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Supplementary Figure 1: 3D bioprinting approach and spheroid formation. (a) Schematic and image of the 3D 
bioprinting molds used to create a media reservoir (contains the formed spheroids) and a support gel reservoir (contains 
shear-thinning hydrogel) connected with a narrow channel, scale bar 7 mm.  (b) Schematic of the 3D bioprinting setup 
composed of a robotic micromanipulator (XYZ spatial control) with a micropipette for spheroid aspiration, a microscope 
stage (XY spatial control) with an environmental chamber (37°C, 5% CO2), and a spinning disk confocal for live brightfield 
and fluorescent imaging during bioprinting. (c) Average spheroid diameter (µm) 24 hours after seeding of either 5,000 or 
10,000 human MSCs in ultra-low attachment 96 well round bottom plates. (n=47, 32 biologically independent samples, 
mean ± s.d, two-sided student t-test, p<1.0x10-15). (d) Schematic demonstrating the print-paths used to move single 
spheroids from the media reservoir to the support gel reservoir to create a microtissue ring (top view). All experiments are 
from a single MSC donor. (**** p<0.0001).   
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Supplementary Figure 2: Characterization of synthesized HA polymers. (a) 1H NMR spectrum of adamantane 
modified hyaluronic acid (Ad-HA); the degree of adamantane functionalization (~18.9 %) relative to HA disaccharides (δ = 
3.1 – 4.0, 10 H) is determined by integration of adamantane ethyl multiplet (δ = 1.5 - 1.7, 12 H). (b) 1H NMR spectrum of 
β-cyclodextrin-modified hyaluronic acid (CD-HA); the degree of β-cyclodextrin functionalization (~15.4 %) relative to the 
HA methyl singlet (δ = 1.9 – 2.1, 3 H) is determined by integration of the hexane linker (δ = 1.2 - 1.7, 12 H).  
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Supplementary Figure 3: Tracking support hydrogel motion during spheroid bioprinting. (i) Sequential images 
showing the motion of fluorescent beads within the support hydrogel during spheroid translation from left to right (1µm Ø 
fluorescent beads (white), 1:200 dilution). Particle image velocimetry (ii) vector plots and (iii) magnitude plots 
demonstrating relative bead motion between frames presented in the top panel, e.g. 1-2 represents the bead motion 
between images 1 and 2. Scalebar 200 µm. Images are representative of n=3 biologically independent samples.  
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Supplementary Figure 4: 3D bioprinting precision measurements. (a) XY bioprinting precision method where a 
spheroid is deposited directly above a crosshatch marker and the post-printing spheroid drift (5 minutes after removing 
micropipette) is measured from the center of the spheroid. Scalebar 100µm. XY drift % = ΔPxy/spheroid diameter. (b) Z 
bioprinting precision method where a bioprinted spheroid’s z position is tracked in the support hydrogel over 24 hours. 
Scalebar 1mm. Z drift % = ΔPz/spheroid diameter. (b) (i) Bioprinting precision in the XY plane (XY drift distance µm) for 
200 and 400 µm diameter spheroids (n=8, 8, 7, 7, 6, 7 biologically independent samples (from left to right), mean ± s.d, 
one-way ANOVA). (ii) Bioprinting precision in the Z plane (Z drift distance µm) for 200 and 400 µm diameter spheroids 
(n=9, 8, 9, 9, 7, 7 biologically independent samples (from left to right), mean ± s.d, one-way ANOVA).  All experiments are 
from a single MSC donor. (n.s. not significant).  
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Supplementary Figure 5: Post-printing cell viability. (a) Spheroid live/dead staining in 3, 5, and 7 wt% support 
hydrogels compared to non-printed controls 24 hours post-printing (note: control spheroids were added to the media 
reservoir, but not bioprinted into a support hydrogel). Scalebar 100 µm. (b) Quantification of spheroid live area for each 
condition. (n=7, 6, 8, 10 biologically independent samples (from left to right), mean ± s.d, one-way ANOVA, control vs. 
7wt% p=0.028). All experiments are from a single MSC donor. (*p<0.05). 
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Supplementary Figure 6: Spheroid fusion dynamics. (a) Spheroid fusion measurements where the spheroid area 
(fluorescently labelled) and gel area (non-fluorescently labelled) between two adjacent spheroids (360 µm X 270 µm box) 
is quantified and used to determine the fusion index. Fusion index % = Spheroid area/ total area. Scalebar 200 µm. (b) (i) 
Secondary crosslinking of the guest-host support hydrogel through a thiol-ene reaction between norbornene groups and 
di-thiol crosslinker (DTT, non-degradable) in the presence of visible light. (ii) Rheological characterization of support 
hydrogel in response to secondary stabilization, time sweep (1 Hz, 1% strain). This indicates that the support hydrogel 
initially displays viscous behaviour, with a transition towards more elastic properties (increase in G’) after thiol-ene 
crosslinking of norbornene groups with DTT (1mM DTT, 0.05% LAP photoinitiator, 2 mW cm-2 intensity 400-500 nm 
wavelength). (iii) Spheroid fusion over 4 days with and without secondary crosslinking in the presence of DTT. (n=3 
biologically independent samples, mean ± s.d, two-sided student t-test, p=0.017). Scalebar 200 µm. All experiments are 
from a single MSC donor. (*p<0.05). 
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Supplementary Figure 7: Cardiac spheroid and microtissue properties during culture: (a) Immunofluorescence 
staining for connexin-43 (green; gap junctions) and cardiac troponin-T (cTnT) (red; iPSC-CMs) in healthy and scarred 
spheroids at 3 days (pre-printing). Scalebar 10 µm. Images are representative of n=2 (healthy spheroid) and n=3 (scarred 
spheroid) biologically independent samples. (b) Live/dead staining of cardiac microtissues 5 days after printing. Scalebar 
100 µm. Quantification of live area (%) in cardiac microtissues 5 days post-printing, compared to cardiac spheroids 
(healthy and scarred) at 3 days (pre-printing), (n=5, 7, 4 biologically independent samples (from left to right), mean ± s.d, 
one-way ANOVA, p=0.018). (c) Quantification of cellular composition through staining for cTnT (iPSC-CMs) and vimentin 
(CFs) in healthy spheroids at 3 days (pre-printing) and microtissues at 5 days post-printing (n=3, 3, 5, 5 biologically 
independent samples, mean ± s.d, one-way ANOVA). All experiments are from a single iPSC-CM donor (donor A). (n.s. 
not significant, *p<0.05). 
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Supplementary Figure 8: Regional calcium activation parameters in scarred microtissues. (i) Activation map (ms), 
(ii) calcium transient duration map (ms), and (iii) time-to-peak map (ms), in scarred cardiac microtissues at 5 days post-
printing (single scar). Activation time is defined as the time taken for the calcium signal to reach 50% of its peak value 
during a single upstroke, calcium transient duration is measured at 50% of peak value, and time-to-peak is defined as the 
time to reach the peak calcium intensity during an upstroke. Images are representative maps from n=4 biologically 
independent samples and the mean values for each parameter in healthy and scarred regions have been quantified for 
comparison in Fig. 5d, e. All experiments are from a single iPSC-CM donor (donor A).   
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Supplementary Figure 9: miRNA screening in healthy cardiac spheroids. (a) (i) Schematic of cholesterol modified 
miR302 (chol-miRNA 302 b/c) delivery to healthy cardiac spheroids for 0, 0-2, 0-4, and 0-7 days. (ii) Contraction 
amplitude (a.u) and (iii) peak-to-peak time (ms) within healthy spheroids after 2, 4, and 7 days for each treatment period 
(n=6, 6, 4, 5, 5, 6, 5, 5, 6 biologically independent samples (from left to right), mean ± s.d, one-way ANOVA, (iii) day 2 - 0 
vs. 0-2 days treatment p=1.0x10-5). (b) (i) Immunofluorescence staining for cTnT (red; iPSC-CMs), vimentin (green; 
cardiac fibroblasts), and EdU (proliferation marker) in healthy spheroids at day 7 for each treatment condition. 
Quantification of (ii) cardiomyocyte proliferation (EdU+ and cTnT+) and (iii) fibroblast proliferation (EdU+ and Vimentin+) at 
day 7 (n=3, 4, 4, 4 biologically independent samples (from left to right), mean ± s.d, one-way ANOVA, (ii) 0 vs. 0-2 days 
treatment p=0.019, 0 vs. 0-4 days treatment p=0.040, 0 vs. 0-7 days treatment p=0.0026). Scalebar 50µm. All 
experiments are from a single iPSC-CM donor (donor B). (n.s. not significant, *p<0.05, **p<0.01, ****p<0.0001).   
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Supplementary Figure 10: Calcium activation parameters in response to miRNA treatment using scarred 
microtissues: Quantification of (i) calcium transient duration (ms), (ii) time-to-peak map (ms), and (iii) calcium flux 
amplitude (F/Fo) in scarred region of microtissues (5 days culture in support hydrogel; with and without 4 days miRNA 
treatment). (n=5 biologically independent samples, two-sided student t-test, (ii) p=0.037). Each data point represents the 
mean CTD, time-to-peak, and calcium flux amplitude in the scarred region of the microtissue. All experiments are from a 
single iPSC-CM donor (donor B). (*p<0.05).   
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Supplementary Table 1: Summary of prior studies that have used cardiomyocyte spheroids, including 
the source of cardiomyocytes and electrophysiology analysis used if applicable.  

 Paper Source of 
cardiomyocytes 

Optical mapping 
parameters 

Patch clamp 
parameters 

Multi electrode 
array parameters 

1 Daly et al. 2020 
* This paper 

Human iPSC-CM  Calcium activation propagation 
map, CT trace, CFA, CTD, Time-
to-peak, activation delay 

  

2 (Kim et al. 2018) Neonatal Rat 
Ventricular myocytes  

Calcium activation propagation 
map, CT traces, activation delay 

  

3 (Zuppinger 2019) Human iPSC-CM CT trace, Calcium activation 
propagation map 

  

4 (Arai et al. 2018) Human iPSC-CM none   
5 (Ong et al. 2017) Human iPSC-CM AP propagation map, AP traces, 

CV, APD 
  

6 (Beauchamp et al. 2020) Human iPSC-CM  Amplitude and resting 
membrane potential, AP 
trace, APD, Upstroke 
velocity (DV/DT)  

 

7 (Giacomelli et al. 2020) Human iPSC-CM CT trace, time-to-peak, decay 
90%, peak-to-half decay time 

AP trace, resting membrane 
potential, APD, APA, 
Velocity max, **  

 

8 (Mattapally et al. 2018) Human iPSC-CM AP propagation map, AP traces, 
APD, CTD 

  

9 (Richards et al. 2020) Human iPSC-CM CT traces, CT propagation map, 
CFA 

  

10 (Polonchuk et al. 2017) Human iPSC-CM none   
11 (Archer et al. 2018) Human iPSC-CM none   
12 (Lee et al. 2019) Human ESC-CM   Averaged field 

potential, Field 
potential duration 

13 (Desroches et al. 2012) Neonatal Rat 
Ventricular myocytes 

AP/CT trace, activation map, 
AP/CT duration, APD, APD map,  

Recording of inward rectifier 
K+ current, ** 

AP traces,  

14 (LaBarge et al. 2019) Human iPSC-CM Activation propagation map, AP 
trace, Conduction velocity, APD 

  

15 (Giacomelli et al. 2017) Human ESC-CM  AP trace, APD, APA, 
Diastolic membrane 
potential 

QT and RR intervals 

16 (Noguchi et al. 2016) Neonatal Rat 
Ventricular myocytes 

none   

17 (Tan et al. 2017) Human iPSC-CM CFA, CTD, CT   
18 (Richards et al. 2016) Human iPSC-CM none   
19 (Richards et al. 2017) Human iPSC-CM CFA, CTD, Time-to-peak, CT   
20 (Arai et al. 2020) Human iPSC-CM none   
21 (Pitaktong et al. 2019) Human iPSC-CM none   
22 (Cui et al. 2019) Human iPSC-CM CT trace, CFA, CV AP trace, APD  
23 (Beauchamp et al. 2015) Human iPSC-CM CT trace, Calcium activation 

propagation map 
  

24 (Jakab et al. 2008) Chicken embryos none   
25 (Kelm et al. 2004) Neonatal Rat 

myocytes 
none   

26 (Tan et al. 2015) Neonatal Rat 
myocytes + Human 
iPSC-CM 

CT trace, CFA, time-to-peak   

27 (Figtree et al. 2017) Neonatal Rat 
myocytes 

none   

28 (Jiang et al. 2015) Primate ESC and 
iPSC CMs 

CT trace   

29 (Varzideh, Mahmoudi, 
and Pahlavan 2019) 

Human ESC–derived 
cardiac progenitor 
cells  

  Field potential duration, 
Interspike interval 
(beating rate), Field 
potential amplitude 

AP: Action potential; APA: Action Potential amplitude; APD: Action potential duration; CFA: Calcium flux amplitude; CM: 
Cardiomyocyte; CT: Calcium transient trace; CTD: Calcium transient duration; CV: Conduction velocity; iPSC: induced-
pluripotent stem cell 

** analysis was all performed on single dissociated cells taken from spheroids 
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