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1. Multiplex serological assay and classification algorithms 

1.1. Serological assays 

In a first step, four proteins derived from SARS-CoV-2 Spike were included in the assay. This includes SARS-CoV-2 trimeric 

Spike ectodomain (Stri) and its receptor-binding domain (RBD) produced as recombinant proteins in mammalian cells in 

the Structural Virology Unit at Institut Pasteur, while S1 (cat# REC31806) and S2 (cat# REC31807) subunits were purchased 

from Native Antigen, Oxford, UK. Stri and RBD were designed based on the viral genome sequence of the SARS-CoV-2 strain 

France/IDF0372/2020, obtained from the GISAID database (accession number EPI_ISL_406596). The synthetic genes, 

codon-optimized for protein expression in mammalian cells, were ordered from GenScript (Leiden, Netherlands) and 

cloned in pcDNA3.1(+) vector as follows: the RBD, residues 331-519, and the entire S ectodomain (residues 1-1208). The 

RBD construct included an exogenous signal peptide of a human kappa light chain (METDTLLLWVLLLWVPGSTG) to ensure 

efficient protein secretion into the media. The S ectodomain construct was engineered, as reported before to have the 

stabilizing double proline mutation (KV986-987 to PP986-987) and the foldon domain at the C-terminus that allows the S 

to trimerize (YIPEAPRDGQAYVRKDGEWVLLSTFL) resembling the native S state on the virion [1]. Both constructs contained 

a Strep (WSHPQFEK), an octa-histidine, and an Avi tag (GLNDIFEAQKIEWHE) at the C-terminus for affinity purification. 

Protein expression was done by transient transfection of mammalian HEK293 free style cells. Proteins were then purified 

from supernatants on a Streptactin column (IBA Biosciences, IBA GmbH, Göttingen, Germany) followed by size exclusion 

purification on Superdex 200 column using standard chromatography protocols. 

In a second step, eight proteins were added to the assay. Recombinant SARS-CoV-2 nucleoprotein (NP) was expressed in 

E. coli in the Production and Purification of Recombinant Proteins Technological Platform at Institut Pasteur. Two SARS-

CoV-2 antigens were purchased from Native Antigen, Oxford, UK: RBD (cat# REC31831-20) and NP (cat# REC31812-100). 

The His-tagged SARS-CoV-2 N protein was bacterially expressed in E. coli BL21 (DE3) at Institut Pasteur and purified as a 

soluble dimeric protein by affinity purification using a Ni-NTA Protino column (Macherey Nagel) and gel filtration using a 

HiLoad 16/60 Superdex 200 pg column (GE Healthcare). Additional antigens for seasonal coronaviruses 229E NP (cat# 

REC31758-100) and NL63 NP (cat# REC31759-100), influenza A (cat# FLU-H1N1-HA-100), adenovirus type 40 (cat# 

NAT41552-100) and rubella (cat# REC31651-100) were purchased from Native Antigen. All proteins were coupled to 

magnetic beads as described elsewhere [2]. The mass of proteins coupled on beads were optimized to generate a log-

linear standard curve with a pool of positive serum prepared from RT-qPCR-confirmed SARS-CoV-2 patients. 

In total, we optimized a 12-plex assay able to detect antibody responses against seven SARS-CoV-2 antigens (two 

nucleoproteins constructs, five spike), one nucleoprotein for each seasonal coronavirus NL63 and 229E, and three antigens 

from other viruses (Influenza A H1N1, adenovirus type 40, rubella) for which a large part of the population is expected to 

be seropositive due to vaccination or natural infection and hence serve as internal controls (Appendix Table 1).  
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The assay was performed in black, 96 well, non-binding microtiter plate (cat#655090; Greiner Bio-One, Germany). Briefly 

50 µL of protein-conjugated magnetic beads (500/region/µL) and 50 µL of diluted serum were mixed and incubated for 30 

min at room temperature on a plate shaker. All dilutions were made in phosphate buffered saline containing 1% bovine 

serum albumin and 0·05% (v/v) Tween-20 (denoted as PBT), and all samples were run in singlicate. Following incubation, 

the magnetic beads were separated using magnetic plate separator (Luminex®, Austin, Texas, USA) for 60 seconds and 

washed three times with 100 μL of PBT. The washed magnetic beads were incubated for 15 minutes with detector 

secondary antibody at room temperature on a plate shaker. The magnetic beads were separated and washed three times 

with 100 μL of PBT and finally resuspended in 100 μL of PBT. Two separate assays were used for measuring IgG and IgM 

antibodies. For IgM measurements, serum samples were diluted 1/200, and R-Phycoerythrin (R-PE) -conjugated Donkey 

Anti-Human IgM (cat#709-116-073; JacksonImmunoResearch, UK) antibody was used as secondary antibody at 1/400 

dilution. For IgG, serum samples were diluted 1/100, and R-Phycoerythrin (R-PE) -conjugated Donkey Anti-Human IgG 

(cat#709-116-098; JacksonImmunoResearch, UK) antibody was used as secondary antibody at 1/120 dilution. 

On each plate, two blanks (only beads, no serum) were included as well as a standard curve prepared from two-fold serial 

dilutions (1:50 to 1:25600) of a pool of positive controls. Plates were read using a Luminex® MAGPIX® system and the 

median fluorescence intensity (MFI) was used for analysis. A 5-parameter logistic curve was used to convert MFI to 

antibody dilution, relative to the standard curve performed on the same plate to account for inter-assay variations. The 

multiplex immunoassay was validated by checking that the MFI obtained were well correlated with those obtained in 

monoplex (only one conjugated bead type per well). For non-SARS-CoV-2 antigens, MFI data was used for the analysis.  

The antigens included in the multiplex assay were selected with the aim of providing multiple measurements of the 

antibody response directed towards the Spike protein and the Nucleoprotein. Factors affecting antigen selection included 

availability and timeliness. Thus for example, at the time when this assay was being developed our team had access to the 

nucleoprotein of two seasonal alpha-coronaviruses (NL63, 229E), but we did not yet have access to antigens from the two 

seasonal beta-coronaviruses (OC43, HKU1).    
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Appendix Table 1: List of antigens included in the multiplex serological assay.  

category short name recombinant antigen expression system 
supplier, catalog 
number 

SARS-CoV-2 Stri SARS-CoV-2 Trimeric Spike protein HEK293 Institut Pasteur, Paris 

SARS-CoV-2 RBDv1 SARS-CoV-2 Spike Glycoprotein (S1) RBD CHO 
Native Antigen, 
REC31831-100 

SARS-CoV-2 RBDv2 SARS-CoV-2 Spike Glycoprotein (S1) RBD HEK293 Institut Pasteur, Paris 

SARS-CoV-2 S1 SARS-CoV-2 Spike Glycoprotein (S1)  HEK293 
Native Antigen, 
REC31806-100 

SARS-CoV-2 S2 SARS-CoV-2 Spike Glycoprotein (S2)  HEK293 
Native Antigen, 
REC31807-100 

SARS-CoV-2 NPv1 SARS-CoV-2 Nucleoprotein E. coli  Institut Pasteur, Paris 

SARS-CoV-2 NPv2 SARS-CoV-2 Nucleoprotein E. coli 
Native Antigen, 
REC31812-100 

seasonal 
coronavirus 

229E-NP Human Coronavirus 229E Nucleoprotein E. coli 
Native Antigen, 
REC31758-100 

seasonal 
coronavirus 

NL63-NP Human Coronavirus NL63 Nucleoprotein E. coli 
Native Antigen, 
REC31759-100 

internal 
controls 

FluA 
Influenza virus H1N1 haemagglutinin 
recombinant antigen 

HEK293 
Native Antigen, FLU-
H1N1-HA-100 

internal 
controls 

Ade40 Adenovirus type 40 Hexon (capside) HEK293 
Native Antigen, 
NAT41552-100 

internal 
controls 

Rub 
Rubella virus-like particles  
(spike glycoprotein E1, spike glycoprotein E2 
and Capsid protein) 

HEK293 
Native Antigen, 
REC31651-100 
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An overview of the output of the 12 plex assay for IgG and IgM antibody responses is provided in Appendix Figure 1. 

 

Appendix Figure 1: Anti-SARS-CoV-2 antibody responses. (A) Measured IgG antibody dilutions or medium fluorescence intensity (MFI) 

in serum samples with previously confirmed RT-qPCR infection from patients in Hôpital Bichat (n = 34), health care workers from 

Strasbourg (n = 162), and Hôpital Cochin (n = 63). Negative control samples from Thailand (n = 68), Peru (n = 90), and French donors 

(n = 177) were also tested. (B) Measured IgM antibody dilutions or MFI in serum or plasma samples. (C) Receiver Operating 

Characteristic (ROC) curve for IgG antibodies obtained by varying the cutoff for seropositivity. Colours correspond to those shown in 

part A. (D) ROC curve for IgM antibodies obtained by varying the cutoff for seropositivity. (E) Area under the ROC curve for individual 

biomarkers.  (F) Spearman correlation between measured antibody responses.  

 

1.2. Comparison with other immunoassays 

The multiplex Luminex assay was validated by comparison with data from other serological assays on matched samples. 

The samples used for this validation were the 162 samples from healthcare workers in Strasbourg hospitals with RT-qPCR 

confirmed SARS-CoV-2 infection. Two other serological assays were used: (i) S-Flow; and (ii) pseudo-neutralization [3,4]. 

In the S-Flow assay, a flow-cytometry based assay that measures antibodies binding to the spike protein (S) (GenBank: 

QHD43416.1) expressed at the surface of 293T cells (ATCC® CRL-3216TM). Two parameters can be calculated with the S-

Flow assay: the first is the percentage of cells having captured antibodies, defining the seropositivity. The second is the 

mean fluorescence intensity (MFI) of this binding, which provides a quantitative measurement of the amount of antibodies 

and their efficacy. Samples were also tested for neutralization activity at a single dilution of 1:100 using a viral pseudotype-

based assay. Briefly, single cycle lentiviral pseudotypes coated with the S protein and encoding for a luciferase reporter 

gene were preincubated with the serum to be tested at a dilution of 1:100, and added to 293T-ACE2 target cells (Addgene 
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Plasmid #1786). The luciferase signal was measured after 48 h. The percentage of neutralization was calculated by 

comparing the signal obtained with each serum to the signal generated by control negative sera. 

Appendix Figure 2 shows the association between IgG and IgM antibody levels measured on the Luminex assay (Stri, RBD, 

S1, S2) and antibody responses measured using the S-Flow and pseudo-neutralization assays. There were statistically 

significant associations between all 16 pairwise comparisons of the biomarkers studied. This indicates that our multiplex 

Luminex assay provides qualitatively and quantitatively similar output to other immunoassays. 

 

 

Appendix Figure 2; Association between immunoassays in samples from Strasbourg healthcare workers. (A-H) IgG and IgM antibody 
levels to trimeric spike, RBD, S1 and S2 measured using a multiplex Luminex assay and S-Flow MFI. (I-P) IgG and IgM antibody levels 
to trimeric spike, RBD, S1 and S2 measured using a multiplex Luminex assay and pseudo-neutralization activity. Each point 
represents a sample from one of 162 healthcare workers from hospitals in Strasbourg. The solid orange line represents the fit of a 
linear regression model, with the 95% confidence intervals represented as orange dashed lines. 



7 
 

1.3. Pairwise comparison of classification performance of biomarkers 

The classification performance of a biomarker can be assessed on its potential to correctly classify positive and negative 

samples, where classification will depend on the choice of cutoff. The classification performance of two biomarkers can 

be statistically compared using McNemar’s test. For cutoffs corresponding to a high specificity target, Appendix Table 2 

provides a pairwise comparison of the classification performance of 14 SARS-CoV-2 biomarkers (7 IgG and 7 IgM). The best 

individual biomarker is anti-Stri IgG antibody levels, which provide significantly better classification than all other 

biomarkers.
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Appendix Table 2: Comparison of classification performance between biomarkers for a high specificity target (>99%). Pairwise comparisons are made using McNemar’s 
test. The above diagonal element shows the odds ratio with 95% confidence intervals. Odds ratio > 1 indicates that biomarker indicated by the row has better 
classification than the biomarker indicated by the column. The corresponding element below the diagonal presents the P value. 

  Stri RBDv1 RBDv2 S1 S2 NPv1 NPv2 Stri RBDv1 RBDv2 S1 S2 NPv1 NPv2 

  IgG IgG IgG IgG IgG IgG IgG IgM IgM IgM IgM IgM IgM IgM 

Stri IgG  
13·75  

(5·1, 52·3) 

5·3  
(2·7, 11·7) 

Inf  

(30·1, Inf) 

87  

(15·2, 3475) 

6·8  

(3·4, 15·5) 

9  

(4·1, 23) 

220  

(39·1, 8729) 

20·3 

(7·6, 76·1) 

25·5  

(9·7, 95·4) 

107  

(29·3, 889) 

Inf  

(64·0, Inf) 

100·5 

(27·5, 835·6) 

65  
(21·9, 317·9) 

RBDv1 IgG < 10-10  
0·76  

(0·4, 1·3) 

5·77  

(3·2, 11·3) 

2·35  

(1·5, 3·9) 

1·04  

(0·6, 1·8) 

1·2  
(0·7, 2·1) 

43  

(16·5, 159·6) 

2·18  
(1·3, 3·8) 

3·35  
(2·0, 5·8) 

41·25  

(15·8, 153·2) 

Inf  

(50·2, Inf) 

25·67  

(11·5, 71·0) 

21·1  

(10·0, 53·5) 

RBDv2 IgG 3·4 x 10-8 0·36  15  

(6·1, 47·5) 

2·87  

(1·76,4·83) 

1·23  

(0·8, 1·9) 

1·33  

(0·9, 2·0) 

45  

(17·3, 166·9) 

2·06  

(1·3, 3·3) 

3·0  

(1·9, 4·9) 

29·17  

(13·1, 80·6) 

66 

(22·3, 322·8) 

32·2  

(13·5, 100·5) 

25·83  

(11·6, 71·5) 

S1 IgG < 10-10 < 10-10 < 10-10  
0·4  

(0·22,0·7) 

0·25  

(0·14, 0·41) 

0·28  

(0·17, 0·45) 

14·25  

(6·99, 33·8) 

0·48  
(0·31, 0·73) 

0·75 
(0·5,1·12) 

8·62  

(4·8, 16·7) 

32·25  

(12·3, 120·2) 

9·6  

(5, 20·7) 

7·08  

(3·9, 13·8) 

S2 IgG < 10-10 2·2 x 10-4 5·7 x 10-6 9·0 x 10-4  0·47  

(0·29, 0·73) 

0·48  

(0·3, 0·77) 

20  

(9·5, 50·7) 

0·83  

(0·55, 1·26) 

1·27  

(0·84, 1·92) 

11·5  

(6·4, 22·8) 

26·33  

(11·8, 72·8) 

11·27  

(6·1, 23·2) 

8·57  

(4·9, 16·2) 

NPv1 IgG < 10-10 1·0  0·39 7·0 x 10-10 5·9 x 10-4  
1·57  

(0·56, 4·78) 

56·67  

(19·1, 277·5) 

1·89  

(1·18, 3·11) 

2·92  

(1·81, 4·85) 

54·33  

(18·27, 266·2) 

187  

(33·2, 7425·1) 

30·4  

(12·8, 94·9) 

29  

(12·2, 90·7) 

NPv2 IgG < 10-10 0·59 0·21 1·0 x 10-8 1·6 x 10-3 
0·48 
 

 
28·17  

(12·7, 77·8) 

1·7  

(1·06, 2·76) 

2·62  

(1·6, 4·3) 

32·2  

(13·5, 100·5) 

183  

(32·4, 7267) 

18·88  

(9·3, 44·5) 

16·11  

(8·3, 35·9) 

Stri IgM < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10  
0·01  

(0, 0·05) 

0·02  

(0, 0·06) 

0·53  

(0·2, 1·34) 

3·11  

(1·43, 7·49) 

0·44  

(0·23, 0·82) 

0·36  

(0·18, 0·66) 

RBDv1 IgM < 10-10 2·6 x 10-3 7·7 x 10-4 4·7 x 10-4 0·42 7·3 x 10-3 0·026 < 10-10  
Inf  

(5·21, Inf) 

68·5  

(18·6, 571·3) 

162  

(28·7, 6437) 

41·67  

(13·9, 204·8) 

24  

(10,75·26) 

RBDv2 IgM < 10-10 4·3 x 10-7 1·3 x 10-7 0·17 0·28 2·2 x 10-6 1·7 x 10-5 < 10-10 9·5 x 10-7  
39  

(13·0, 191·8) 

47·67  

(16·0, 233·9) 

26·25  

(9·95, 98·13) 

14·43  

(6·75, 36·8) 

S1 IgM < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 0·21 < 10-10 < 10-10  7·5  

(2·6, 29·3) 

0·59  

(0·.32, 1·08) 

0·47  

(0·25, 0·85) 

S2 IgM < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 2·6 x 10-3 < 10-10 < 10-10 6·2 x 10 -6  
0·13  

(0·05, 0·31) 

0·12  

(0·04, 0·27) 

NPv1 IgM < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 7·8 x 10 -3 < 10-10 < 10-10 0.092 1·8 x 10 -8  0·12  

(0, 0·93) 

NPv2 IgM < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 4·6 x 10 -4 < 10-10 < 10-10 0.01 3·0 x 10 -10 0·039 
 

 

 

 

 

 



9 
 

1.4. Selection of classification algorithms 

In previous work on the analysis of data from a multiplex assay of Plasmodium vivax malaria antibody responses, we tested 

the performance of a number of different classification algorithms including logistic regression, linear discriminant 

analyses, quadratic discriminant analyses, decision trees, and random forests [5]. This analysis found random forests 

algorithms to have the highest classification performance of the tested algorithms. On this basis, we selected random 

forests algorithms to classify previous SARS-CoV-2 infection using multiplex serological data. 

To further test this, we compared the classification performance of a random forests algorithm with a logistic regression 

classifier. The data from positive and negative samples as detailed in Table 1 for assessing classification performance. 

1000-fold repeat cross-validation was implemented with splitting of the data into disjoint training sets (2/3 of the data) 

and testing sets (1/3 of the data). Appendix Figure 3 shows cross-validated Receiver Operating Characteristic (ROC) curves 

for Random Forests and Logistic Regression classifiers using six measurements of antibody responses (Stri IgG; RBDv2 IgG; 

NPv1 IgG; S2 IgG; RBDv1 IgM; NPv1 IgM). For all values of specificity, the random forests classifier provides equal or better 

sensitivity than the logistic regression classifier. At a fixed value of 99% specificity, the logistic regression classifier had 

96·6% (95% CI: 88·2%, 100·0%) sensitivity, whereas the random forests classifier had 98·9% (95% cI: 97·1%, 99·6%) 

sensitivity. 

 

 

 

Appendix Figure 3: Comparison of random forests and logistic regression classifiers. ROC curves were estimated using 1000-fold 
cross-validation with training (2/3 of samples) and testing (1/3 of samples) data sets. Shaded regions depict regions of 95% 
uncertainty.  
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1.5. Results of multiplex classification with random forests algorithm 

The classification performance of a diagnostic test can be assessed against a number of sensitivity and specificity targets. 

Here we consider three targets in detail: 

 high sensitivity target: sensitivity > 99% is enforced, and subject to these constraints specificity is maximised. 

 balanced target: sensitivity and specificity are equally weighted, so that a combination that minimises  

|sensitivity – specificity| is selected. 

 high specificity target: specificity > 99% is enforced, and subject to these constraints sensitivity is maximised. 

For these three targets, Appendix Table 3 shows the sensitivity and specificity for the 14 individual biomarkers, plus 

multiplex combinations up to size six. Multiplex combinations were selected on their potential to optimize the high 

specificity target. For example, anti-Stri IgG antibody levels provided the greatest sensitivity for combinations of size 1. 

Therefore, for combinations of size 2, anti-Stri IgG antibody levels were automatically included, and all other possible 

biomarkers were included in combinations. The pairwise combination that maximized sensitivity was anti-Stri IgG antibody 

levels and anti-RBDv2 IgG antibody levels. In general, the optimal multiplex combination of size n was selected by starting 

with optimal multiplex combination of size n – 1 and adding possible remaining biomarkers. 

Note that the routine described above does not necessarily guarantee that the optimal combination of size n will be 

selected. To account for this possibility, we tested all possible combinations of IgG antibody levels to the seven SARS-CoV-

2 antigens. This resulted in a total of 27 – 1 = 127 combinations. The output of all of these combinations against a range of 

targets is summarized in detail in a spreadsheet provided in the GitHub repository associated with the publication 

(https://github.com/MWhite-

InstitutPasteur/SARS_CoV_2_SeroDX_phase2/blob/master/SARSCoV2_IgG_antigen_combination.xlsx).    

 

 

 

 

 

 

 

 

 

 

https://github.com/MWhite-InstitutPasteur/SARS_CoV_2_SeroDX_phase2/blob/master/SARSCoV2_IgG_antigen_combination.xlsx
https://github.com/MWhite-InstitutPasteur/SARS_CoV_2_SeroDX_phase2/blob/master/SARSCoV2_IgG_antigen_combination.xlsx
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Appendix Table 3: Sensitivity and specificity targets for single biomarkers and multiplex combinations. 95% binomial confidence 

intervals were calculated using Wilson’s method. Antigen combinations were selected to optimize sensitivity for the high specificity 

target, i.e. the highest sensitivity while enforcing specificity > 99%.  

biomarker high sensitivity target 
(sensitivity > 99%) 

balanced target 
(sensitivity ~ specificity) 

high specificity target 
(specificity > 99%) 

 sensitivity specificity sensitivity specificity sensitivity specificity 

IgG antibody dilution 

anti-Stri 99·2%  
(97·1%, 99·8%) 

94·0%  
(91·0%, 96·1%) 

97·1%  
(94·4%, 98·6%) 

97·0%  

(94·6%, 98·4%) 
91·6%  
(87·5%, 94·5%) 

99·1%  
(97·4%, 99·7%) 

anti-RBDv1 100·0%  
(98·5%, 
100·0%) 

0·0%  
(0·0%, 1·1%) 

89·2%  
(84·8%, 92·5%) 

97·5%  
(95·3%, 98·7%) 

88·0%  
(83·5%, 91·5%) 

99·1%  
(97·4%, 99·7%) 

anti-RBDv2 99·2%  
(97·1%, 99·8%) 

0%  
(0%, 1·1%) 

91·2%  
(87·1%, 94·1%) 

91·4%  
(87·9%, 93·9%) 

78·1%  
(72·6%, 82·8%) 

99·1%  
(97·4%, 99·7%) 

anti-S1 99·2%  
(97·1%, 99·8%) 

75·9%  
(71·0%, 80·2%) 

91·6%  
(87·5%, 94·5%) 

91·7%  
(88·2%, 94·2%) 

50·6%  
(44·5%, 56·7%) 

99·1%  
(97·4%, 99·7%) 

anti-S2 99·2%  
(97·1%, 99·8%) 

22·6%  
(18·5%, 27·4%) 

90·7%  
(86·6%, 93·7%) 

91·4%  
(87·9%, 93·9%) 

66·9%  
(60·9%, 72·5%) 

99·1%  
(97·4%, 99·7%) 

anti-NPv1 100·0%  
(98·5%, 
100·0%) 

0%  
(0%, 1·1%) 

85·7%  
(80·8%, 89·5%) 

85·8%  
(81·7%, 89·1%) 

73·7%  
(67·9%, 78·8%) 

99·1%  
(97·4%, 99·7%) 

anti-NPv2 100·0%  
(98·5%, 
100·0%) 

0%  
(0%, 1·1%) 

86·9%  
(82·1%, 90·5%) 

86·7%  
(82·7%, 89·9%) 

72·9%  
(67·1%, 78·0%) 

99·1%  
(97·4%, 99·7%) 

IgM antibody dilution 

anti-Stri 99·6%  
(97·8%, 99·9%) 

9·2%  
(6·6%, 12·8%)  

74·9%  
(69·2%, 79·9%) 

74·9%  
(70·0%, 79·2%) 

0%  
(0%, 1·5%) 

100%  
(98·9%, 100%) 

anti-RBDv1 99·2%  
(97·1%, 99·8%) 

24·0%  
(19·7%, 28·8%) 

87·3%  
(82·6%, 90·8%) 

87·1%  
(83·1%, 90·3%) 

64·5%  
(58·4%, 70·2%) 

99·3%  
(97·8%, 99·8%) 

anti-RBDv2 99·2%  
(97·1%, 99·8%) 

28·4%  
(23·9%, 33·5%) 

84·9%  
(79·9%, 88·8%) 

84·5%  
(80·2%, 88·0%) 

57·0%  
(50·8%, 62·9%) 

99·3%  
(97·8%, 99·8%) 

anti-S1 99·6%  
(97·8%, 99·9%) 

7·4%  
(5·0%, 10·7%) 

69·3%  
(63·4%, 74·7%) 

69·4%  
(64·2%, 74·1%) 

0%  
(0%, 1·5%) 

100%  
(98·9%, 100%) 

anti-S2 99·2%  
(97·8%, 99·8%) 

8·5%  
(6·0%, 12·0%) 

65·7%  
(59·7%, 71·3%) 

65·7%  
(60·5%, 70·6%) 

0%  
(0%, 1·5%) 

100%  
(98·9%, 100%) 

anti-NPv1 99·2%  
(97·1%, 99·8%) 

17·3%  
(13·7%, 21·8%) 

73·3%  
(67·5%, 78·4%) 

73·4%  
(68·5%, 77·9%) 

0%  
(0%, 1·5%) 

100%  
(98·9%, 100%) 

anti-NPv1 99·2%  
(97·1%, 99·8%) 

5·5%  
(3·6%, 8·5%) 

73·7%  
(67·9%, 78·8%) 

73·8%  
(68·8%, 78·2%) 

0%  
(0%, 1·5%) 

100%  
(98·9%, 100%) 

Multiplex combinations 

Stri IgG + RBDv2 IgG 99·2%  
(97·2%, 99·8%) 

95·8%  
(93·1%, 97·5%) 

97·6%  
(94·9%, 98·9%) 

97·6%  
(95·4%, 98·8%) 

95·6%  
(92·3%, 97·5%) 

99·1%  
(97·4%, 99·7%) 

Stri IgG + RBDv2 IgG + 
 NPv1 IgG 

99·2%  
(97·2%, 99·8%) 

96·6%  
(94·1%, 98·1%) 

98·0%  
(95·4%, 99·1%) 

98·1%  
(96·1%, 99·1%) 

98·0%  
(95·4%, 99·1%) 

99·1%  
(97·4%, 99·7%) 

Stri IgG + RBDv2 IgG +  
NPv1 IgG + S2 IgG 

99·2%  
(97·2%, 99·8%) 

96·0%  
(93·3%, 97·6%) 

98·8%  
(96·5%, 99·6%) 

98·8%  
(96·9%, 99·5%) 

98·4%  
(96·0%, 99·4%) 

99·1%  
(97·4%, 99·7%) 

Stri IgG + RBDv2 IgG + NPv1 
IgG + S2 IgG + RBDv1 IgM 

99·2%  
(97·2%, 99·8%) 

98·5%  
(96·6%, 99·4%) 

98·8%  
(96·5%, 99·6%) 

98·9%  
(97·1%, 99·6%) 

98·8%  
(96·5%, 99·6%) 

99·3%  
(97·6%, 99·8%) 

Stri IgG + RBDv2 IgG + NPv1 
IgG + S2 IgG + RBDv1 IgM + 
NPv1 IgM 

99·2%  
(97·2%, 99·8%) 

98·9%  
(97·1%, 99·6%) 

98·8%  
(96·5%, 99·6%) 

98·9%  
(97·1%, 99·6%) 

98·8%  
(96·5%, 99·6%) 

99·3%  
(97·6%, 99·8%) 
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1.6. Uncertainty in classification performance 

Uncertainty in sensitivity and specificity can be quantified in three ways: (i) binomial confidence intervals calculated using 

Wilson’s method; (ii) 1000-fold repeat cross-validation with a training set comprising 2/3 of the data and a disjoint testing 

set comprising 1/3 of the data; (iii) cross-panel validation with algorithms trained and tested on disjoint panels of data. 

For a single antigen (Stri) IgG assay, and a six antigen multiplex assay with random forests classifier (Stri IgG + RBDv2 IgG + 

NPv1 IgG + S2 IgG + RBDv1 IgM + NPv1 IgM), Appendix Figure 4 provides a detailed overview of the uncertainty in assay 

sensitivity and specificity. 

 

 

Appendix Figure 4: Quantification of uncertainty for serological classification. Results are shown for a single antigen (Stri) IgG assay 
in red, and a six antigen multiplex classifier in black. (A) Uncertainty estimated using Wilson’s binomial method applied to data from 
all samples. Uncertainty in specificity at fixed sensitivity, and variation in sensitivity at fixed specificity are shown separately. (B) 
Uncertainty estimated using 1000-fold cross-validation with training (2/3 of samples) and testing (1/3 of samples) data sets. 
Uncertainty in specificity at fixed sensitivity, and variation in sensitivity at fixed specificity are shown separately. (C) Cross-panel 
validation. The title of each plot denotes the panels that were used for testing, while the other panels were used for training. 
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2. Antibody kinetics models 

 

2.1. Prior longitudinal data on long-term antibody responses to coronaviruses 

There are limited available longitudinal data on SARS-CoV-2 antibody kinetics, and no data from long-term follow-up (as 

of July 2020). However, there are a number of published studies on the long-term antibody kinetics to other coronaviruses, 

most notably Severe Acute Respiratory Syndrome coronavirus (SARS-CoV). Here we review some of the available 

published data, and describe how this can be used to provide prior information for modelling SARS-CoV-2 antibody 

kinetics.  

Appendix Table 4 summarises some of the published data on the long-term antibody kinetics to a number of 

coronaviruses: SARS-CoV, human seasonal coronavirus 229E, and Middle East Respiratory Syndrome coronavirus (MERS-

CoV) [6-12]. From the extracted time series, we estimated two summary statistics characterizing the long-term antibody 

response: the half-life of the long-lived component of the antibody response, and the percentage reduction in antibody 

response after one year. The half-life of the long-lived component of the antibody response was estimated by fitting a 

linear regression model to measurements of (log) antibody response taken greater than six months after symptom onset. 

The percentage reduction in antibody response after one year was estimated based on the reduction from the peak 

measured antibody response to the estimated antibody level at one year. Although a wide range of assays from ELISA to 

micro-neutralisation were used in the reviewed studies, in this simple and approximate analysis we did not attempt to 

account for assay dependent effects, except to subtract background antibody levels where necessary. 

Based on the estimated summary statistics, we assume that the long-term IgG antibody kinetics can be characterized as 

having a half-life of dl = 400 days with a 60% reduction after one year. In terms of the parameters of the mathematical 

model of antibody kinetics, this corresponds to prior estimates of cl = log(2)/dl = 0.0017 and ρ ~ 0.9. For sensitivity analyses, 

we also considered scenarios where dl = 200 days and dl = 800 days. For IgM antibody kinetics, we assumed dl = 100 days 

and ρ ~ 0·9. For sensitivity analyses, we also considered scenarios where dl = 50 days and dl = 200 days. 

A prior estimate of the half-life of IgG molecules of 21 days is assumed [13]. A prior estimate of the half-life of IgM 

molecules of 10 days is assumed [14]. Prior estimates for the short-lived component of the antibody response (half-life = 

3·5 days) are consistent with data from several sources [15-19].  
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Appendix Table 4: Prior data on the duration of antibody responses to coronaviruses. Data from longitudinal studies on measured 

antibody levels to SARS coronavirus, seasonal coronavirus 229E, and MERS coronavirus. For each study, the time series describing the 

antibody kinetics was extracted. The half-life of the long-lived component of the antibody response was estimated using 

measurements of antibody response measured after 6 months from symptom onset – the subset of the data used for this calculation 

is indicated in bold below. The percentage reduction in antibodies after one year is estimated based on the reduction from the peak 

measured response to the estimate antibody level at year.    

study half-life (days) 1 year 
reduction 

SARS-CoV; Wu et al. [6]   

time (days) 180 365 730 1095          
IgG 0·96 0·638 0·516 0·249        510  

SARS-CoV; Mo et al. [7]   

time (days) 7 15 30 60 90 180 270 360 450 540 720   
IgG 0·01 1·86 2·36 2·83 2·81 2·73 2·38 1·91 1·42 1·00 0·80 181 60% 
IgM 0·01 1·13 1·80 1·30 0·69 0·06 0·01      100% 
Nab 0·01 1·99 2·74 2·51 2·26 2·06 1·83 1·56 1·24 0·96 0·78 277 69% 

SARS-CoV; Cao et al. [8]   

time (days) 30 120 210 300 480 720 900 1080      
IgG 196 244 114 112 64 36 33 28    394 61% 
Nab 1034 1254 836 773 960 99 32 32    154 33% 

SARS-CoV; Liu et al. [9]   

time (days) 30 120 210 300 480 720        
IgG 185 201 115 125 65 32      254 49% 

SARS-CoV; Tang et al. [10]   

time (days) 24 120 210 300 480 720 900 1080 1600 2160    
IgG 305 252 128 170 66 31 36 33 6.9 6.0  400 57% 

seasonal coronavirus 229E; [11]   

time (days) 0 21 84 364          
IgG 2·45 3·18 2·62 2·51        191 91% 
IgA 2·61 3·04 2·80 2·66        150 87% 
Nab 1·43 9·84 5·46 2·19        116 91% 

MERS CoV; Choe et al. [12]   

time (days) 15 90 200 300 400         
IgG (S1) 1·39 2·53 1·63 1·56 1·47       915 50% 

 

 

 

 

 

 

 

 

 



15 
 

2.2. Mathematical model of antibody kinetics 

SARS-CoV-2 antibody kinetics are described using a previously published mathematical model of the immunological 

processes underlying the generation and waning of antibody responses following infection or vaccination [15]. The existing 

model is adapted to account for the frequent data available in the first weeks of infection. 

𝑑𝐵

𝑑𝑡
= −𝑏𝐵, 

𝑑𝑃𝑠
𝑑𝑡
= 𝜌𝐵 − 𝑐𝑠𝑃𝑠, 

𝑑𝑃𝑙
𝑑𝑡
= (1 − 𝜌)𝐵 − 𝑐𝑙𝑃𝑙 , 

𝑑𝐴

𝑑𝑡
= 𝑔𝑃𝑠 + 𝑔𝑃𝑙 − 𝑟𝐴 

where B denotes B lymphocytes, b > 0 is the rate of differentiation of B lymphocytes into antibody secreting plasma cells, 

Ps denotes short-lived plasma cells, Pl denotes long-lived plasma cells, ρ (0 ≤ 𝜌 ≤ 1) is the proportion of plasma cells that 

are short-lived, g > 0 is the rate of generation of antibodies (IgG or IgM) from plasma cells, and r > 0 is the rate of decay of 

antibody molecules. Assuming B(0) = B0, Ps(0) = Pl(0) = 0 and A(0) = Abg, these equations can be solved analytically to give: 

𝐴(𝑡) = 𝐴𝑏𝑔 + 𝑔𝐵0 (
(𝜌𝑐𝑙 + (1 − 𝜌)𝑐𝑠 − 𝛿)𝑒

−𝑏(𝑡−𝛿)

(𝑐𝑠 − 𝛿)(𝑐𝑙 − 𝛿)(𝑟 − 𝑏)
+
(𝜌𝑐𝑙 + (1 − 𝜌)𝑐𝑠 − 𝑟)𝑒

−𝑟(𝑡−𝛿)

(𝑐𝑠 − 𝑟)(𝑐𝑙 − 𝑟)(𝑏 − 𝑟)
+

𝜌𝑒−𝑐𝑠(𝑡−𝛿)

(𝑐𝑠 − 𝑟)(𝑐𝑠 − 𝑏)
+
(1 − 𝜌)𝑒−𝑐𝑙(𝑡−𝛿)

(𝑐𝑙 − 𝑟)(𝑐𝑙 − 𝑏)
) 

δ is the time after symptom onset when antibody levels start to increase. B0 is the number of B cells, and g is the rate at 

which they secrete antibodies. As g and B0 are not both identifiable without detailed and invasive experiments (e.g. 

bone marrow aspirates to measure antigen-specific plasma cells), we estimate 𝛽 = 𝑔𝐵0.  If r is the decay rate of 

antibody molecules, then we define 𝑑𝑎 =
log⁡(2)

𝑟
 to be the half-life of antibody molecules. Similarly, we define 𝑑𝑏 =

log⁡(2)

𝑏
, 𝑑𝑠 =

log⁡(2)

𝑐𝑠
 and 𝑑𝑙 =

log⁡(2)

𝑐𝑙
 . 

 

2.3. Methodology for statistical inference 

The model was fitted to longitudinal antibody level measurements from all participants. Mixed effects methods were used 

to capture the natural variation in antibody kinetics between individual participants, whilst estimating the average value 

and variance of the immune parameters across the entire population of individuals. The models were fitted in a Bayesian 

framework using Markov Chain Monte Carlo (MCMC) methods. Mixed effects methods allow individual-level parameters 

to be estimated for each participant separately, with these individual-level (or mixed effects) parameters being drawn 

from global distributions. For example, for each participant n the half-life of the short-lived ASCs may be estimated as 𝑑𝑠
𝑛 

(an individual-level parameter). These N estimates of the local parameters 𝑑𝑠
𝑛 will be drawn from a probability distribution. 

A log-Normal distribution is suitable as it has positive support on [0, ∞). Thus we have 𝑙𝑜𝑔(𝑑𝑠
𝑛)~𝑁(𝜇𝑠, 𝜎𝑠

2). The mean ds 

and the variance Σ𝑠
2 of the estimates of 𝑑𝑠

𝑛 are given by 𝑑𝑠 = 𝑒
𝜇𝑠+

𝜎𝑠
2

2  and Σ𝑠
2 = (𝑒𝜎𝑠

2
− 1)𝑒2𝜇𝑠+𝜎𝑠

2
.  
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Model likelihood 

For individual n we have data on observed antibody levels 𝐴𝑛 = {𝑎1, … , 𝑎𝐽} at times 𝑇𝑛 = {𝑡1, … , 𝑡𝐽}. We denote 

 𝐷𝑛 = (𝐴𝑛, 𝑇𝑛) to be the vector of data for individual n. For individual n, the parameters 

 𝜃𝑛 = (𝐴𝑏𝑔
𝑛 , 𝛿𝑛, 𝐵0

𝑛, 𝛿𝑛, 𝑑𝑠
𝑛, 𝑑𝑙

𝑛, 𝑑𝑎
𝑛, 𝜌𝑛) are estimated. The model predicted antibody levels will be 

{𝐴(𝑡1), 𝐴(𝑡2),… , 𝐴(𝑡𝐽)}. We assume log-Normally distributed measurement error such that the difference between 

𝑙𝑜𝑔(𝑎𝑗) and 𝑙𝑜𝑔 (𝐴(𝑡𝑗)) is Normally distributed with variance 𝜎𝑜𝑏𝑠
2 . For model predicted antibody levels 𝐴(𝑡𝑗) the data 

likelihood for individual n is given by 

𝐿𝑚𝑜𝑑
𝑛 (𝜃𝑛|𝐷𝑛) =∏

𝑒
−
(𝑙𝑜𝑔(𝑎𝑗)−𝑙𝑜𝑔(𝐴(𝑡𝑗)))

2

2𝜎𝑜𝑏𝑠
2

𝑎𝑗𝜎𝑜𝑏𝑠√2𝜋𝑗∈𝐽

 

Mixed effects likelihood 

As described above, for each individual there are eight parameters to be estimated. The mixed effects likelihood can be 

written as follows: 

𝐿𝑚𝑖𝑥
𝑛 (𝜃𝑛|𝐷𝑛) =

(

 
 𝑒

−
(𝑙𝑜𝑔(𝐴𝑏𝑔

𝑛 )−𝜇𝐴)
2

2𝜎𝐴
2

√2𝜋𝐴𝑏𝑔
𝑛 𝜎𝐴

)

 
 

(

 
𝑒
−
(𝑙𝑜𝑔(𝛿𝑛)−𝜇𝛿)

2

2𝜎𝛿
2

√2𝜋𝛿𝑛𝜎𝛿
)

 

(

 
 𝑒

−
(𝑙𝑜𝑔(𝛽𝑛)−𝜇𝛽)

2

2𝜎𝛽
2

√2𝜋𝛽𝑛𝜎𝛽

)

 
 

(

 
 𝑒

−
(𝑙𝑜𝑔(𝑑𝑏

𝑛)−𝜇𝑏)
2

2𝜎𝑏
2

√2𝜋𝑑𝑏
𝑛𝜎𝑏

)

 
 
(
𝑒
−
(𝑙𝑜𝑔(𝑑𝑠

𝑛)−𝜇𝑠)
2

2𝜎𝑠
2

√2𝜋𝑑𝑠
𝑛𝜎𝑠

) 

(

 
 𝑒

−
(𝑙𝑜𝑔(𝑑𝑙

𝑛)−𝜇𝑙)
2

2𝜎𝑙
2

√2𝜋𝑑𝑙
𝑛𝜎𝑙

)

 
 
(
𝑒
−
(𝑙𝑜𝑔(𝑑𝑎

𝑛)−𝜇𝑎)
2

2𝜎𝑎
2

√2𝜋𝑑𝑎
𝑛𝜎𝑎

)

(

 
 
 𝑒

−
(𝑙𝑜𝑔(

𝜌𝑛

1−𝜌𝑛
)−𝜇𝜌)

2

2𝜎𝜌
2

√2𝜋𝜌𝑛(1 − 𝜌𝑛)𝜎𝜌

)

 
 
 
𝐿𝑚𝑜𝑑
𝑛 (𝜃𝑛|𝐷𝑛) 

As the proportion of the ASCs that are long-lived must be bounded by 0 and 1, the individual-level parameters ρn are 

assumed to be drawn from logit-Normal distributions.  

 

Total model likelihood 

Denote 𝐷 = {𝐷1, … , 𝐷𝑁} to be the vector of data for all N participants. We denote 

𝜃𝑛 = (𝜇𝐴, 𝜎𝐴, 𝜇𝛿 , 𝜎𝛿 , 𝜇𝛽 , 𝜎𝛽 , 𝜇𝑏 , 𝜎𝑏, 𝜇𝑠, 𝜎𝑠, 𝜇𝑙 , 𝜎𝑙 , 𝜇𝑎 , 𝜎𝑎, 𝜇𝜌, 𝜎𝜌, 𝜃
1, … , 𝜃𝑁) to be the combined vector of population-level 

parameters and individual-level parameters to be estimated. The total likelihood is obtained by multiplying the likelihood 

for each participant 
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𝐿𝑡𝑜𝑡𝑎𝑙(𝜃|𝐷) =∏𝐿𝑚𝑖𝑥
𝑛

𝑛∈𝑁

(𝜃𝑛|𝐷𝑛) 

Markov Chain Monte Carlo parameter update 

The model was fitted to the data using Markov Chain Monte Carlo (MCMC) methods. A three stage parameter update 

regimen was utilised with a Metropolis-within-Gibbs sampler with sequential updating of individual-level parameters, 

population-level parameters, and observational variance parameters. A′ indicates an attempted update. 

1. Individual-level parameter Metropolis-Hastings update. For each participant n: 

 Update local parameters: 𝜃𝑛′ = (𝐴𝑏𝑔
𝑛 ′
, 𝛿𝑛′, 𝛽𝑛′, 𝑑𝑏

𝑛′, 𝑑𝑠
𝑛′, 𝑑𝑙

𝑛′, 𝑑𝑎
𝑛′, 𝜌𝑛′) 

 Calculate updated mixed effects likelihood 𝐿𝑚𝑖𝑥
𝑛 (𝜃𝑛′|𝐷𝑛) 

 Accept the parameter update with probability 𝑚𝑖𝑛 (1,
𝐿𝑚𝑖𝑥
𝑛 (𝜃𝑛

′
|𝐷𝑛)

𝐿𝑚𝑖𝑥
𝑛 (𝜃𝑛|𝐷𝑛)

) 

 

2. Population-level parameter Gibbs update.  

 For each of the 𝑖 ∈ {𝐴, 𝛿, 𝛽, 𝑏, 𝑠, 𝑙, 𝑎} we obtain new estimates of the population level parameters 𝜇𝑖′ 

and 𝜏𝑖
′ =⁡

1

𝜎𝑖′
  as follows: 

𝜇𝑖
′~𝑁(

𝜏𝑖,0𝜇𝑖,0 + 𝜏𝑖 ∑ 𝑙𝑜𝑔(𝑦𝑖
𝑛)𝑁

𝜏𝑖,0 + 𝜏𝑖𝑁
,

1

√𝜏𝑖,0 + 𝜏𝑖𝑁
) 

𝜏𝑖
′~Γ(

𝑁

2
+ 𝑘, (

1

𝜃
+
1

2
∑ (𝑙𝑜𝑔(𝑦𝑖

𝑛) − 𝜇𝑖′)
2

𝑁
)
−1

) 

where 𝜇𝑖,0 and 𝜏𝑖,0 parameterise the Normal prior distribution on the mean, and k and θ parameterise 

the Gamma prior distribution on the precision (inverse standard deviation). 𝑦𝑖
𝑛 is the individual-level 

parameter i in individual n. 

 For ρ we obtain new estimates of the population level parameters 𝜇𝜌′ and 𝜏𝜌
′ =⁡

1

𝜎𝜌′
  as follows: 

𝜇𝜌
′ ~𝑁(

𝜏𝜌,0𝜇𝜌,0 + 𝜏𝜌 ∑ 𝑙𝑜𝑔𝑖𝑡(𝜌𝑛)𝑁

𝜏𝜌,0 + 𝜏𝜌𝑁
,

1

√𝜏𝜌,0 + 𝜏𝜌𝑁
) 

𝜏𝜌
′~Γ(

𝑁

2
+ 𝑘, (

1

𝜃
+
1

2
∑ (𝑙𝑜𝑔𝑖𝑡(𝜌𝑛) − 𝜇𝜌′)

2

𝑁
)
−1

) 

where 𝜇𝜌,0 and 𝜏𝜌,0 parameterise the Normal prior distribution on the mean, and k and θ parameterise 

the Gamma prior distribution on the precision (inverse standard deviation).  

 

3. Observational variance parameter Metropolis-Hastings Update. 

 Update the observational variance parameter 𝜎𝑜𝑏𝑠′  
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 Calculate updated total likelihood 𝐿𝑡𝑜𝑡𝑎𝑙(𝜃′|𝐷)and the updated prior probability density 𝑃(𝜃′) 

 Accept the parameter update with probability 𝑚𝑖𝑛 (1,
𝐿𝑡𝑜𝑡𝑎𝑙(𝜃′|𝐷)𝑃(𝜃′)

𝐿𝑡𝑜𝑡𝑎𝑙(𝜃|𝐷)𝑃(𝜃)
)  

The MCMC algorithm was implemented in C++ complied in Microsoft Visual Studio. The covariance of the multivariate-

Normal proposal distributions for Metropolis-Hastings updates were adaptively tuned using the estimated posterior 

distributions during a burn-in phase of 1 million MCMC iterations. The magnitude of the proposed step size was calibrated 

using a Robbins-Munro algorithm to ensure an acceptance rate of approximately 23%. The total number of MCMC 

iterations was 10,000,000. The effective number of iterations was calculated using the effectiveSize routine in the R library 

coda and the effective size was checked to be > 1,000 for all parameters.  

 

2.4. Fit of antibody kinetic model to data.  

For all seven SARS-CoV-2 antigens, we fit the mathematical models of antibody kinetics to data on IgG antibody levels. We 

did not attempt to fit the model to data on IgM antibody levels because of higher levels of noise in the IgM assay, and a 

lack of prior data on the long-term kinetics of IgM antibodies. Prior and posterior parameter estimates with 95% credible 

intervals are presented in Appendix Table 5. 

Appendix Figure 5 shows data from a patient from Hôpital Bichat with frequent longitudinal sampling. The data and model 

indicate that the antibody response is in a rising phase between 5 and 30 days after symptom onset. The seroconversion 

time depends on the seropositivity cutoff. For the cutoffs shown, seroconversion occurs for anti-Stri IgG, anti-RBDv1 IgG 

and anti-S2 IgG, but not for anti-RBDv2 IgG, anti-S1 IgG, anti-NPv1 IgG and anti-NPv2 IgG.  

For all 215 individuals with RT-qPCR SARS-CoV-2 infection, Appendix Figure 5B shows the model predicted IgG antibody 

response to SARS-CoV-2. For all antigens, we predict a bi-phasic pattern of waning with a first rapid phase between one 

and three months after symptom onset, followed by a slower rate of waning. The percentage reduction in antibody level 

after one year was mostly determined by prior information and estimated to be 47% (95% CrI: 18%, 90%) for anti-Stri IgG 

antibodies, with comparable estimates for other antigens (Appendix Figure 5B & Appendix Table 6). Sensitivity was 

assessed using the seropositivity cutoff based on a high specificity target (>99%). For all antigens considered, we predict 

that there will be a reduction in sensitivity over time, although there is a large degree of uncertainty (Appendix Figure 5C).  
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Appendix Figure 5: IgG antibody kinetics. (A) Measured IgG antibody dilutions, shown as points, from a patient in Hôpital Bichat 

followed longitudinally. Posterior median model predictions of IgG antibody dilution are shown as black lines, with 95% credible 

intervals in grey. The coloured dashed line represents the cutoff for IgG seropositivity for that antigen. IgM antibody dilutions are 

shown as asterisks. The black horizontal dashed lines represent the upper and lower limits of the assay. (B) Measured IgG antibody 

dilutions and model predictions for the full population. Measured IgG antibody dilutions are shown as geometric mean titre (GMT) 

with 95% ranges. (C) Model predicted proportion of individuals testing seropositive over time. 
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Appendix Table 5: Parameter estimates for antibody kinetics model fitted to France data. Parameters of the antibody kinetics model are presented as 
posterior medians with 95% credible intervals.  The model is fitted in a mixed-effects framework, so for every parameter we estimate the distribution within the 
entire population rather than a fixed value.  We present the mean and standard deviation as summary statistics for the estimated distributions 

description parameter prior Stri
 RBDv1 RBDv2 S1 S2 NPv1 NPv2 

mean of population-level distribution  

background IgG level Abg 0·001  
(1·1x10-6, 1·1) 

2·8x10-5  
(2·6x10-5, 3·0x10-5) 

2·1x10-5  
(2·0x10-5, 2·3x10-5) 

4·2x10-5  
(3·8x10-5, 4·7x10-5) 

5·2x10-5  
(4·7x10-5, 5·9x10-5) 

4·5x10-5  
(4·0x10-5, 5·0x10-5) 

5·4x10-5  
(4·5x10-5, 6·5x10-5) 

8·1x10-5  
(7·1x10-5, 
9·4x10-5) 

ASC boost  β 0·01  
(0·0001, 1·2) 

0·00014  
(9·7x10-5, 0·0002) 

3·9x10-5  
(2·6x10-5, 6·4x10-5) 

8·2x10-5  
(5·5x10-5, 0·00012) 

0·00020  
(0·00012, 0·00032) 

0·00017  
(0·00012, 0·00026) 

0·0040  
(0·0013, 0·016) 

0·0049  
(0·0014, 0·023) 

delay in generation of 
antibody response (days) 

δ 5·4  
(2·5, 15·1) 

8·0  
(6·0, 9·8) 

9·8  
(7·6, 11·5) 

6·4  
(4·1, 8·5) 

9·3  
(6·7, 11·3) 

9·7  
(7·7, 11·4) 

8·4  
(5·8, 10·6) 

8·5  
(5·6, 10·8) 

half-life of memory cells 
(days) 

db 2·1  
(1·5, 4.0) 

1·8  
(1·4, 2·3) 

2·2  
(1·6, 4·0) 

1·8  
(1·4, 2·3) 

2·0  
(1·5, 2·8) 

1·8  
(1·5, 2·4) 

2·4  
(1·6, 15·5) 

2·5  
(1·6, 28·7) 

half-life of short-lived 
ASCs (days) 

ds 3·2  
(1·9, 9·2) 

2·9  
(2·1, 4·2) 

3·0  
(2·2, 4·3) 

2·8  
(2·1, 4·0) 

3·0  
(2·2, 4·3) 

3·1  
(2·2, 4·5) 

3·0  
(2·2, 4·2) 

3·0  
(2·2, 4·3) 

half-life of long-lived 
ASCs (days)  

dl 400  
(302, 567) 

411  
(229, 752) 

416  
(233, 745) 

410  
(228, 752) 

413  
(228, 746) 

415  
(233, 769) 

416  
(226, 775) 

406  
(223, 739) 

half-life of IgG molecules 
(days) 

da 21  
(18·7, 24·1) 

21·3  
(18·9, 24·0) 

21·3  
(18·9, 23·9) 

21·3  
(18·8, 24·0) 

21·4  
(18·9, 24·1) 

21·4  
(19·0, 24·1) 

21·2  
(18·8, 23·9) 

21·2  
(18·8, 24·0) 

proportion of short-lived 
ASCs  

ρ 90%  
(65%, 95%) 

72%  
(56%, 92%) 

85%  
(0%, 94%) 

75%  
(57%, 93%) 

78%  
(56%, 93%) 

70%  
(55%, 92%) 

80%  
(57%, 94%) 

81%  
(0%, 94%) 

standard deviation of population-level distribution  

background IgG level Abg 0·0006  
(6x10-7, 0·8) 

1·3x10-5  
(1·1x10-5, 1·6x10-5) 

8·7x10-6  
(7·5x10-6, 1·0x10-5) 

2·8x10-5  
(2·3x10-5, 3·5x10-5) 

3·2x10-5  
(2·6x10-5, 4·1x10-5) 

2·9x10-5  
(2·3x10-5, 3·7x10-5) 

4·2x10-5  
(3·0x10-5, 5·9x10-5) 

5·5x10-5  
(4·2x10-5, 
7·4x10-5) 

ASC boost  β 0·006  
(5·4x10-5, 0.9) 

0·00014  
(8·8x10-5, 0.0002) 

5·6x10-5  
(2·8x10-5, 0.00012) 

8·5x10-5  
(4·8x10-5, 3·5x10-5) 

0·00034  
(0·00017, 0·00076) 

0·0002  
(0·0001, 0·0004) 

0·04  
(0·004, 0·53) 

0·073  
(0·0064, 1·13) 

delay in generation of 
antibody response (days) 

δ 3·5  
(1·2, 34·6) 

3·4  
(2·5, 4·5) 

3·3  
(2·5, 4·3) 

2·6  
(1·6, 3·9) 

3·2  
(2·4, 4·2) 

3·3  
(2·6, 4·3) 

2·7  
(1·9, 3·8) 

2·8  
(1·9, 3·9) 

half-life of memory cells 
(days) 

db 1·1  
(0·5, 7·2) 

1·1  
(0·6, 2·0) 

2·2  
(0·9, 9·2) 

1·1  
(0·7, 2·2) 

1·5  
(0·8, 4·0) 

1·2  
(0·7, 2·4) 

2·9  
(0·9, 162) 

3·2  
(0·9, 533) 

half-life of short-lived 
ASCs (days) 

ds 2·3  
(0·9, 29·2) 

1·0  
(0·6, 2·0) 

1·1  
(0·6, 2·2) 

1·0  
(0·6, 2·2) 

1·1  
(0·6, 2·1) 

1·1  
(0·6, 2·2) 

1·1  
(0·6, 2·1) 

1·1  
(0·6, 2·1) 

half-life of long-lived 
ASCs (days)  

dl 109  
(56, 349) 

111  
(46, 384) 

113  
(48, 371) 

111  
(47, 396) 

112  
(47, 377) 

113  
(46, 392) 

113  
(46, 394) 

109  
(45, 359) 

half-life of IgG molecules 
(days) 

da 3·2  
(1·8, 8·6) 

3·2  
(1.8, 7) 

3·2  
(1·8, 7·2) 

3·2  
(1·8, 7·1) 

3·2  
(1.8, 7·1) 

3·2  
(1·8, 6·9) 

3·2  
(1·8, 7·0) 

3·2  
(1·8, 7·0) 

proportion of short-lived 
ASCs  

ρ 0·07  
(0·02, 0·40) 

0·30  
(0·015, 0·45) 

0·01  
(0·0, 0·43) 

0·28  
(0·012, 0·45) 

0·19  
(0·0035, 0·44) 

0·32  
(0·02, 0·46) 

0·19  
(0·003, 0·45) 

0·06 
(0·0, 0·45) 

observational variance 

log scale standard 
deviation for Luminex 
measurements  

σobs 0·71 
(0·18, 2·75) 

0·47 
(0·42, 0·53) 

0·53 
(0·47, 0·58) 

0·59 
(0·51, 0·66) 

0·67 
(0·60, 0·75) 

0·67 
(0·60, 0·75) 

1·11 
(0·98, 1·26) 

0·91 
(0·81, 1·02) 



21 
 

2.5. Model predicted diagnostic sensitivity over the first year of follow-up.  

For each of the 215 individuals sampled, the mathematical model of antibody kinetics was used to simulate estimates of 

antibody levels during the first year of follow-up. To this data, we applied monoplex and multiplex classification algorithms 

to assess diagnostic sensitivity within the first year of follow up. These results are presented in Figure 3 (main manuscript) 

and in Appendix Table 6. 

 

Appendix Table 6: Model predicted reductions in antibody levels and sensitivity at 6 and 12 months after symptom onset. All results 
are shown for a high specificity target (>99%). Estimates are presented as posterior median with 95% credible intervals. 

 model predicted reduction in 
antibody levels 

cutoff 
antibody 
dilution 

model predicted sensitivity 

 6 months 12 months 6 months 12 months 

Single biomarkers 

Stri IgG 
23·3%  
(3·6%, 85·4%) 

47·1%  
(17·5%, 90·3%) 

0·000122 94·8%  
(71·4%, 99·2%) 

88·7%  
(63·4%, 97·4%) 

RBDv1 IgG 22·1%  
(1·9%, 94·8%) 

44·3%  
(13·9%, 96·0%) 

0·000024 89·7%  
(74·2%, 99·2%) 

86·9%  
(70·1%, 98·7%) 

RBDv2 IgG 23·2%  
(3·4%, 80·4%) 

44·6%  
(16·1%, 85·8%) 

0·000226 67·8%  
(46·6%, 80·7%) 

56·7%  
(37·9%, 73·2%) 

S1 IgG 20·5%  
(2·6%, 89·9%) 

44·0%  
(14·6%, 92·4%) 

0·000700 49·2%  
(31·7%, 67·6%) 

41·2%  
(25·5%, 59·8%) 

S2 IgG 18·3%  
(2·1%, 79·5%) 

41·5%  
(13·5%, 86·5%) 

0·000479 70·9%  
(51·0%, 87·7%) 

61·6%  
(39·9%, 81·0%) 

NPv1 IgG 27·4%  
(2·5%, 94·4%) 

49·4%  
(11·5%, 96·4%) 

0·000664 69·0%  
(53·6%, 78·4%) 

63·9%  
(47·7%, 73·2%) 

NPv2 IgG 25·5%  
(1·6%, 97·2%) 

47·5%  
(7·8%, 98·4%) 

0·000630 65·5%  
(49·0%, 77·8%) 

57·7%  
(43·8%, 74·3%) 

Multiplex combinations 

Stri IgG + RBDv2 IgG – – – 97·9%  
(89·5%, 100·0%) 

95·4%  
(82·3%, 99·6%)  

Stri IgG + RBDv2 IgG + 
 NPv1 IgG 

– – – 98·4%  
(91·2%, 100·0%) 

95·9%  
(83·9%, 99·6%) 

Stri IgG + RBDv2 IgG +  
NPv1 IgG + S2 IgG 

– – – 98·9%  
(86·1%, 100·0%) 

96·4%  
(80·9%, 100·0%) 
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3. Antibody kinetics: case study of Hong Kong data 

In order to obtain prior estimates of the parameters describing the early stage kinetics of the antibody response following 

SARS-CoV-2 infection, we performed a secondary analysis of data from patients admitted to Princess Margaret Hospital 

and Queen Mary Hospital in Hong Kong, following the primary analysis by To, Tsang et al [20]. 23 patients with RT-qPCR 

confirmed SARS-CoV-2 infection were followed longitudinally for up to four weeks after initial onset of symptoms. Ten 

patients had severe COVID-19, all of whom required oxygen supplementation, and 13 patients had mild disease.  

The Hong Kong based team expressed and purified recombinant proteins for receptor-binding domain (RBD) and 

nucleoprotein (NP). Genes encoding the spike RBD (amino acid residues 306 to 543 of the spike protein) and full length 

NP of SARS-CoV-2 were codon-optimized, synthesized and cloned. IgG and IgM antibody responses were quantified via 

the optical density (OD) from an enzyme immunoassay (EIA). Serial dilutions from 1:100 to 1:16,000 of a positive control 

serum were assayed for IgG responses. This allowed conversion of IgG antibody responses measured by EIA OD to 

dilutions. To determine the sero-positivity cutoff, the mean value of 93 anonymous archived serum specimens from 2018 

plus 3 standard deviations was used. The cutoff values were: anti-NP IgG = 0·523 OD; anti-RBD IgG = 0·108 OD; anti-NP 

IgM = 0·177 OD; and anti-RBD IgM = 0·085. After conversion of the EIA OD values to dilutions, the sero-positivity cutoffs 

for IgG antibody responses were anti-NP IgG = 0·00682; and anti-RBD IgG = 0·002665.  

Estimated model parameters are presented in Appendix Table 7. Appendix Figure 6 provides an overview of the fitted 

antibody kinetics to all participants. Detailed individual-level fits to the data, with quantification of uncertainty are shown 

in Appendix Figures 6-9. Comparing the early kinetics of the IgG and IgM response, we estimate that the time to anti-NP 

IgG sero-conversion was 11·0 days (inter-quartile range (IQR): 8·1, 11·6), and the time to anti-NP IgM sero-conversion was 

11·9 days (IQR: 8·4, 15·8). The time to anti-RBD IgG sero-conversion was 8·6 days (IQR: 5·3, 10·4), and the time to anti-NP 

IgM sero-conversion was 11·6 days (IQR: 9·2, 28·6). Although time to sero-conversion is dependent on the selection of 

sero-positivity cutoff, this suggests that IgM responses are not induced before IgG responses, and that both are generated 

at approximately the same time.  
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Appendix Figure 6: SARS-CoV-2 antibody kinetics in Hong Kong patients. Anti-nucleoprotein (NP) and anti-receptor-binding domain 
(RBD) antibody responses in 22 patients with PCR confirmed SARS-CoV-2 infection admitted to hospitals in Hong Kong. Measured 
antibody levels in patients are depicted as points. Measured antibody levels in negative controls are depicted as crosses. Grey lines 
show posterior median model prediction. The uncertainty of the model predictions is presented via 95% credible intervals in 
Appendix Figures 7-10. The horizontal dashed line represents the cutoff for sero-positivity. 
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Appendix Figure 7: Model fit to short-term data on anti-NP IgG antibody responses. Measured antibody responses are 
shown as red points. Posterior median model predictions are shown as black lines, with 95% credible intervals in grey. The 
horizontal dashed line represents the cutoff for sero-positivity. Note that as there is no data on the long-term antibody 
response to SARS-CoV-2, three different sources of prior information were utilized. The half-life of the long-lived 
component of the antibody responses was assumed to be 200 days (short prior), 400 days (medium prior), or 800 days 
(long prior). Note that each of the three assumptions give near identical fits for the short-term kinetics displayed here. 
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Appendix Figure 8: Model fit to short-term data on anti-RBD IgG antibody responses. Measured antibody responses are 
shown as red points. Posterior median model predictions are shown as black lines, with 95% credible intervals in grey. The 
horizontal dashed line represents the cutoff for sero-positivity. Note that as there is no data on the long-term antibody 
response to SARS-CoV-2, three different sources of prior information were utilized. The half-life of the long-lived 
component of the antibody responses was assumed to be 200 days (short prior), 400 days (medium prior), or 800 days 
(long prior). Note that each of the three assumptions give near identical fits for the short-term kinetics displayed here. 
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Appendix Figure 9: Model fit to short-term data on anti-NP IgM antibody responses. Measured antibody responses are 
shown as red points. Posterior median model predictions are shown as black lines, with 95% credible intervals in grey. The 
horizontal dashed line represents the cutoff for sero-positivity. Note that as there is no data on the long-term antibody 
response to SARS-CoV-2, three different sources of prior information were utilized. The half-life of the long-lived 
component of the antibody responses was assumed to be 50 days (short prior), 100 days (medium prior), or 200 days (long 
prior). Note that each of the three assumptions give near identical fits for the short-term kinetics displayed here. 
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Appendix Figure 10: Model fit to short-term data on anti-RBD IgM antibody responses. Measured antibody responses 
are shown as red points. Posterior median model predictions are shown as black lines, with 95% credible intervals in grey. 
The horizontal dashed line represents the cutoff for sero-positivity. Note that as there is no data on the long-term antibody 
response to SARS-CoV-2, three different sources of prior information were utilized. The half-life of the long-lived 
component of the antibody responses was assumed to be 50 days (short prior), 100 days (medium prior), or 200 days (long 
prior). Note that each of the three assumptions give near identical fits for the short-term kinetics displayed here. 
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Appendix Table 7: Parameter estimates for antibody kinetics model fitted to Hong Kong data. Parameters of the 
antibody kinetics model are presented as posterior medians with 95% credible intervals.  The model is fitted in a mixed-
effects framework, so for every parameter we estimate the distribution within the entire population rather than a fixed 
value.  We present the mean and standard deviation as summary statistics for the estimated distributions 

description parameter prior NP IgG RBD IgG NP IgM RBD IgM 

mean of population-level distribution  

background IgG level Abg 0·001  
(1·1x10-6, 1·1) 

0·00011  
(2·6x10-5, 0·0003) 

0·0015  
(0·0013, 0·0017) 

– – 

background IgM level Abg 0·03  
(0·001, 1·0) 

– – 0·049  
(0·043, 0·054) 

0·036  
(0·032, 0·04) 

ASC boost in mild cases (IgG) βmild 0·01  
(0·0001, 1·2) 

0·014  
(0·006, 0·051) 

0·0028 
(0·0015, 0·0053) 

– – 

ASC boost in mild cases (IgM) βmild 0·11  
(0·01, 1·2) 

– – 0·085  
(0·048, 0·17) 

0·08  
(0·04, 0·16) 

ASC boost in severe cases 
(IgG) 

βsev 0·01  
(0·0001, 1·2) 

0·028  
(0·01, 0·207) 

0·0056  
(0·0034, 0·0099) 

– – 

ASC boost in severe cases 
(IgM) 

βsev 0·11  
(0·01, 1·2) 

– – 0·67  
(0·29, 2·8) 

0·14  
(0·07, 0·46) 

delay in generation of 
antibody response (days) 

δ 5·4  
(2·5, 15·1) 

9·6  
(7·7, 11·9) 

7·8  
(5·6, 11·7) 

7·9  
(6·4, 9·8) 

8·7  
(7·0, 10·7) 

half-life of memory cells 
(days) 

db 2·1  
(1·5, 4·0) 

2·0  
(1·3, 7·8) 

1·8  
(1·3, 2·8) 

2·0  
(1·3, 5·7) 

2·2  
(1·5, 4·9) 

half-life of short-lived ASCs 
(days) 

ds 3·2  
(1·9, 9·2) 

2·5  
(1·8, 4·1) 

2·4  
(1·8, 3·7) 

2·4  
(1·7, 3·8) 

2·8  
(2·0, 4·7) 

half-life of long-lived ASCs 
(days) (IgG) 

dl 400  
(302, 567) 

408  
(227, 727) 

417  
(230, 771) 

– – 

half-life of long-lived ASCs 
(days) (IgM) 

dl 100  
(76, 142) 

– – 104 
(68, 163) 

103  
(66, 167) 

half-life of IgG molecules 
(days) 

da 21  
(18·7, 24·1) 

43·5  
(25·7, 243·6) 

21·3  
(18·4, 28·7) 

– – 

half-life of IgM molecules 
(days) 

da 10 
(9.1, 11.5) 

– – 10·8  
(9.3, 164.2) 

10·2  
(9.2, 13.2) 

proportion of short-lived 
ASCs  

ρ 90%  
(65%, 95%) 

90%  
(79%, 94%) 

80%  
(57%, 94%) 

93%  
(65%, 97%) 

89%  
(62%, 98%) 

standard deviation of population-level distribution  

background IgG level Abg 0·0006  
(6x10-7, 0·8) 

5·7x10-5  
(1·0x10-5, 0·00013) 

0·0004  
(0·0003, 0·0005) 

– – 

background IgM level Abg 0·01  
(0·0003, 0·5) 

– – 0·01  
(0·007, 0·015) 

0·008  
(0·006, 0·011) 

ASC boost in mild cases (IgG) βmild 0·006  
(5·4x10-5, 0·9) 

0·020  
(0·006, 0·23) 

0·0017  
(0·0007, 0·005) 

– – 

ASC boost in mild cases (IgM) βmild 0·06  
(0·004, 1·1) 

– – 0·045  
(0·020, 0·17) 

0·06  
(0·03, 0·21) 

ASC boost in severe cases 
(IgG) 

βsev 0·006  
(5·4x10-5, 0·9) 

0·048  
(0·01, 2·0) 

0·0030  
(0·0015, 0·008) 

– – 

ASC boost in severe cases 
(IgM) 

βsev 0·06  
(0·004, 1·1) 

– – 0·55  
(0·19, 4·9) 

0·17  
(0·06, 1·4) 

delay in generation of 
antibody response (days) 

δ 3·5  
(1·2, 34·6) 

4·2  
(2·8, 6·9) 

6·5  
(3·8, 17·5) 

3·5  
(2·3, 5·9) 

3·8  
(2·6, 6·4) 

half-life of memory cells 
(days) 

db 1·1  
(0·5, 7·2) 

1·8  
(0·6, 35·3) 

1·0  
(0·5, 3·5) 

1·8  
(0·6, 18·5) 

1·8  
(0·7, 11·87) 

half-life of short-lived ASCs 
(days) 

ds 2·3  
(0·9, 29·2) 

1·3  
(0·6, 3·5) 

1·2  
(0·6, 2·8) 

1·2  
(0·6, 3·1) 

1·6  
(0·7, 4·6) 

half-life of long-lived ASCs 
(days) (IgG) 

dl 109  
(56, 349) 

111  
(47, 384) 

114  
(47, 404) 

– – 
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half-life of long-lived ASCs 
(days) (IgM) 

dl 22  
(10, 69) 

– – 22  
(11, 67) 

23  
(11, 73) 

       
half-life of IgG molecules 
(days) 

da 3·2  
(1·8, 8·6) 

84·0  
(22, 2808) 

5·4  
(2·0, 27) 

– – 

half-life of IgM molecules 
(days) 

da 2·2  
(1·2, 6·2) 

– – 4·4  
(1·5, 2770) 

2·6  
(1·3, 12) 

proportion of short-lived 
ASCs  

ρ 0·07  
(0·02, 0·40) 

0·06  
(0·02, 0·26) 

0·25  
(0·04, 0·45) 

0·08  
(0·02, 0·42) 

0. ·18  
(0·02, 0·44) 

observational variance 

standard deviation for ELISA 
measurements (IgG) 

σobs 0·004 
(0·0002, 0·1) 

0·0026 
(0·0023, 0·0030) 

0·0011 
(0·0009, 0·0013) 

– – 

standard deviation for ELISA 
measurements (IgM) 

σobs 0·04 
(0·002, 1) 

– – 0·031 
(0·025, 0·037) 

0·022 
(0·019, 0·025) 
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