Hydro-climatic changes of wetlandscapes across the world

34 Authors

I. Åhlén^{1*}, G. Vigouroux¹, G. Destouni¹, J. Pietroń^{1,2}, N. Ghajarnia¹, J. Anaya³, J. Blanco⁴, S.
Borja¹, S. Chalov⁵, K.P. Chun⁶, N. Clerici⁷, A. Desormeaux⁸, P. Girard⁹, O. Gorelits¹⁰, A.
Hansen¹¹, F. Jaramillo^{1,12}, Z. Kalantari¹, A. Labbaci¹³, L. Licero-Villanueva¹⁴, J. Livsey¹, G.
Maneas^{1,15}, K.L. McCurley Pisarello¹⁶, D. Moshir Pahani¹, S. Palomino-Ángel^{3 17}, R. Price¹⁸, C.
Ricaurte-Villota¹⁹, L. Fernanda Ricaurte²⁰, V.H Rivera-Monroy²¹, A. Rodriguez¹⁹, E.
Rodriguez²², J. Salgado ^{23,24}, B. Sannel¹, S. Seifollahi-Aghmiuni¹, M. Simard ²⁵, Y. Sjöberg²⁶, P.
Terskii⁵, J. Thorslund^{1,27}, D.A. Zamora ²², J. Jarsjö¹

- 14 Stockholm, Sweden
- ² WSP Sverige AB, Ullevigatan 19, 411 40 Gothenburg, Sweden
- ³ Facultad de Ingeniería, Universidad de Medellín, Carrera 87 30–65, Medellín 050026, Colombia
- ⁴ Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21,
 Medellín 050010, Colombia
- ⁵ Faculty of Geography, Lomonosov Moscow State University, Moscow 119991, Russia
- ⁶ Department of Geography, Hong Kong Baptist University, Hong Kong SAR, China
- ⁷ Department of Biology, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 13409,
 DC, Colombia
- ⁸ School of Natural Resources and Environment, University of Florida, Gainesville, Florida 32603, USA
- ⁹ Centro de Pesquisa do Pantanal and BioScience Institute, Federal University of Mato Grosso, Cuiabá, Mato
 Grosso, Brazil
- 26 ¹⁰ Zubov State Oceanographic Institute, Moscow 119034, Russia
- ²⁷ ¹¹ Department of Civil, Environmental and Architectural Engineering, University of Kansas, Lawrence, Kansas
- 28 66045, USA
- ¹² Baltic Sea Centre, 10691, Stockholm, Sweden
- 30 ¹³ Department of Geology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- 31 ¹⁴ Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald 17489, Germany
- 32 ¹⁵ Navarino Environmental Observatory, 24 001 Messinia, Greece
- ¹⁶Department of Soil and Water Sciences, University of Florida, Gainesville, Florida 32611, USA
- ¹⁷Facultad de Ingeniería, Universidad de San Buenaventura, Carrera 56C N° 51-110, Medellín 050010, Colombia
- 35 ¹⁸ Department of Earth and Environment, Southeast Environmental Research Center, Florida International
- 36 University, Miami, Florida 33199, USA
- ¹⁹Instituto de investigaciones marinas y costeras de Colombia "José Benito Vives de Andreis"—INVEMAR, 470006
 Santa Marta, Colombia
- ²⁰Alexander von Humboldt Biological Resources Research Institute, Calle 28 A No. 15-09, Bogotá, D.C., Colombia
- 40 ²¹ Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State
- 41 University, Baton Rouge, Louisiana 70803, USA
- 42 ²² Civil and Agricultural Engineering Department, Universidad Nacional de Colombia, Bogotá 11001, Colombia
- 43 ²³ Departamento de Ciencias Biológicas, Universidad de Los Andes, Cra. 1 No. 18A-12, Bogotá 111711, Colombia
- 44 ²⁴ Facultad de Ingeniería, Universidad Católica de Colombia, Av. Caracas No. 46-72, Bogotá 111311, Colombia
- 45 ²⁵ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- 46 ²⁶ Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
- 47 ²⁷ Hydrology, Water resources, and Permafrost at the department, and at Utrecht University
- 48 *Corresponding author: <u>imenne.ahlen@natgeo.su.se</u>
- 49
- 50 51

¹Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, 10691,

Fig. S1. Change in temperature $\Delta T^{\circ}C$. Boxplots showing $\Delta T^{\circ}C$ for each climate zone and wetlandscape between the period of 1976-1995 and 1996-2015 the mean $\Delta T^{\circ}C$ for the climate zones are shown as black points and as red crosses for the wetlandscapes.

Fig. S2. Change in precipitation ΔP (mm/year). Boxplot showing the ΔP for each climate zone and wetlandscape between the period of 1976-1995 and 1996-2015. Mean ΔP for the climate zones are shown as white points and as red crosses for the wetlandscapes

103 Fig. S3. Change in precipitation ΔP (mm/year). Boxplot showing ΔP (mm/years) for each climate zone for the period between 1976-1995 and 1996-2015. The ΔP for each wetlandscape is presented as red crosses with a corresponding number relating to the name of the wetlandscape (see Table 1). Mean ΔP (mm/years) for the climate zones are shown as black points, while the red points show the mean ΔP (mm/years) for the wetlandscapes.

Fig. S4. Change in precipitation and runoff for the wetlandscapes with available discharge data. The studied time period of change in precipitation and discharge are sometime differing between the wetlandscapes. This information can be read in Table 1 (found in manuscript).

106

107 *Fig. S5. Relative change in precipitation* $\Delta P\%$ *. Boxplot showing* $\Delta P\%$ *for each climate zone and* 108 *wetlandscape between the period of* 1976-1995 *and* 1996-2015. *Mean* $\Delta P\%$ *for the climate zones are* 109 *shown as white points and as red crosses for the wetlandscapes.*

Fig. S6. Change in temperature ($\Delta T^{\circ}C$) for climate zone located in the north hemisphere. Boxplot

114 (without whisker) showing the $\Delta T^{\circ}C$ for climate zone located in the north hemisphere between the periods 115 of 1976-1995 and 1996-2015. The $\Delta T^{\circ}C$ for each wetlandscape is shown as red crosses. Mean $\Delta T^{\circ}C$ for

115 of 1976-1995 and 1996-2015. The $\Delta T^{\circ}C$ for each wetlandscape is shown as red crosses. Mean $\Delta T^{\circ}C$ for 116 the climate zones are shown as black points, while the red points show the mean $\Delta T^{\circ}C$ for the

- *the climate zones arewetlandscapes.*

 - 118 119

120

121

122

125 Fig. S7. Change in precipitation ΔP (mm/year) of climate zones located in the north hemisphere.

Boxplot showing ΔP (mm/years) for each climate zone located in the north hemisphere for the period

between 1976-1995 and 1996-2015. The ΔP for each wetlandscape is presented as red crosses. Mean ΔP (mm/years) for the climate zones are shown as black points, while the red points show the mean ΔP

(mm/years) for the wetlandscapes.

137 Fig. S8. Relative change in precipitation ($\Delta P\%$) of climate zones located in the north hemisphere. 138 Boxplots show the relative ΔP in percent for each climate zone located in the north hemisphere for the 139 periods between 1976-1995 and 1996-2015. The relative ΔP for each wetlandscape is presented as red 140 crosses. Mean $\Delta P\%$ for the climate zones are shown as black points, while the red points show the mean

141 $\Delta P\%$ for the wetlandscapes. For detailed boxplots with whiskers, see supplementary material.

142

143

Table S1. Characteristics of the wetlandscapes. Table showing the characteristics of the wetlandscapes in terms of wetland type and wetland area coverage of the wetlandscapes.

D	Site name	Country	Wetland type	Area of wetlands relative to total catchment/wetland scape area (%)
	1 Ciénaga Grande de Santa Marta	Colombia	Estuarine	0.77
	2 Everglades	USA	Freshwater wetland, coastal wetland	32
	3 Gatun Lake	Panama	Chagres River, lake	13
	4 León–Atrato	Colombia	Marshes and swamps	17
	5 Mekong	Vietnam	Marine	5
	6 Pantanal	Brazil	Periodically inundated savanna	27
	7 Shadegan	Iran	Palustrine, estuarine, marine	31
	8 Lake Urmia	Iran	Lake	8.8
	9 Zone Humide de Souss	Morocco	Marine and coastal	0.01
	10 Anzali Mordab	Iran	Inland and marine/coastal wetland	4
	11 Gialova Lagoon	Greece	Coastal wetland	13
	12 Geographically isolated wetlands	USA	Freshwater marshes and swamps	30
	13 Lagunas Plaza and Grande	Colombia	Glacial lake	4.4
	14 Fúquene, Cucunubá y Palacio	Colombia	Natural shallow lake	1.7
	15 Lower Mississippi River Delta Plain	USA	Riverine, marine, estuarine, Lacustrine	3.5
	16 Páramo Sumapaz	Colombia	High-altitude wetland	46
	17 Sacca Di Goro	Italy	Shallow saltwater coastal lagoon	4.2
	18 Simpevarp	Sweden	Bogs, fens	0.01
	19 Upper Lough Erne	Ireland	Flood plain/shallow lakes	22
	20 Forsmark	Sweden	Bogs, fens, marshes, (shallow lakes)	0.01
	21 Le Sueur	USA	Isolated, fluvial/riparian, lakes/ponds, marshes, forest/shrubs, constructed	5
	22 Norrström	Sweden	Multiple	5
	23 Tavvavuoma	Sweden	Peat plateau/thermokarst lake complex	2.8
	24 Volga	Russia	Marshes (riverine, palustrine)	1
	25 Selenga	Russia	Marshes (riverine, palustrine)	0.13

Table S2. Results of the Wilcoxon Rank Sum test at 95% confidence level. Table showing resulting p-

values from the Wilcoxon Rank Sum test at 95 % confidence level between two sample periods (period 1 and period 2) for precipitation (P), temperature (T) and runoff (R) for each wetlandscape. Significant

results (p < 0.05) are shown in bold.

ID	Wetlandscapes	p-value (P)	p-value (T)	p-value (R)
1	Ciénaga Grande de Santa Marta	0.232	0.038	
2	Everglades	0.149	0.013	
3	Gatun Lake	0.529	0.009	
4	León-Atrato	0.301	0.046	
5	Mekong	0.097	0.001	
6	Pantanal	0.478	0.000	0.00004
7	Shadegan	0.820	0.000	
8	Lake Urmia	0.006	0.000	0.217
9	Zone Humide de Souss	0.989	0.000	
10	Anzali Mordab	0.183	0.000	0.020
11	Gialova Lagoon	0.862	0.000	
12	Geographically Isolated Wetlands of Florida	0.639	0.049	0.221
13	Lagunas Plaza and Grande	0.583	0.002	
14	Fúquene, Cucunúba Y Palacio	0.201	0.023	
15	Lower Mississippi River Delta Plain	0.968	0.043	
16	Páramo Sumapaz	0.232	0.060	0.463
17	Sacca Di goro	0.301	0.000	
18	Simpevarp	0.242	0.001	
19	Upper Lough Erne	0.398	0.000	
20	Forsmark	0.718	0.001	
21	Le Sueur	0.947	0.043	0.429
22	Norrström	0.800	0.001	0.883
23	Таννаνиота	0.091	0.002	
24	Volga	0.904	0.012	0.091
25	Selenga	0.149	0.002	0.274