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Advanced, late-stage Epstein-Barr virus (EBV)-positive naso-
pharyngeal carcinoma (NPC) is incurable, and its treatment re-
mains a clinical and therapeutic challenge. Results from a phase
II clinical trial in advanced NPC patients employing a
combined chemotherapy and EBV-specific T cell (EBVST)
immunotherapy regimen showed a response rate of 71.4%.
Longitudinal analysis of patient samples showed that an in-
crease in EBV DNA plasma concentrations and the peripheral
monocyte-to-lymphocyte ratio negatively correlated with over-
all survival. These parameters were combined into a multivar-
iate analysis to stratify patients according to risk of death. Im-
munophenotyping at serial time points showed that low-risk
individuals displayed significantly decreased amounts of
monocytic myeloid-derived suppressor cells postchemother-
apy, which subsequently influenced successful cytotoxic
T-lymphocyte (CTL) immunotherapy. Examination of the
low-risk group, 2 weeks post-EBVST infusion, showed that in-
dividuals with a greater overall survival possessed an increased
frequency of CD8 central and effector memory T cells, together
with higher levels of plasma interferon (IFN)-g, and cytotoxic
lymphocyte-associated transcripts. These results highlight the
importance of the rational selection of chemotherapeutic
agents and consideration of their impact on both systemic
immune responses and downstream cellular immunotherapy
outcomes.

INTRODUCTION
Epstein-Barr virus (EBV)-positive nasopharyngeal carcinoma (NPC)
represents a significant health problem in Asia. Incidence rate of NPC
in Southeast Asian males is 10 to 21.4 per 100,000.1 Early intervention
with radiotherapy and radiochemotherapy for stage I and II disease,
respectively, can lead to successful treatment in over 80% of cases.
However, beyond chemotherapy, the therapeutic options for late-
stage disease remain comparably limited.2 An alternative to standard
chemotherapy regimens is the use of immunotherapeutic strategies,
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which focus on increasing the immune response to cancer-associated
antigens. Experimental NPC immunotherapies have included den-
dritic cell (DC) vaccination,3–5 immune checkpoint blockade
(ICB),6–9 and cytotoxic T-lymphocyte (CTL) infusion.10–16 NPC
and other virally derived cancers should be an ideal candidate for
immunotherapeutic strategies due to the presence of nonself, viral an-
tigens, which are more immunogenic than neo-epitopes found in can-
cers that arise from inherited or de novo mutations.

Pursuant to this, we conducted a phase II trial in the first line setting,
employing four cycles of gemcitabine and carboplatin chemotherapy,
followed by adoptive transfer of six serial infusions of autologous,
in vitro-expanded EBV-specific T cells (EBVSTs). The overall
response rate for this therapy was 71.4%, with a median overall
survival of 29.9 months.17 However, despite the favorable clinical out-
comes, there was still a subset of patients who did not show a benefit
from receiving EBVST immunotherapy, suggesting that a more domi-
nant environment of immunosuppression exists in these individuals
that potentially compromises efficacy.

The understanding of the correlative biological markers, which could
identify mechanisms that drive resistance to EBVST treatment can
potentially uncover a broader understanding of mechanisms of tumor
resistance to immunotherapy. One readily available biomarker is
the complete blood count, which is able to determine leukocyte
(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Overall Survival Correlated with Decreased Monocyte-to-Lymphocyte Ratios (MLRs) and EBV Plasma Concentrations

(A) Longitudinal MLRs, calculated from clinical complete blood counts. Colored line sets represent different intervals of overall survival, with each patient indicated as a single

line. Overall survival in weeks for the colors are as follows: red, <50; orange, >50, <100; green, >100, <150; light blue, >150, <200; dark blue, >200, <250; pink, >250, <300;

purple, >300. (B) Correlation of MLR with overall survival at postchemotherapy time point (Spearman correlation). (C) Correlation of plasma EBV DNA concentrations with

overall survival at postchemotherapy time point (Spearman correlation). (D) Stratification of patients with cutoffs of >3.05 log10 ([EBV DNA] + 1) and >0.5 MLR. (E) Survival plot

of high- and low-risk individuals (Gehan-Breslow-Wilcoxon test, 95% confidence interval [CI] shown between dashed lines). For all experiments, n = 34. (D and E) n = 7 high

risk; 27 low risk.
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subset frequencies. Neutrophil-to-lymphocyte ratios and monocyte-
to-lymphocyte ratios (MLRs) have been used as a prognostic in
many cancer indications.18–24 Although not validated, they have
also been used to categorize responding patients undergoing
chemotherapy25–28 and outcomes to ICB.29–33 However, in order to
increase the accuracy of immunotherapy patient stratification, it is
likely that themeasurement of multiple biological factors must be con-
ducted to better identify patients who are most likely to respond.34–36

Here, we devised a stratification methodology based on plasma EBV
DNA concentrations and peripheral MLRs to determine risk of death.
High-risk individuals who failed to respond to EBVST therapy dis-
played an increase in monocyte frequency, immunosuppressive cyto-
kines, and myeloid chemoattractants postchemotherapy. Flow cyto-
metric analysis revealed that resistance to immunotherapy
correlates with a postchemotherapy efflux of a specific monocytic
myeloid-derived suppressor cell (mMDSC) population. Conversely,
patients who responded to therapy displayed increased CD8 memory
T cell frequencies, increased peripheral interferon (IFN)-g levels, and
increased expression cytotoxic lymphocyte-associated transcripts,
2 weeks post-first EBVST infusion. This report demonstrates that
expansion of the myeloid compartment can exert a dominant im-
mune-suppressive effect, which points toward a window of therapeu-
tic opportunity and thus determines successful immunotherapy.
RESULTS
Overall Survival Correlated with Decreased MLRs and EBV

Plasma Concentrations

Treatment of 38 NPC patients with a combined chemotherapy of
gemcitabine and carboplatin, followed by EBVST immunotherapy
regimen, showed an increase in overall response rates when retro-
spectively compared to similar trials using chemotherapy regimens
alone.17,37,38 Here, we aim to investigate the underlying mechanisms
that could account for both patients who benefit and those who do not
from the combined chemo- and immunotherapies by performing
longitudinal analyses on cryopreserved samples.

Clearance of NPC is dependent on lymphocyte action. Decreased
amounts of lymphocytes in relation to other leukocyte subsets have
been correlated with poor prognosis in NPC as well as other cancer in-
dications.18–24Observation of the longitudinalMLRkinetics in regard to
overall survival showed that patients experienced an increase close to the
time of death (Figures 1A and S2). Following this finding, multiple uni-
variate analyses of peripheral clinical parameters, including full blood
counts, ratio-metric analyses of leukocyte populations, and EBV DNA
plasma concentration, at the pre- and postchemotherapy time points,
were performed to examine their relationship to overall survival (Table
1). EBV DNA plasma concentration and MLR were the most signifi-
cantly correlated parameters with survival compared to the other factors
Molecular Therapy Vol. 29 No 2 February 2021 735
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Table 1. Univariate Analysis of Clinical Parameters, with Overall Survival at

Pre- and Postchemotherapy Time Points

Prechemotherapy Postchemotherapy

Hazard Ratio p Value Hazard Ratio p Value

Monocyte/
lymphocyte ratio

3.244 (1.333–
7.898)

9.53E�03
4.377 (1.93–
9.927)

4.09E�04

EBV (/10,000)
1.006 (1.001–
1.012)

1.38E�02
1.036 (1.014–
1.059)

1.59E�03

Neutrophil count
1.15 (1.022–
1.294)

2.00E�02
1.577 (1.113–
2.235)

1.03E�02

Monocyte count
4.007 (0.7209–
22.27)

1.13E�01
7.291 (1.469–
36.18)

1.51E�02

WBC count
1.143 (1.012–
1.291)

3.10E�02
1.375 (1.032–
1.832)

2.94E�02

SII 1 (1–1) 1.20E�02 1 (1–1.001) 4.35E�02

Neutrophil/
lymphocyte ratio

1.067 (1.009–
1.129)

2.36E�02
1.141 (0.9955–
1.308)

5.80E�02

Platelet count
1.004 (1.001–
1.007)

2.26E�02
1.004 (0.999–
1.008)

1.28E�01

Platelet/
lymphocyte ratio

1.001 (1–1.002) 3.56E�02
1.001 (0.9993–
1.003)

2.39E�01

Lymphocyte
count

0.8174 (0.4433–
1.507)

5.18E�01
0.8137 (0.4033–
1.641)

5.65E�01

Eosinophil count
0.7771 (0.0394–
15.33)

8.68E�01
1.743 (0.05878–
51.69)

7.48E�01

Basophil count
7.645
(2.81E�07–
2.08E+08)

8.16E�01
1.029
(1.39E�13–
7.63E+12)

9.99E�01

Age
1.01 (0.9753–
1.045)

5.84E�01
1.009 (0.9747–
1.045)

6.06E�01

Sex
0.7134 (0.3259–
1.562)

3.98E�01
0.7047 (0.3218–
1.543)

3.82E�01

Cox proportional hazard model, hazard ratios shown with range in parentheses. SII, sys-
temic immune-inflammation index; WBC, white blood cell. n = 34.

Molecular Therapy
(Table 1; Figures 1B and1C). These twoparameterswere thencombined
in a multivariate analysis in order to better define patients, attributing
them to either a high- or low-risk category, relating to their timeof death
(Figure 1D). Kaplan-Meier plots of the risk groups yielded an improved
separation compared to using either of the single variates alone (Figures
1E and S3). These results show that patients who experience both
increased MLR and EBV plasma concentrations have decreased overall
survival and thus less potential benefit from immunotherapy, suggesting
that a degree of interplay may exist between these parameters. These
conditions could yield an immunosuppressive environment, rendering
conditions adverse for optimal immunotherapy.

Overall Survival between Risk Groups Is Determined by

Regulatory Leukocyte Presence Postchemotherapy

In order to elucidate the underlying mechanisms that determine sur-
vival between the high- and low-risk groups, we examined the pheno-
type of the peripheral, cryopreserved leukocytes at the prechemother-
apy and postchemotherapy time points. In particular, peripheral
blood mononuclear cells (PBMCs) underwent flow cytometry analysis
736 Molecular Therapy Vol. 29 No 2 February 2021
for the presence of MDSCs and T cell subsets. We employed an auto-
mated flow cytometry analysis pipeline, “Flowpip,” to aid in the objec-
tive identification of leukocyte subsets, which correlate with clinical
outcomes. Flowpip analysis revealed a population of CD11b-positive,
CD33-positive, CD14-intermediate, and human leukocyte antigen
(HLA)-DR-negative-low cells, which was increased in high-risk indi-
viduals postchemotherapy (Figures 2A and S4). This population was
confirmed using manual gating techniques to be of mMDSC origin.
mMDSC frequencies showed no difference between high- and low-
risk groups prechemotherapy. Correspondingly, Flowpip identified a
significantly increased regulatory T cell (Treg) frequency in the high-
risk group compared to the low-risk group at both pre- and postche-
motherapy time points. These findings were again confirmed by
manual gating strategies, showing an increase in the median at the later
time point (Figures 2B and S5). Plasma cytokine analysis showed that
production of regulatory leukocyte-associated chemokines, such as
CCL2 and CXCL10, were increased in the high-risk group (Figures
2C and 2D). Comparison of the PBMC transcriptome between the
risk groups at the postchemotherapy time point revealed that high-
risk individuals had elevated amounts of myeloid-associated tran-
scripts, such as NLRP3, CSF3R, CCL3, and CCL3L1 (Figure 2E).

Combined, these results show that following chemotherapy, high-risk
individuals, who did not show a benefit from the chemo- and immu-
notherapeutic treatment, possessed an increased monocyte frequency
relative to lymphocytes, the majority of which was comprised of
mMDSCs. The inhibitory component was further augmented by
the presence of an increased amount of Tregs, as demonstrated by
fluorescence-activated cell sorting (FACS). The combination of these
inhibitory leukocytes in the high-risk group could establish an envi-
ronment predictive for a poorer outcome to EBVST infusion.

Overall Survival in Low-Risk Group Is Determined by an

Increased Cytotoxic CD8 T Cell Signature

Whereas analysis of the postchemotherapy time point pointed toward
a mechanism of resistance to immunotherapy, there were still indi-
viduals who possessed a favorable MLR and EBV profile but had a
low overall survival. We examined the differences within the low-
risk group by dividing individuals into long-term survivors (LTSs)
and short-term survivors (STSs), as determined by the median overall
survival in the low-risk group (Figure 3A). We focused our analysis
on the time points prior to receiving the first EBVST injection (post-
chemotherapy) and 2 weeks post-first immunotherapy injection.
Automated flow cytometry analysis identified that overall CD8
T cells, as well as CD8 effector and central memory subsets, were
elevated in the LTS group, 2 weeks post-first immunotherapy. Results
were confirmed by manual gating strategies (Figures 3B–3D). No sig-
nificant differences were detected in CD4 T cell subsets between the
groups at the examined time points (Figure 3E).

2 weeks after the first immunotherapy infusion, there was a significant
difference between the LTS and STS groups in terms of IFN-g produc-
tion (Figure 3F). Transcriptome analysis of the PBMCs revealed an
increased expression of transcripts associated with T cell function in
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Figure 2. Overall Survival between Risk Groups Is Determined by Regulatory Leukocyte Abundance Postchemotherapy

(A) Percentage of monocytic myeloid-derived suppressor cells (mMDSCs) over total live cells. (B) Percentage of CD25hi, FOXP3+, Tregs over total number of CD3+ T cells. (C)

Plasma concentration of CCL2. (D) Plasma concentration of CXCL10. (A–D) n = 34 (n = 7 high risk [blue dots and violin plot], 27 low risk [green dots and violin plot]).

Significance calculated using Wilcoxon rank-sum test. (E) Transcriptome profile of PBMCs from postchemotherapy time point. Fold change (FC) was determined by

comparison of the median gene expression between the high- and low-risk groups. p value was calculated using Welch’s t test without adjustment.
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the LTS group, such as GZMM, CD8A, JAM3, and CD160. Conversely,
these individuals had lower expression of myeloid-associated tran-
scripts, such as CLEC5A, S100A8, S100A9, LILRA5, and CXCL2.

These findings show that EBVST immunotherapy outcomes in
advanced NPC are dependent on several factors: first, that the EBV
viral load is decreased postchemotherapy; second, that the patient’s
immune system is correctly conditioned following chemotherapy,
with a limited expansion of mMDSCs; and third, that a proinflamma-
tory cytotoxic T cell signature persists in the patients throughout the
immunotherapy time course.

DISCUSSION
In this study, we demonstrate that the patient’s response to chemo-
therapy is integral to successful EBVST immunotherapy. This led to
the identification of a series of clinical markers, which when com-
bined, stratify patients by their overall survival. Following chemo-
therapy, individuals who do not experience a significant increase in
regulatory leukocytes possess conditions favorable to receive immu-
notherapy. 2 weeks post-EBVST administration, those that demon-
strate a beneficial response to immunotherapy display an increased
memory CD8 T cell response. The identification of biomarkers in
ICB has been greatly expanded in recent years but largely center
around similar findings—patients who respond to immunotherapy
possess one or more of the following factors: increased frequencies
of T cells with a greater capacity for effector function, a tumor envi-
ronment with decreased regulatory components, and/or a tumor with
a higher mutational burden.39 Ratio metric analyses offer a simple
means of testing for the balance between the modulatory and stimu-
latory arms of the immune system, where the mechanistic
Molecular Therapy Vol. 29 No 2 February 2021 737
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Figure 3. Overall Survival in Low-Risk Group Is Determined by an Increased Cytotoxic CD8 T Cell Signature

(A) Survival plot of low-risk individuals, stratified into short-term survivors (STSs) and long-term survivors (LTSs), as determined by the median survival of the low-risk group.

Gehan-Breslow-Wilcoxon test, 95% CI shown between dashed lines. (B) Percentage of CD8+ T cells over total number of CD3+ T cells. (C) Percentage of CD8+ central

memory T cells (CD45RA�, CCR7+) over total number of CD3+ T cells. (D) Percentage of CD8+ effector memory T cells (CD45RA�, CCR7�) over total number of CD3+ T cells.

(E) Percentage of CD4+ T cells over total number of CD3+ T cells. (F) Plasma concentration of IFN-g. (A–F) n = 27 (n = 14 STS [blue dots and violin plot], 13 LTS [green dots and

violin plot]). Significance calculated usingWilcoxon rank-sum test. (G) Transcriptome profile of PBMCs from 2weeks post-first immunotherapy time point. FCwas determined

by comparison of the median gene-expression between the STS and LTS groups. p value was calculated using Welch’s t test without adjustment.
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relationship is understood, for example, between activated T cells and
antigen-presenting cells. The relationship between lymphocyte and
monocyte frequencies was first studied in hematological malignancies
but has since been expanded to prognosticate for solid tumors (re-
viewed in Gu et al.40 and Nishijima et al.41), including NPC.20–24

With the advance of immunotherapy, either as a single treatment or
in combinations across many cancer types, the establishment of pre-
dictive and prognostic biomarkers has become increasingly complex.
Biomarkers for determining ICB have been mixed in their predictive
capability. The more robust examples of biomarkers in predicting
outcomes to ICB include microsatellite instability in colorectal can-
cer.42 Examination of the tissue microenvironment for expression
of programmed cell death ligand 1 (PD-L1) yields a varied predictive
outcome depending on the indication.43 Furthermore, patients who
do not express PD-L1 in the tumor have also been shown to respond
to therapy.44 The use of a combined assay, examining PD-L1 tumor
expression and tumor mutational burden (TMB), resulted in an
improved stratification.45 Response to PD-1 therapy was also shown
to be dependent on the presence of an increased frequency of periph-
738 Molecular Therapy Vol. 29 No 2 February 2021
eral proinflammatory CD14+, CD16�, and HLA-DRhi monocytes
before treatment initiation in melanoma patents,46 thus highlighting
the importance of a multivariate analysis.

In our study, we showed that chemotherapy treatment yielded differ-
ential effects on the patients and their leukocyte profiles. Following
the cessation of chemotherapy and the recovery of the patient’s im-
mune system, high-risk individuals experienced an expansion in their
percentage of monocytes and mMDSCs. These increased frequencies
likely impacted the outcome of EBVST immunotherapy, highlighting
the importance of the patient’s base state prior to T cell infusion.
Indeed, mMDSCs are actively recruited to the tumor microenviron-
ment, where they can suppress CTL functions.47 The chemotherapeu-
tics used in this study have been demonstrated to be effective against
mMDSCs. Gemcitabine has been shown to inhibit mMDSC numbers
and function,48,49 as well as increase tumor cross-presentation.50 Car-
boplatin induces myelotoxicity at maximum tolerated doses.51 When
utilized below the maximum tolerated dose, carboplatin mediates im-
munostimulatory effects by upregulation of MHC, release of proin-
flammatory cytokines, and downregulation of immune checkpoint
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inhibitor proteins, resulting in greater CTL tumor infiltration.52,53

The high-risk individuals either possessed an environment, which
reduced the efficacy of chemotherapy, or the degree of myeloablation
in these patients was so astringent as to cause a massive bone marrow
efflux event upon withdrawal. We hypothesize that the more severe
rebound of the monocytic cells adversely affected successful receipt
of immunotherapy. A similar phenomenon has been reported in
the context of human papillomavirus (HPV)-positive cervical
cancer.54

The increased severity of an immunosuppressive environment was
also evidenced by the elevated levels of CCL2 and CXCL10 in the
high-risk group. Both CCL2 and CXCL10 have been associated
with increased frequencies of mMDSCs in non-small cell lung carci-
noma (NSCLC)55 and are correlated with an adverse prognostic fac-
tor of overall survival and distant metastasis-free survival in NPC.56,57

CCL2 has been shown to be a potent mMDSC chemoattractant to-
ward tumor environments.58,59 Within the microenvironment
nitration of CCL2 by mMDSC-derived peroxynitrite impaires the
infiltration of effector CD8+T cells,60,61 blockade using CCR2 inhibi-
tors can prevent this process.62 CXCL10 has been shown in vitro to
possess anti-tumor activities; however, it is highly expressed in
NPC, calling into question its pro-T cell attributes in this context.57

Indeed, in the pancreatic cancer setting, increased frequencies of
Tregs have been found to be recruited to the tumor site by MDSCs
expressing high levels of CXCL10.63

We hypothesize that the chemotherapy regimen in the low-risk group
did not permit expansion of suppressive leukocytes, in particular,
mMDSCs, compared to the high-risk group. The resultant condition
rendered the low-risk patients susceptible to receiving successful
EBVST immunotherapy, allowing their T cells to traffic to sites of dis-
ease, proliferate, and carry out their cytotoxic function. This mecha-
nism is in contrast to fludarabine and cyclophosphamide (Flu-Cy)
regimens, whereby the chemotherapeutic reagents are utilized to
create immunological space in the lymphocyte compartment to
improve immunotherapy engraftment.64 Here, we propose that the
degree of inhibitory compartment removal underpins cellular therapy
efficacy. In agreement, NPC clinical trials that employed EBVSTs
without prior chemotherapy did not show a therapeutic benefit.16

Furthermore, murine studies have demonstrated the synergistic effect
between chemotherapy and immunotherapy in the treatment of solid
tumors,65 thus highlighting the importance of both chemotherapeutic
conditioning, followed by EBVST immunotherapy in this study.

After the first EBVST immunotherapy infusion memory, CD8 T cell
frequencies were found to be significantly increased in LTSs, which
was coincident with increased IFN-g and decreased myeloid chemo-
kine concentrations in the peripheral plasma. Differences in the qual-
ity of the EBVST product were previously examined but did not factor
into the differences observed in this analysis. The ability of T cells to
persist in vivo has been directly correlated with increased response
rates both in chimeric antigen receptor T cell (CAR-T) clinical tri-
als66,67 and in adoptive T cell immunotherapy.68,69 Infused products
that were derived from naive cells or those with a central memory
phenotype exhibited greater in vivo-proliferative capacity and were
able to control disease to a greater extent than cells with a terminally
differentiated phenotype. In this analysis, we observed that the pres-
ence of an increased central memory CD8 T cell profile correlated
with overall survival in the LTS group.

Whereas this analysis yields a possible mechanistic explanation for
the observed clinical response, our study possess several limitations.
One of the more prominent is the limited amount of patients enrolled
in the study. This constraint has several downstream impacts, namely,
the inability to perform a K-fold cross-validation to assess the predic-
tive accuracy of the biomarkers. Furthermore, it should be stressed
that this study was a retrospective exploratory analysis rather than
a pre-specified confirmatory analysis. The findings presented here
will be tested as part of the exploratory analyses in a multicenter phase
III clinical trial (ClinicalTrials.gov: NCT02578641), which has ended
the recruitment stage.

In summary, we were able to retrospectively determine a patient’s
overall survival in response to the combined chemo- and immuno-
therapy regimens using a series of peripheral blood markers in a
multivariate methodology. These results highlight the importance
of using multifactorial analyses in immunotherapy trials, where com-
plex cellular interactions define clinical efficacy. We propose a mech-
anism of action that determines successful cellular immunotherapy,
whereby limiting the expansion of mMDSCs is crucial to a patient’s
response. This analysis permits rationally informed therapeutic inter-
ventions, such as myeloablation, in order to improve EBVST
administration.

MATERIALS AND METHODS
Samples

PBMCs and plasma were collected from patients prior to generate
lymphoblastoid cell lines (LCL)s and EBVSTs. Following venesection,
patients received chemotherapy consisting of gemcitabine (1,000 mg/
m2) and carboplatin (area under the curve [AUC] 2). 2 to 4 weeks
postchemotherapy, EBVSTs were administered at a dose of 1 � 108

cells/m2 on weeks 0, 2, 8, 16, 24, and 32. New peripheral blood sam-
ples were obtained before commencement of chemotherapy and
before each EBVST infusion (Figure S1).17

Serum Cytokine Analysis

Plasma was diluted as described in protocols. A 27-plex Human
Cytokine and Chemokine Luminex Multiplex Bead Array Assay Kit
(Invitrogen, Carlsbad, CA, USA) was used to measure the following
cytokines: interleukin (IL)-3, IL-4, IL-6, IL-8, IL-9, IL-10, IL-15, IL-
17, IL-21, (CXCL10) IP-10, CCL3 (MIP-1a), CCL4 (MIP-1b),
CCL20 (MIP-3a), CCL2, IFN-a2, IFN-g, epidermal growth factor
(EGF), fibroblast growth factor (FGF)-2, vascular endothelial growth
factor (VEGF), transforming growth factor (TGF)A, CD40L, fractal-
kine, granulocyte macrophage-colony-stimulating factor (GM-CSF),
granulocyte-CSF (G-CSF), growth-regulated oncogene (GRO),
macrophage-derived chemokine (MDC), and eotaxin. Plates were
Molecular Therapy Vol. 29 No 2 February 2021 739
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washed using BioTek ELx405 washer (BioTek, USA) and read with
Flexmap 3D systems (Luminex, Austin, TX, USA), per the manufac-
turer’s instructions. Data were analyzed using Bio-Plex Manager 6.0
software with a 5-parameter curve-fitting algorithm applied for stan-
dard curve calculations.

Immunophenotyping

PBMCs from frozen patient samples at the time points were stained
with two different fluorescently labeled monoclonal antibody panels
to determine cell lineage and activation status. The Treg panel included
the following: BUV 395 anti-CD25, Pacific Blue anti-FoxP3, BV 711
anti-CD127, fluorescein isothiocyanate (FITC) anti-CD4, phycoery-
thrin (PE) anti-CTLA4, PECF594 anti-CD45RA, PECy5 anti-CD3,
PECy7 anti-CCR7, and near-infrared LIVE/DEAD cell stain. Tregs
were identified using a single cell gate and LIVE/DEAD cell-negative,
CD3-positive, CD4-positive, CD25-positive, CD127-negative,
FOXP3-positive, and CTLA4-positive gating strategy. The mMDSC
panel included the following: BUV 395 anti-CD15, FITC anti-CD16,
PE anti-CD33, PECF594 anti-CD34, PECy7 anti-CD11b, allophyco-
cyanin (APC) anti-CD14, APC H7 anti-HLA-DR, and violet LIVE/
DEAD cell stain. mMDSCs were identified using a single cell gate
and LIVE/DEAD cell-negative, CD16-negative, CD15-negative,
CD34-negative, CD11b-positive, CD33-positive, CD14-intermediate,
and HLA-DR-negative-low gating strategy. Cells were acquired using
an LSR II (BD Biosciences) flow cytometer. Data were analyzed on
FACSDiva (BD Biosciences) and FlowJo (Tree Star) software.

RNA Isolation

One hundred thousand thawed PBMCs from time points were pel-
leted in Eppendorf tubes. Samples subsequently underwent RNA
extraction using a QIAGEN RNAEasy Micro Kit. Samples were pro-
cessed according to the manufacturer’s guidelines. Final elution vol-
ume was in 15 mL RNase-free water.

Nanostring Processing

Gene expression was analyzed using a Nanostring PanCancer Im-
mune Panel (XT-CSO-HIP1-12 115000132). 100 ng of each patient
sample was prepared, per the manufacturer’s guidelines. Quantifica-
tion of gene expression was obtained using the nCounter platform;
raw counts were processed using nSolver. Raw counts were processed
and normalized to the internal positive controls and housekeeping
genes using nSolver 4.0 software.

Statistical Analysis

Data were log10(x + 1) transformed. Spearman’s ranked correlation
was used, exploring the relationship between clinical parameter
(e.g., EBV, MLR) and overall survival. One-way ANOVA was used
to investigate the relationship between risk factors and 2-year survival
outcome. Cox proportional hazard regression was used for all survival
analysis. EBV and MLR cutoffs were selected from one with the best
separation of high-risk and low-risk groups out of all of the plausible
combinations of observed values between EBV and MLR. A two-
tailed significance level of 0.05 was chosen. All analysis was conducted
using R (v.3.6, packages of ggplot2, survival70) and Prism.
740 Molecular Therapy Vol. 29 No 2 February 2021
Flowpip Pipeline

We developed a pipeline to handle the flow cytometry data and iden-
tify populations correlating to survival. The pipeline can be broken
down into 4 stages: data transformation, batch effect correction, clus-
tering, and statistical analysis.

Data Transformation

First, the cells are sampled so that each donor across all batches has a
number of cells. Then, for each marker, data are scaled using the hy-
perbolic arcsine transformation (arcsinh), which is then standardized.

f ðxÞ = arcsinhðxÞ (1)

f ðxÞ = x � m

s
(2)

To get rid of outliers that may affect the quality of the clustering later,
we use the hyperbolic tangent function to clip them. A cofactor of 3 is
being used.

f ðxÞ = tanh
�x
3

�
(3)

Batch Effect Correction

The MNNs (mutual nearest neighbors) algorithm was applied to cor-
rect for batch effect.71 To fasten the process, correction vectors are
computed on a subsample of 20,000 cells. We set the number of
neighbors k to 20.

Clustering

Once data have been corrected, we group the cells into clusters using
the SLM (smart local moving) algorithm.72 This algorithm belongs to
graph clustering algorithms. It builds a graph by having each cell act
as a node and being connected to its nearest neighbors through
vertices. When building the graph, we connect each cell to its 20 near-
est neighbors. To speed up clustering, we use the Annoy library to
compute L1 distances (https://github.com/spotify/annoy). We set
the number of trees to 50. Forward scatter-height (FSC-H), FSC-
width (FSC-W), side scatter (SSC)-H, and SSC-W are discarded
when computing distances; this is to avoid redundancy with FSC-
area (A) and SSC-A. A sizable number of clusters from SLM may
be of very small size. We remove those in which sizes are less than
0.05% of all cells.

Statistical Analysis

We then apply MetaCyto73 to label clusters. Finally, for each cluster,
we used the Mann-Whitney rank test to identify significant differ-
ences with the null hypothesis, as there is no difference between the
stratified groups high- versus low-risk and LTSs versus STSs.
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SUPPLEMETARY FIGURES  
 

 
Figure S1.  
Research Blood Collection Schedule. Peripheral blood mononuclear cells were 
collected from patients at indicated timepoints. Patients underwent 4 cycles of 
gemcitabine and carboplatin, before receiving 6 infusions of Epstein-Barr Virus 
Specific T-cells (EBVSTs). Timing of therapy and blood draw is indicated. In all 
instances, blood draw occurred before administration of therapy. 
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Figure S2.  
Longitudinal patient leukocyte ratios. A, Neutrophil to lymphocyte ratios. B, 
Platelet to lymphocyte ratios. C, Systemic Immune-Inflammation Index (SII), 
was calculated by (Platelet count × neutrophil count/ lymphocyte count). All 
results calculated from clinical complete blood counts. Coloured line sets 
represent different intervals of overall survival, with each patient indicated as a 
single line. Overall survival in weeks for the colours are as follows, red <50, 
orange >50,<100, green>100,<150, light blue >150,<200, dark blue 
>200,<250, pink >250,<300, purple >300, n=34. 
  

A B C

-100 0 100 200 300
0

50

100

150

Time from Start of Chemotherapy (Days)

N
eu

tr
op

hi
l:L

ym
ph

oc
yt

e

-100 0 100 200 300
0

20000

40000

60000

Time from Start of Chemotherapy (Days)

P
la

tle
t:

Ly
m

ph
oc

yt
e

-100 0 100 200 300
0

200

400

600

800

Time from Start of Chemotherapy (Days)

S
ys

te
m

ic
 Im

m
un

e
In

fla
m

m
at

io
n 

In
de

x



 4 

 
 

 
 
 
Figure S3.  
Survival plot of patients with univariate biomarker. A, Stratification of patient’s 
overall survival using Log10(EBV DNA plasma concentration+1)>3.05. 
n<3.05=23 (green line), n>3.05=11 (blue line).  B, Stratification of patient’s 
overall survival using monocyte:lymphocyte>0.5. n<0.5=13 (green line), 
n>0.5=21 (blue line). Gehan-Breslow-Wilcoxon test, 95% CI shown between 
dashed lines.  
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Figure S4.  
Example output of Flowpip pipeline from myeloid cell flow panel analysis. A, 
Histograms of surface marker expression from total leukocyte population (blue 
histogram), and from “Cluster 10” (orange histogram). B, Expression of CD14 
and HLADR surface markers of total leukocyte population (blue dots), and from 
“Cluster 10” (orange dots). C, Expression of CD11b and CD33 surface markers 
of total leukocyte population (blue dots), and from “Cluster 10”. D, Box and 
whisker plot of “Cluster 10” between high risk (0.0) and low risk (1.0) individuals. 
Frequency of population as a total of live cells is indicated on the y-axis. 
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Figure S5.  
Example output of Flowpip pipeline from T-cell flow panel analysis. A, 
Histograms of surface marker expression from total leukocyte population (blue 
histogram), and from “Cluster 20” (orange histogram). B, Expression of CD25 
and FOXP3 markers of total leukocyte population (blue dots), and from “Cluster 
20” (orange dots). C, Expression of CD4 and CD8 surface markers of total 
leukocyte population (blue dots), and from “Cluster 20”. D, Box and whisker plot 
of “Cluster 10” between high risk (0.0) and low risk (1.0) individuals. Frequency 
of population as a total of live cells is indicated on the y-axis. 
 
 

PD1 CD25

CTLA4CD4CD127CD8

CD3 FOXP3CD45RACCR7

A B

C

D

SSC-AFSC-A


	Monocytic Myeloid-Derived Suppressor Cells Underpin Resistance to Adoptive T Cell Therapy in Nasopharyngeal Carcinoma
	Introduction
	Results
	Overall Survival Correlated with Decreased MLRs and EBV Plasma Concentrations
	Overall Survival between Risk Groups Is Determined by Regulatory Leukocyte Presence Postchemotherapy
	Overall Survival in Low-Risk Group Is Determined by an Increased Cytotoxic CD8 T Cell Signature

	Discussion
	Materials and Methods
	Samples
	Serum Cytokine Analysis
	Immunophenotyping
	RNA Isolation
	Nanostring Processing
	Statistical Analysis
	Flowpip Pipeline
	Data Transformation
	Batch Effect Correction
	Clustering
	Statistical Analysis


	Supplemental Information
	Author Contributions
	Acknowledgments
	References


