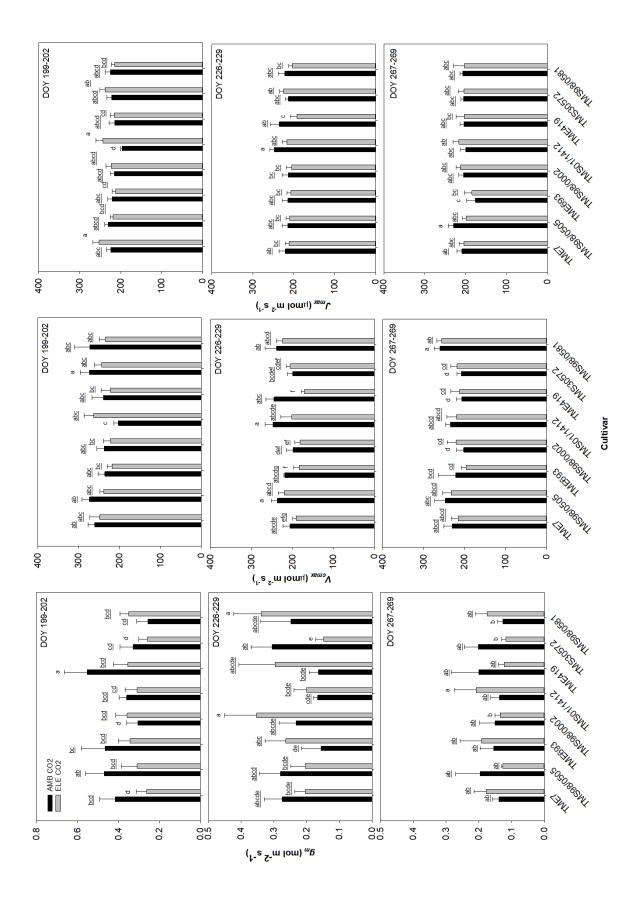


Figure S5. Per day average of photosynthetic parameters. Mesophyll conductance (g_m , mol m² s⁻¹), the maximum carboxylation rate by Rubisco (V_{cmax} , μ mol m⁻² s⁻¹) and the regeneration of ribulose-1,5-biphosphate controlled by the electron transport rate (J_{max} , μ mol m⁻² s⁻¹) at 28°C from eight cultivars of cassava grown at ambient (AMB CO2) and elevated [CO₂] (ELE CO2). The days of the year (DOY) when the measurements were taken are indicated in each panel. Error bars are mean \pm standard error (SE; n=4). Treatments with different letters represent significant differences (p<0.1), underlying is used to help differentiate group of letters.

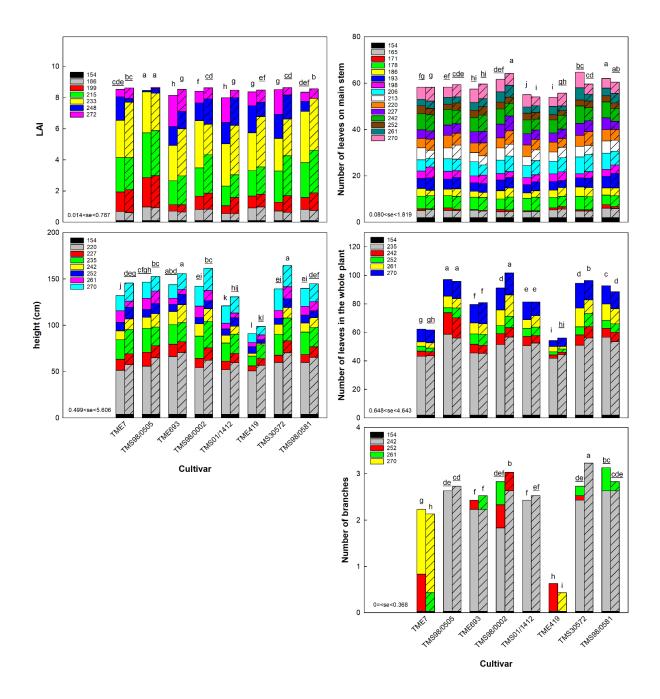


Figure S6. Per day average of growth parameters taken in eight cultivars of cassava grown at ambient (AMB CO2) and elevated [CO₂] (ELE CO2). Leaf area index (LAI; $m^2 m^{-2}$), height (cm), number of leaves in the main stem and whole plant, and number of branches. The days of the year (DOY) when the measurements were taken are indicated in each panel and are represented with a different color. DOY 154 is the starting day or day of planting. For LAI, only 6 of 11 measurements days are shown. Error bars are mean \pm standard error (SE; n=4).

Treatments with different letters represent significant differences (p<0.1) for the seasonal results, underlying is used to help differentiate group of letters

Figure S7. Per day average of the specific leave area (SLA; $m^2 kg^{-1}$), leaf nitrogen (g m^{-2}), and carbon vs. nitrogen ratio (C:N) from eight cultivars of cassava grown at ambient (AMB CO2) and elevated [CO2] (ELE CO2). The days of the year (DOY) when the measurements were taken are indicated in each panel. Error bars are mean \pm standard error (SE; n=4). Treatments with different letters represent significant differences (p<0.1), underlying is used to help differentiate group of letters.

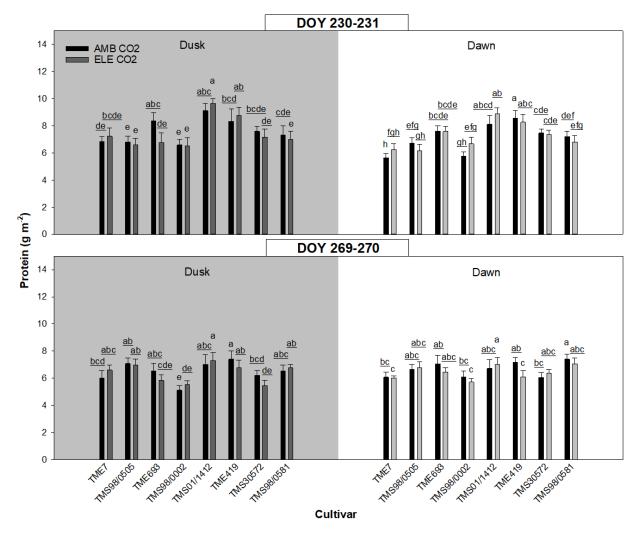


Figure S8. Per day average of the leaf protein content (g m⁻²) at dusk and dawn from eight cultivars of cassava grown at ambient (AMB CO2) and elevated [CO₂] (ELE CO2). The days of the year (DOY) when the measurements were taken are indicated at the top each of panel. Error bars are mean \pm standard error (SE; n=4). Treatments with different letters represent significant differences (p<0.1), underlying is used to help differentiate group of letters.

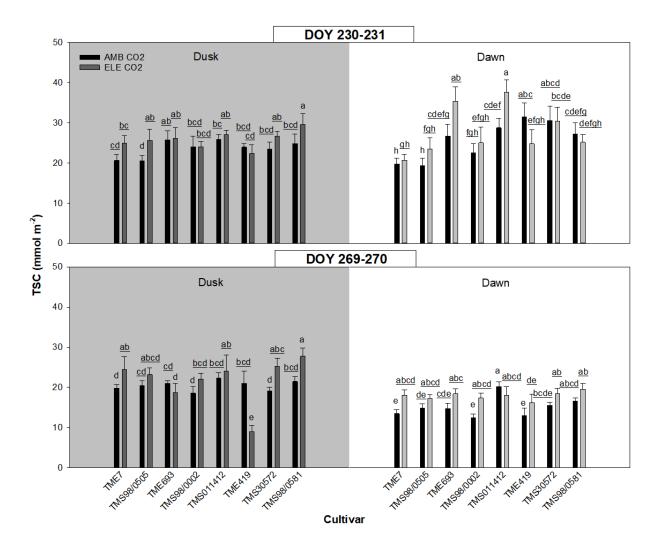


Figure S9. Per day average of the total soluble carbohydrates (TSC, mmol m⁻²) at dusk and dawn from eight cultivars of cassava grown at ambient (AMB CO2) and elevated [CO₂] (ELE CO2). The days of the year (DOY) when the measurements were taken are indicated at the top each of panel. Error bars are mean \pm standard error (SE; n=4). Treatments with different letters represent significant differences (p<0.1), underlying is used to help differentiate group of letters.

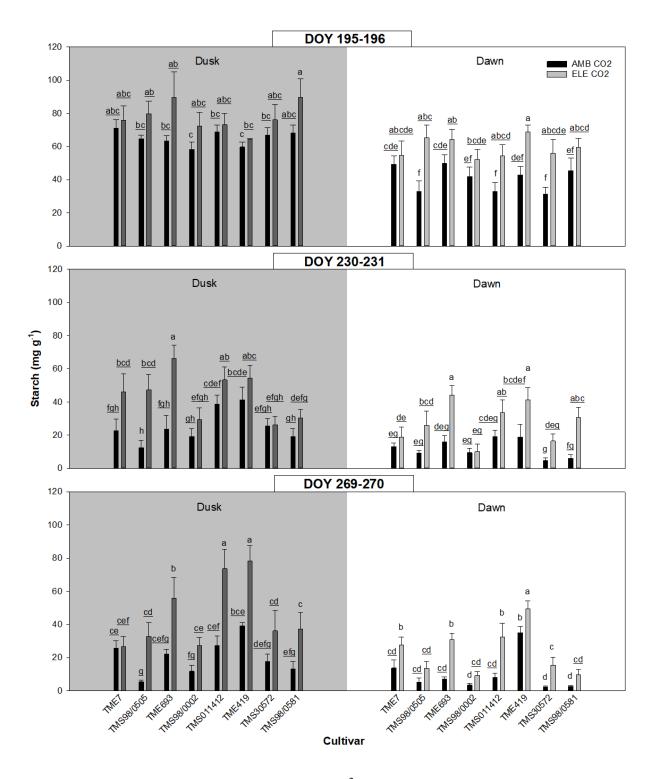


Figure S10. Per day average of the starch (mmol m⁻²) at dusk and dawn from eight cultivars of cassava grown at ambient (AMB CO2) and elevated [CO₂] (ELE CO2). The days of the year (DOY) when the measurements were taken are indicated at the top each of panel. Error bars are

mean \pm standard error (SE; n=4). Treatments with different letters represent significant differences (p<0.1), underlying is used to help differentiate group of letters.

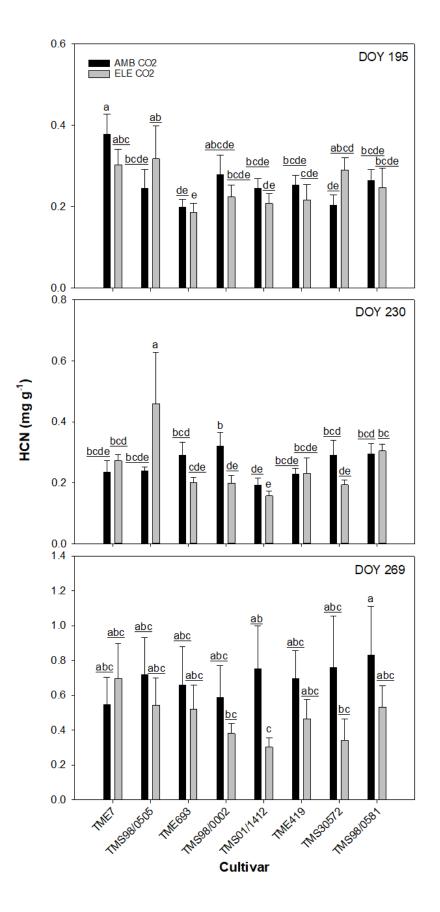


Figure S11. Per day average of the hydrogen cyanide content in leaves (mg g⁻¹) from eight cultivars of cassava grown at ambient (AMB CO2) and elevated [CO₂] (ELE CO2). The days of the year (DOY) when the measurements were taken are indicated in each panel. Error bars are mean \pm standard error (SE; n=4). Treatments with different letters represent significant differences (p<0.1), underlying is used to help differentiate group of letters.

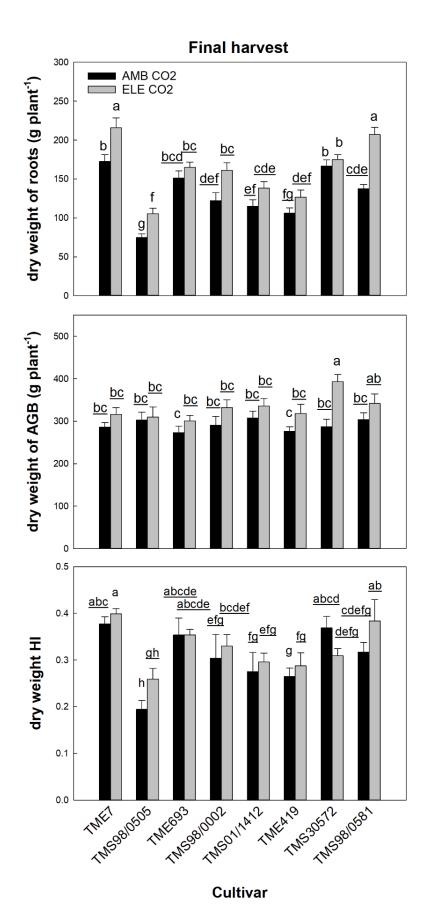


Figure S12. Dry weight from the biomass of eight cultivars of cassava grown at ambient (AMB CO2) and elevated [CO2] (ELE CO2) during the final harvest. Dry weight of root (g plant⁻¹), dry weight of the above-ground biomass (AGB, g plant⁻¹), and harvest index (HI). Error bars are mean \pm standard error (SE; n=4). Treatments with different letters represent significant differences (p<0.1), underlying is used to help differentiate group of letters.

Final harvest data

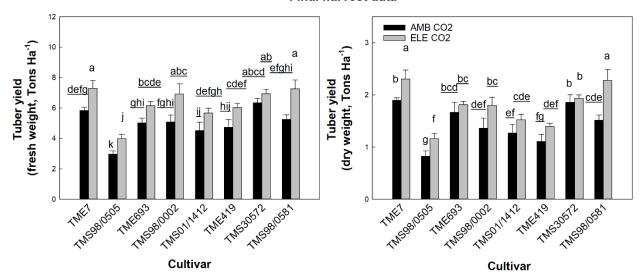


Figure S13. Tuber yield (Tons Ha⁻¹) calculated for the fresh and dry weight of tubers of eight cultivars of cassava grown at ambient (AMB CO2) and elevated [CO₂] (ELE CO2) during the final harvest. Error bars are mean \pm standard error (SE; n=4). Treatments with different letters represent significant differences (p<0.1), underlying is used to help differentiate group of letters.

Table S1. Principal component loadings from principal component 1 (PC1) and principal component 2 (PC2) for each one of the parameters considered in this analysis. Values in bold are the main contributors for each PC, and are the only ones represented with an arrow in Figure 2.

Type of	Parameter	PC1	PC2	
measurements				
	A	0.75175	-0.0163	
	g_s	-0.8527	-0.0036	
	iWUE	0.92065	0.08011	
	C_i	0.81698	-0.0351	
Gas exchange	apparent V_{cmax}	-0.7123	0.06686	
	apparent J_{max}	-0.5489	0.24197	
	g_m	-0.3761	-0.2049	
	V_{cmax}	-0.699	0.49735	
	J_{max}	-0.3136	0.35618	
	LAI	0.59478	0.37121	
	Height	0.38192	0.81158	
Plant growth	Number of leaves in main stem	0.25649	0.65194	
Traint growth	Number of leaves in the whole plant	0.09455	0.78544	
	Number of branches	0.1098	0.83738	
	SLA	-0.2481	0.7911	
	Leaf N	-0.408	-0.6799	
	Leaf C:N	0.74265	-0.5719	
Plant material composition	Protein	-0.1697	-0.4652	
	TSC turnover	-0.327	0.65525	
	Starch turnover	0.20133	0.18136	
	HCN in leaves	-0.6206	0.21296	
	HCN in peel of roots	0.17509	-0.4873	
	HCN in core of roots	-0.1774	0.33419	
Harvested and yield	Fresh weight roots	0.76809	-0.0605	
	Fresh weight AGB	0.46195	0.79477	
	Fresh weight HI	0.47881	-0.4896	
	Dry weight roots	0.66134	0.1045	
	Dry weight AGB	0.63988	0.35458	
	Dry weight HI	0.51376	-0.0008	

set of	DOY	Parameters	Main effects		
measurements			$[CO_2]$	cv	$[CO_2]$ x cv
1st	195	A	< 0.0001	ns	ns
		g_{s}	0.026	0.041	ns
		iWUE	< 0.0001	0.005	0.095
		C_i	< 0.0001	0.005	ns
	199-202	apparent $V_{\it cmax}$	0.023	ns	ns
		apparent $J_{\it max}$	ns	ns	0.038
		g_{m}	ns	0.024	ns
		V_{cmax}	ns	ns	ns
		$J_{\it max}$	ns	ns	ns
	230	A	< 0.0001	0.005	ns
		<i>g</i> s	ns	0.077	ns
		iWUE	<.0001	0.014	ns
		C_i	< 0.0001	0.012	ns
2nd	226-229	apparent $V_{\it cmax}$	ns	ns	ns
		apparent $J_{\it max}$	ns	ns	ns
		g _m	ns	ns	0.054
		V_{cmax}	ns	0.040	ns
		J_{max}	ns	ns	ns
	269	A	< 0.0001	0.049	ns
3rd		g_{s}	0.033	0.026	ns
		iWUE	< 0.001	0.074	ns
		C_i	0.001	0.084	ns
	267-269	apparent $V_{\it cmax}$	ns	0.012	ns
		apparent $oldsymbol{J}_{max}$	ns	0.036	ns
		g _m	ns	ns	ns
		V_{cmax}	ns	0.030	ns
		J_{max}	ns	ns	ns

Table S2. Statistical analysis (complete block analysis of variance, ANOVA) for the daily average of the following parameters: photosynthetic carbon uptake (A, μ mol CO₂ m⁻²s⁻¹), stomatal conductance (g_s , mol H₂O m⁻²s⁻¹), intrinsic water use efficiency (iWUE, μ mol mol⁻¹), [CO₂] inside the leaf (C_i , μ mol mol⁻¹), "apparent" maximum rate of carboxylation by Rubisco (apparent V_{cmax} , μ mol m⁻² s⁻¹) and "apparent" maximum rate of photosynthetic electron transport (apparent J_{max} , μ mol m⁻² s⁻¹), mesophyll conductance (g_m , mol m² s⁻¹), V_{cmax} and J_{max} . "Set of measurements" refers to the number of campaigns done to collect the parameters. The main effects are: [CO₂], cultivar (cv), and their interaction. Significant differences (p<0.1) and non-statistical significance (ns) are shown in the table.

set of measurements	DOY	Parameters	Main effects		
			$[CO_2]$	cv	[CO ₂] x cv
	195-196	SLA	0.099	0.002	ns
		leaf N	ns	< 0.0001	ns
1st		C:N	0.044	0.008	ns
		starch dusk	0.007	ns	ns
		starch dawn	< 0.0001	ns	ns
		starch turnover	0.006	0.078	ns
		HCN in leaves	ns	0.031	ns
	230-231	SLA	ns	< 0.0001	ns
		leaf N	ns	< 0.0001	ns
2nd		C:N	< 0.0001	< 0.0001	ns
		protein dusk	ns	< 0.001	ns
		protein dawn	ns	< 0.0001	ns
		TSC dusk	0.016	ns	ns
		TSC dawn	ns	< 0.0001	0.067
		starch dusk	< 0.001	0.002	ns
		starch dawn	< 0.0001	0.001	ns
		TSC turnover	ns	0.005	ns
		starch turnover	ns	ns	ns
		HCN in leaves	ns	0.021	0.010
3rd	269-270	protein dusk	ns	< 0.001	ns
		protein dawn	ns	ns	ns
		TSC dusk	ns	0.002	0.002
		TSC dawn	0.002	0.063	ns
		starch dusk	< 0.0001	< 0.0001	0.050
		starch dawn	< 0.0001	< 0.0001	ns
		TSC turnover	ns	ns	0.039
		starch turnover	0.001	0.061	0.016
		HCN in leaves	0.022	ns	ns

Table S3. Statistical analysis (complete block analysis of variance, ANOVA) for the daily average of the following parameters: leaf area index (LAI, m² m⁻²), height (cm), number of leaves in the main stem and in the whole plant, number of branches, specific leave area (SLA, m² kg⁻¹), leaf nitrogen (g m⁻²), carbon vs. nitrogen ratio (C:N), protein content (at dusk and dawn; g m⁻²), total soluble carbohydrates (TSC, mmol m⁻²) and starch (mg g⁻¹) at dusk and dawn, TSC

and starch turnover, and hydrogen cyanide (HCN) content of leaves, root peel and core (mg g⁻¹). "Set of measurements" refers to the number of campaigns done to collect the parameters. The main effects are: $[CO_2]$, cultivar (cv), and their interaction. Significant differences (p<0.1) and non-statistical significance (ns) are shown in the table.