Supplementary Information

for

Structural basis for ligand recognition of the neuropeptide Y Y₂ receptor

Tingting Tang, Christin Hartig, et al.

Supplementary Information

Supplementary Figure 1. Function validation of crystallization construct, electron densities of JNJ-31020028, and chemical structures of Y₂R antagonists. a, NPY-induced IP accumulation of Y₂R in the absence or presence of 1 μ M JNJ-31020028. "Construct_no flavodoxin" indicates the modified Y₂R protein used for crystallization except that the ICL3-flavodoxin fusion was removed to allow G protein coupling. WT, wild-type Y₂R. Data are shown as mean \pm SEM from at least four independent experiments performed in triplicate. See Supplementary Table 2 for detailed statistical evaluation. **b**, Inhibition of NPY-induced IP accumulation of Y₂R by JNJ-31020028. A fixed concentration of NPY (0.3 nM, ~ EC₈₀) was

used to stimulate IP accumulation. Data are shown as mean \pm SEM from three independent experiments performed in triplicate (WT: IC₅₀ = 4.8 nM, pIC₅₀ \pm SEM = 7.32 \pm 0.10; construct_no flavodoxin: IC₅₀ = 6.0 nM, pIC₅₀ \pm SEM = 7.22 \pm 0.10). Data are normalized to the actual effective concentration (EC_x) at the day of the assay. **c**, NanoBRET-based binding assay of wild-type Y₂R (WT) and the modified Y₂R protein. "Construct_no T4L" indicates the modified Y₂R protein used for crystallization except that the N-terminal T4L fusion was removed to ensure suitable distance for BRET. Data are shown as mean \pm SEM from three independent experiments performed in triplicate (WT: IC₅₀ = 1.3 nM, pIC₅₀ \pm SEM = 8.89 \pm 0.08; construct_no T4L: IC₅₀ = 0.7 nM, pIC₅₀ \pm SEM = 9.17 \pm 0.13). **d** and **e**, Electron densities of JNJ-31020028. **d**, R-isomer; **e**, S-isomer. Electron densities are contoured at 3.0 σ from a $|F_o|$ - $|F_c|$ omit map and colored magenta. **f-i**, Chemical structures of representative antagonists of Y₂R. **f**, R-isomer of JNJ-31020028; **g**, S-isomer of JNJ-31020028; **h**, BIIE0246; **i**, Compound 6. Source data for panels a-c are provided as a Source Data file.

Supplementary Figure 2. Comparison of ligand-binding pockets in some class A peptide GPCR structures. a, Comparison of ligand-binding sites in Y₂R, Y₁R, AT₁R, OX₁R and κ -OR. The structures of Y₂R–JNJ-31020028, Y₁R–UR-MK299 (PDB code: 5ZBQ), AT₁R–ZD7155 (PDB code: 4YAY), OX₁R–suvorexant (PDB code: 4ZJ8) and κ -OR–JDTic (PDB code: 4DJH) are shown in cartoon representation and colored light blue, light cyan, green, gold, and purple, respectively. The ligands are shown as yellow, cyan, orange, blue, and green sticks, respectively. **b-f**, A close side view of the ligand in the binding pocket in each structure.

Supplementary Figure 3. Live-cell fluorescence microscopy of the wild-type Y₂R and several mutated receptor variants in transiently transfected HEK293 cells. All receptor variants were predominantly expressed in the cell membrane comparable to the wild-type receptor. The appropriate expression of the remaining mutants was already verified in previous studies^{1,2,3}. Pictures are representative of two independent experiments with similar results. nc, negative control. Scale bars, 10 µm.

Supplementary Figure 4. IP accumulation assays. IP accumulation of wild-type and mutant Y_2 receptors induced by NPY (black) or NPY with the presence of antagonist JNJ-31020028 (1 μ M, green), Compound 6 (1 μ M, red) or BIIE0246 (1 μ M, purple). At least two independent experiments were performed in triplicate. Where more than two experiments were performed, data are shown as mean \pm SEM. Where two experiments were performed, data from a representative experiment are shown. See Supplementary Table 2 for detailed statistical

evaluation. **a**, Wild type; **b**, Y110^{2.64}A; **c**, W116^{ECL1}A; **d**, V126^{3.28}A; **e**, F307^{7.35}A; **f**, F307^{7.35}E; **g**, V134^{3.36}A; **h**, Y219^{5.38}A; **i**, S220^{5.39}A; **j**, S223^{5.42}A; **k**, L224^{5.43}A; **l**, L227^{5.46}A; **m**, Y228^{5.47}A; **n**, H285^{6.52}T; **o**, Q288^{6.55}A; **p**, L183^{4.60}A, **q**, W281^{6.48}T; **r**, L284^{6.51}A; **s**, Q130^{3.32}H; **t**, D292^{6.59}N. EC₅₀ values of NPY (black) and EC₅₀ ratios (EC₅₀ (NPY+antagonist)/EC₅₀ (NPY)) for antagonists (JNJ-31020028, green; Compound 6, red; BIIE0246, purple) are shown in the top left corner for each graph. A reduced EC₅₀ ratio of the mutant compared to the wild-type receptor was interpreted as important for the respective antagonist. Source data are provided as a Source Data file.

Supplementary Figure 5. Sequence alignment of the human NPY receptors. Sequence alignment of four human NPY receptors was performed by using align tools in UniProt database (http://www.uniprot.org/align/). The sequence conservation graph was prepared using the program ESPript 3.0 (http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi). The key Y₂R residues that are involved in JNJ-31020028 binding and variable in the NPY receptors are marked with black arrows.

	Y ₂ R-JNJ-31020028
Data collection ^a	
Space group	<i>C2</i>
Cell dimensions	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	96.4, 50.9, 184.6
α, β, γ (°)	90.0, 90.7, 90.0
Resolution (Å)	50.0-2.80 (2.90-2.80) ^b
$R_{\rm pim}$ (%)	11.2 (51.7)
$I / \sigma(I)$	12.1 (1.6)
Completeness (%)	98.4 (97.2)
Redundancy	5.4 (4.1)
Refinement	
Resolution (Å)	37.7-2.80
No. reflections	21,815 (1,878)
$R_{ m work}$ / $R_{ m free}$ (%)	25.5 / 28.9
No. atoms	
Protein	3,415
Ligand	42
<i>B</i> -factors (Å ²)	
Protein	71.1
Ligand	70.3
R.m.s. deviations	
Bond lengths (Å)	0.011
Bond angles (°)	1.212
Ramachandran plot (%)	
Favored	96.3
Allowed	3.7
Disallowed	0.0

Supplementary Table 1. Data collection and refinement statistics

^aDiffraction data from 52 crystals of Y_2R –JNJ-31020028 were used to solve the structure. ^bNumbers in parentheses refer to the highest-resolution shell.

	NPY		NPY/JNJ-31020028 (1 µM)			NPY/Compound 6 (1 µM)			NPY/BIIE0246 (1 µM)					
Mutants	$\begin{array}{c} EC_{50}\left(nM\right)\\ \left(pEC_{50}\pm\right.\\ SEM\right)^{a} \end{array}$	n ^b	$\begin{array}{c} EC_{50}\left(nM\right)\\ \left(pEC_{50}\pm\right.\\ SEM \right) \end{array}$	Ratio ^c	Ratio change (fold) ^d	n	$\begin{array}{c} EC_{50}\left(nM\right)\\ (pEC_{50}\pm\\ SEM) \end{array}$	Ratio	Ratio change (fold)	n	$\begin{array}{c} EC_{50} \left(nM \right) \\ \left(pEC_{50} \pm \\ SEM \right) \end{array}$	Ratio	Ratio change (fold)	n
WT	$\begin{array}{c} 0.06 \\ (10.24 \pm 0.04) \end{array}$	13	21 (7.67 ± 0.06)	371	1	8	3.5 (8.46 ± 0.07)	61	1	8	9.1 (8.2; 9.8)	159 (144; 171)	1	2
Constructe	0.09 (10.02 ± 0.10)	5	23 (7.65 ± 0.14)	237	1.6	4	/	/	/	/	/	/	/	/
Y110 ^{2.64} A	1.8 (8.75 ± 0.04)	9	94 (7.03 ± 0.09)	52	7	3	$\begin{array}{c} 129 \\ (6.89 \pm 0.11) \end{array}$	72	0.8	3	45; 126	25; 70	6; 2	2
T111 ^{2.65} A	2.0 (1.3; 2.9)	2	513; 1,715	257; 860	1.4; 0.4	2	89; 82	45; 41	1.4; 1.5	2	530; 459	265; 230	0.6; 0.7	2
W116 ^{ECL1} A	54 (58; 51)	2	6,727; 4,442	124; 82	3; 5	2	490; 330	9;6	7; 10	2	1,180; 2,974	22; 55	7; 3	2
V126 ^{3.28} A	$0.36 \\ (9.45 \pm 0.06)$	4	36; 30	100; 85	4;4	2	18; 12	49; 34	1.2; 1.8	2	102; 114	285; 320	0.6; 0.5	2
V126 ^{3.28} N	$5.5 \\ (8.26 \pm 0.12)$	4	$570 \\ (6.24 \pm 0.15)$	104	4	4	/	/	/	/	/	/	/	/
Q130 ^{3.32} H	$7.9 \\ (8.10 \pm 0.05)$	8	nd	nd	nd	3	$113 \\ (6.95 \pm 0.16)$	14	4	3	nd	nd	nd	2
V134 ^{3.36} A	$0.90 \\ (9.04 \pm 0.05)$	4	106; 73	117; 80	3; 5	2	4.0; 4.4	4; 5	15; 12	2	69; 79	76; 87	2; 1.8	2
L183 ^{4.60} A	0.10 (9.99 ± 0.07)	8	$16 (7.81 \pm 0.10)$	153	2	3	0.40 (9.41 ± 0.07)	3.8	16	3	0.65; 1.5	6; 14	27; 11	2
L183 ^{4.60} F	$\begin{array}{c} 0.23 \\ (9.64 \pm 0.14) \end{array}$	4	$124 \\ (6.91 \pm 0.11)$	535	0.7	4	/	/	/	/	/	/	/	/
Y219 ^{5.38} A	0.36 (0.76; 0.23)	2	14; 18	38; 50	10; 7	2	0.99; 0.62	3; 2	20; 31	2	18; 53	49; 147	3; 1	2
S220 ^{5.39} A	0.52 (9.29 ± 0.06)	6	$97 \ (7.02 \pm 0.09)$	186	2	4	$9.0 \\ (8.05 \pm 0.09)$	17	4	4	267; 254	515; 490	0.3; 0.3	2
S223 ^{5.42} A	0.11 (9.98 ± 0.05)	6	$14 (7.83 \pm 0.05)$	139	3	4	6.7 (8.17 ± 0.07)	64	1	4	29; 6.5	276; 62	0.6; 3	2
S223 ^{5.42} L	0.23 (9.64 ± 0.10)	4	$197 \\ (6.71 \pm 0.13)$	865	0.4	4	/	/	/	/	/	/	/	/
L224 ^{5.43} A	0.02 (0.04; 0.01)	2	1.2; 2.6	57; 126	7; 3	2	0.29; 0.49	14; 24	4; 3	2	28; 2.6	1,349; 129	0.1; 1.2	2
L227 ^{5.46} A	0.14 (9.84 ± 0.05)	9	$22 (7.65 \pm 0.07)$	153	2	5	2.8 (8.55 ± 0.13)	19	3	3	4.6; 3.5	31; 24	5;7	2
L227 ^{5.46} Q	0.14 (9.86 ± 0.15)	4	6.9 (8.16 ± 0.14)	50	7	4	/	/	/	/	/	/	/	/
Y228 ^{5.47} A	0.23 (9.64 ± 0.07)	5	3.8 (8.42 ± 0.09)	17	22	3	$\begin{array}{c} 0.32 \\ (9.49 \pm 0.14) \end{array}$	1.4	44	3	2.4; 6.2	10; 27	16; 6	2
W281 ^{6.48} T	0.55 (9.26 ± 0.07)	5	1.1 (8.96 ± 0.07)	2	186	3	$0.50 \ (9.30 \pm 0.08)$	0.9	68	3	1.8; 1.1	3; 2	48; 80	2
L284 ^{6.51} A	2.5 (8.60 ± 0.03)	8	$42 (7.37 \pm 0.06)$	17	22	3	$10 (7.99 \pm 0.05)$	4	15	3	223; 322	89; 128	1.8; 1.2	2
H285 ^{6.52} T	$0.20 \ (9.69 \pm 0.10)$	3	3.9 (8.41 ± 0.13)	19	20	3	0.26; 0.09	1.3; 0.4	47; 153	2	0.72; 0.38	4; 1.9	45; 84	2
Q288 ^{6.55} A	0.12 (9.92 ± 0.07)	8	$\begin{array}{c} 0.68 \\ (9.17\pm 0.18) \end{array}$	6	65	3	$\begin{array}{c} 0.16 \\ (9.81 \pm 0.19) \end{array}$	1.3	47	3	12; 22	102; 185	1.6; 0.9	2
Q288 ^{6.55} N	0.14 (9.86 ± 0.11)	4	$\begin{array}{c} 0.29 \\ (9.54 \pm 0.13) \end{array}$	2	186	4	/	/	/	/	/	/	/	/
D292 ^{6.59} N	$14 (7.86 \pm 0.05)$	8	nd	nd	nd	3	nd	nd	nd	3	970; 865	71; 63	2; 3	2
F307 ^{7.35} A	6.5 (8.19 ± 0.05)	8	$305 \\ (6.52 \pm 0.13)$	47	8	3	$540 \\ (6.27 \pm 0.23)$	83	0.7	3	443; 723	68; 111	2; 1.4	2
F307 ^{7.35} E	$\frac{4.3}{(8.36 \pm 0.09)}$	9	$151 \\ (6.82 \pm 0.07)$	35	11	3	655; 615	151; 141	0.4; 0.4	2	327; 1,693	75; 389	2; 0.4	2
T308 ^{7.36} A	0.25 (0.34; 0.20)	2	171; 161	695; 655	0.5; 0.6	2	24; 28	99; 112	0.6; 0.5	2	61; 54	248; 219	0.6; 0.7	2
T308 ^{7.36} L	0.12 (9.92 ± 0.14)	4	54 (7.27 ± 0.12)	454	0.8	4	/	/	/	/	/	/	/	/

Supplementary Table 2. IP accumulation of wild-type (WT) and mutant Y₂ receptors for NPY and antagonists.

^aData are shown as mean ± SEM from at least three independent experiments or the results of two individual experiments each performed in triplicate. nd, not determined. /, not tested. ^bSample size; the number of independent experiments performed in triplicate. ^cThe EC₅₀ ratio refers to the shift between the NPY and NPY + 1 μ M antagonist curve (EC_{50(NPY} + antagonist)/EC_{50(NPY})) and characterizes the antagonistic effect on the wild-type receptor or receptor mutants. By comparison of EC₅₀ ratios between wild-type and mutant receptors, influences of all tested residues on antagonistic activity were determined. A higher ratio indicates higher antagonistic activity. A reduced EC₅₀ ratio of mutant compared to the wild-type receptor was interpreted as important for the respective antagonist.

^dFold change of EC₅₀ ratio refers to EC₅₀ ratio (WT)/EC₅₀ ratio (mutant).

"Construct" indicates the modified Y_2R protein used for crystallization except that the ICL3flavodoxin fusion was removed to allow G protein coupling.

Source data are provided as a Source Data file.

Supplementary Table 3. Primers used in this work.

Primer sequences (5'-3')				
Y ₂ R-WT-F ATTGGCGCGCCGATGGGACCAATCGGAGCAGAAGCA				
T4L-F ATTGGCGCGCCGAACATCTTCGAGATGCTGCGTATC				
Y ₂ R-T4L-R TGCTCCGATTGGTCCCATGTAAGCGTCCCATGTACC				
T4L-Y2R-F GGTACATGGGACGCTTACATGGGACCAATCGGAGCA				
Flavodoxin-F AAGCTGAAAAACCACGTCGCCAAGGCTCTCATCGTG				
Flavodoxin-R GCGCTGATGGTAGTGGTCAATAGCGCCCCTCACGTC				
Flavodoxin-Y2R-F GACGTGAGGGGGCGCTATTGACCACTACCATCAGCGC				
Flavodoxin-Y2R-R CACGATGAGAGCCTTGGCGACGTGGTTTTTCAGCTT				
C-truncation-R ATTGAATTCGACTTCGGAGTGGATTGCGTCCAAACG				
Y110A-F CTCTTACCgctACCTTAATGGGGGGGGGGGGAGTGGAAA				
Y110A-R TAAGGTagcGGTAAGAGTGAACGGTAGACACAGAG				
T111A-F ACCTATgccTTAATGGGGGAGTGGAAAATGGG				
T111A-R CCCATTAAggcATAGGTAAGAGTGAACGGTAGACACAG				
W116A-F ATGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG				
W116A-R ATTTTcgcCTCCCCATTAAGGTATAGGTAAGAG				
V126A-F CCACCTGgcgCCCTATGCCCAGGGCCTGGCAG				
V126A-R CATAGGGcgcCAGGTGGCACAGGACAGGACCC				
V126N-F CCACCTGaacCCCTATGCCCAGGGCCTGGCAG				
V126N-R CATAGGGgttCAGGTGGCACAGGACAGGACCC				
Q130H-F TGGTGCCCTATGCCcacGGCCTGGCAGTACAAGTATCCA				
Q130H-R gtgGGCATAGGGCACCAGGTGGCACAGGACAG				
V134A-F CCTGGCAgcaCAAGTATCCACAATCACCTTGACAG				
V134A-R ATACTTGtgcTGCCAGGCCCTGGGCATAGGGC				
L183A-F AAGTCCCgcgGCCATCTTCCGGGAGTATTCGC				
L183A-R AGATGGCcgcGGGACTTGCCAGCAGGGCACTG				
L183F-F AAGTCCCttcGCCATCTTCCGGGAGTATTCGC				
L183F-R AGATGGCgaaGGGACTTGCCAGCAGGGCACTG				
Y219A-F CACTGTCgctAGTCTTTCTTCCTTGTTGATCTTGTATG				
Y219A-R AAAGACTagcGACAGTGCCATAGATGCTCTTCTC				
S220A-F GCACTGTCTATgctCTTTCTTCCTTGTTGATCTTGTATGTT				
S220A-R AAGagcATAGACAGTGCCATAGATGCTCTTCT				
S223A-F GTCTTTCTgccTTGTTGATCTTGTATGTTTTGCCTC				
S223A-R CAACAAggcAGAAAGACTATAGACAGTGCCATAGATGC				
S223L-F GTCTTTCTctcTTGTTGATCTTGTATGTTTTGCCTC				
S223L-R CAACAAgagAGAAAGACTATAGACAGTGCCATAGATGC				
L224A-F TTCTTCCgcgTTGATCTTGTATGTTTTGCCTCTGG				
L224A-R AGATCAAcgcGGAAGAAAGACTATAGACAGTGCCATA				
L227A-F CTTGTTGATCgcgTATGTTTTGCCTCTGGGCATTA				

L227A-R	CATAcgcGATCAACAAGGAAGAAAGACTATAGACAG
L227Q-F	CcagTATGTTTTGCCTCTGGGCATTATATCAT
L227Q-R	GAGGCAAAACATActgGATCAACAAGGAAGAAAGACTATAGACAG
Y228A-F	GATCTTGgetGTTTTGCCTCTGGGCATTATATC
Y228A-R	GCAAAACagcCAAGATCAACAAGGAAGAAAGACTATAGA
W281T-F	TTTGCGGTCAGCacgCTGCCTCTCCATGCCTTCC
W281T-R	AGcgtGCTGACCGCAAACACCACCACCACACA
L284A-F	CTGCCTgccCATGCCTTCCAGCTTGCCGTTGA
L284A-R	AAGGCATGggcAGGCAGCCAGCTGACCGCAAA
H285T-F	TCactGCCTTCCAGCTTGCCGTTGACATTGAC
H285T-R	AAGCTGGAAGGCagtGAGAGGCAGCCAGCTGACC
Q288A-F	TCCATGCCTTCgcgCTTGCCGTTGACATTGACAGC
Q288A-R	AAGcgcGAAGGCATGGAGAGGCAGCCAGCTGA
Q288N-F	ATGCCTTCaacCTTGCCGTTGACATTGACAGC
Q288N-R	GGCAAGgttGAAGGCATGGAGAGGCAGCCAGC
D292N-F	GCCGTTaacATTGACAGCCAGGTCCTGGACCT
D292N-R	CTGTCAATgttAACGGCAAGCTGGAAGGCATG
F307A-F	ACTCATCgccACAGTGTTCCACATCATCGCCA
F307A-R	ACACTGTggcGATGAGTTTGTACTCCTTCAGGTCC
F307E-F	ACTCATCgagACAGTGTTCCACATCATCGCCA
F307E-R	ACACTGTeteGATGAGTTTGTACTCCTTCAGGTCC
T308A-F	CATCTTCgcaGTGTTCCACATCATCGCCATGT
T308A-R	GGAACACtgcGAAGATGAGTTTGTACTCCTTCAGGTC
T308L-F	CATCTTCetaGTGTTCCACATCATCGCCATGT
T308L-R	GGAACACtagGAAGATGAGTTTGTACTCCTTCAGGTC

-

Supplementary references

- 1. Burkert, K. et al. A deep hydrophobic binding cavity is the main interaction for different Y₂R antagonists. *ChemMedChem* **12**, 75-85 (2017).
- Kaiser, A. et al. G protein preassembly rescues efficacy of W^{6.48} toggle mutations in neuropeptide Y₂ receptor. *Mol. Pharmacol.* 93, 387-401 (2018).
- 3. Kaiser, A. et al. Unwinding of the C-terminal residues of neuropeptide Y is critical for Y₂ receptor binding and activation. *Angew. Chem.* **54**, 7446-7449 (2015).