Supplemental Information for:

A small molecule that binds an RNA repeat expansion stimulates its decay via the exosome complex

Alicia J. Angelbello^{1,5}, Raphael I. Benhamou^{1,5}, Suzanne G. Rzuczek^{1,5}, Shruti Choudhary¹, Zhenzhi Tang², Jonathan L. Chen¹, Madhuparna Roy³, Kye Won Wang⁴, Ilyas Yildirim⁴, Albert S. Jun³, Charles A. Thornton², and Matthew D. Disney ^{1,6,*}

¹ Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States of America

² Department of Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States of America

³ Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States of America

⁴ Department of Chemistry, Florida Atlantic University, Jupiter, FL 33458 United States of America

⁵ These authors contributed equally to this work

⁶ Lead contact

* correspondence: <u>Disney@scripps.edu</u>

Table S1. Sequences of primers used for RT-PCR and RT-qPCR (related to STAR Methods).			
Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')	Purpose
MBNL1	GCTGCCCAATACCAGGTCAAC	TGGTGGGAGAAATGCTGTATGC	RT-PCR
MBNL1 exon 5	CTCAGTCGGCTGTCAAATCA	AGAGCAGGCCTCTTTGGTAA	qPCR
MAP4K4	CCTCATCCAGTGAGGAGTCG	ATCACAGGAAAATCCCACCA	RT-PCR
DMPK	CGTGCAAGCGCCCAG	CTCCACCAACTTACTGTTTCATCCT	qPCR
GAPDH	AAGGTGAAGGTCGGAGTCAA	AATGAAGGGGTCATTGATGG	qPCR
Clcn1	TGAAGGAATACCTCACACTCAAGG	CACGGAACACAAAGGCACTG	RT-PCR
Serca1	GCTCATGGTCCTCAAGATCTCAC	GGGTCAGTGCCTCAGCTTTG	RT-PCR
ltgb	CCTACTGGTCCCGACATCATC	CTTCGGATTGACCACAGTTGTC	RT-PCR
Capzb	GCACGCTGAATGAGATCTACTTTG	CCGGTTAGCGTGAAGCAGAG	RT-PCR
TCF4 mature mRNA	ACGATGAGGACCTGACAC	GTCTGGGGCTTGTCACTCTT	qPCR
TCF4 intron 3	GAGAGAGGGAGTGAAAGAGAGA	GGCAATGTCCATTTCCATCT	qPCR
EXOSC10	CTCTTTGGACCTCACGACTGCT	AAGAGGCTCGCCTGCTTCTGAA	qPCR
DIS3	ACCCTCACTTAAAATAGAAGATACAGT	CCATTAAGGTCCATGTTTGAAGT	qPCR
XRN1	CCAGCAAAGCAGTCGTGGAGAA	CCACGACTCTAGCTTCCTCAAG	qPCR

Figure S1. Chemical structures and binding analysis of **2b** (related to Figure 2). (A) Chemical structures of all compounds tested. (B) Thermophoresis analysis of **2b** bound to $r(CUG)_{12}$ (n = 3 independent experiments). (C) Thermophoresis analysis of **2b** with a base-paired control RNA (n = 3 independent experiments). (D) Thermophoresis analysis of **2b** with AT-rich (n = 3 independent experiments). (E) Thermophoresis analysis of **2b** with a $r(CAG)_{12}$ (n = 3 independent experiments). (F) Thermophoresis analysis of **2b** with a $r(CAG)_{12}$ (n = 3 independent experiments). (G) Plot of the $K_{d,app}$ of **2b** and $r(CUG)_{12}$ ($K_d = 42 \pm 6$ nM) and to a base-paired control, AT-rich DNA, $r(G_4C_2)_8$ and $r(CAG)_{12}$ ($K_d > 5000$ nM). Error bars indicate SD for all panels. (G) Schematic of interactions of 2b with $r(CCGC\underline{U}GCGG)_2$. Pink lines are ionic interactions, dark blue lines are hydrogen bonding interactions, and light blue lines are stacking interactions.

Figure S2. Activity of compounds in DM1 and wild-type fibroblasts (related to Figure 2). (A) Toxicity of **1b**, **2b**, and **3b** in DM1 fibroblasts as determined by WST-1 cell viability reagent (n = 5). (B) Representative gel image of *MBNL1* exon 5 splicing in DM1 fibroblasts treated with **1b** (top) and quantification of *MBNL1* exon 5 inclusion in DM1 fibroblasts treated with **1b** (bottom) (n = 3). (C) Representative gel image of *MBNL1* exon 5 *MBNL1* exon 5 splicing in DM1 fibroblasts treated with **3b** (top) and quantification of *MBNL1* exon 5 mage of *MBNL1* exon 5 inclusion in DM1 fibroblasts treated with **3b** (top) and quantification of *MBNL1* exon 5 inclusion in DM1 fibroblasts treated with **3b** (bottom) (n = 3). (D) Representative gel image of *MBNL1* exon 5 splicing in DM1 fibroblasts treated with **3b** (bottom) (n = 3). (D) Representative gel image of *MBNL1* exon 5 inclusion in DM1 fibroblasts treated with **2b** (top) and quantification of *MBNL1* exon 5 inclusion in DM1 fibroblasts treated with **2b** (bottom) (n = 3). (E) RT-qPCR analysis of *MBNL1* exon 5 inclusion in DM1 fibroblasts treated with **2b** (bottom) (n = 3). (F) Representative images of r(CUG)^{exp}-MBNL1 foci as determined by MBNL1

immunostaining and RNA FISH. (G) Quantification of the number of nuclear foci/cell (n = 3, 40 cells counted/replicate). Error bars indicate SD; ***, P < 0.001, as determined by a two-tailed Student *t*-test. (H) Representative gel image of *MBNL1* exon 5 splicing in wild-type fibroblasts treated with **2b** (top) and quantification of *MBNL1* exon 5 splicing in wild-type fibroblasts treated with **2b** (bottom) (n = 3). (I) Representative gel image of *MAP4K4* exon 22a splicing in DM1 fibroblasts treated with **2b** (top) and quantification of *MAP4K4* exon 22a splicing in DM1 fibroblasts treated with **2b** (bottom) (n = 3). (J) Compound **2b** does not affect *DMPK* abundance in DM1 fibroblasts, as determined by RT-qPCR (n = 3). For all panels: error bars indicate SD; **, P < 0.01; ***, P < 0.001, as determined by a one-way ANOVA, unless otherwise noted.

Figure S3. Activity of **2b** in DM1 and wild-type myotubes (related to Figures 3 and 4). (A) Representative gel image of *MBNL1* exon 5 splicing in DM1 myotubes treated with **2b** (top) and quantification of *MBNL1* exon 5 inclusion in DM1 myotubes treated with **2b** (bottom) (n = 3). (B) Representative gel image of *MBNL1* exon 5 splicing in wild-type myotubes treated with **2b** (top) and quantification of *MBNL1* exon 5 splicing in wild-type myotubes treated with **2b** (bottom) (n = 3). (C) Representative gel image of *MAP4K4* exon 22a splicing in DM1 myotubes treated with **2b** (top) and quantification of *MAP4K4* exon 22a splicing in DM1 myotubes treated with **2b** (bottom) (n = 3). (C) Representative gel image of *MAP4K4* exon 22a splicing in DM1 myotubes treated with **2b** (top) and quantification of *MAP4K4* exon 22a splicing in DM1 myotubes treated with **2b** (bottom) (n = 3). (D) Chemical structure of Chem-CLIP probe **2H-K4NMeS-CA-Biotin** synthesized as previously described (Rzuczek et al., 2017). For all panels: n = 3; error bars indicate SD; **, *P* < 0.01; ***, *P* < 0.001, as determined by a one-way ANOVA.

Figure S4. Activity of **2b** in HSA^{LR} mice (related to Figure 3). (A) Representative gel image of *Serca1* exon 22 splicing in the quadriceps and gastrocnemius muscles of HSA^{LR} mice treated with **2b** (40 mg/kg). (B) Representative gel image of *Clcn1* exon 7A splicing in the quadriceps and gastrocnemius muscles of HSA^{LR} mice treated with **2b**. (C) Quantification of *Serca1* exon 22 inclusion. (D) Quantification of *Clcn1* exon 7A inclusion. (E) Representative gel image of *Capzb* exon 8 splicing (non-MBNL1 regulated (Lin et al., 2006)) in the quadriceps muscle of HSA^{LR} mice treated with **2b** (40 mg/kg). (F) Representative gel image of *Itgb* exon 17 splicing [non-MBNL1 regulated (Lin et al., 2006)] in the quadriceps muscle of HSA^{LR} mice treated with **2b**. (G) Quantification of *Capzb* and *Itgb* exon inclusion. (H) Representative gel image of *Serca1* exon 22 splicing in the quadriceps and gastrocnemius muscles of wild-type (FVB) mice treated with **2b**.

(I) Representative gel image of *Clcn1* exon 7A splicing in the quadriceps and gastrocnemius muscles of wild-type (FVB) mice treated with **2b**. (J) Quantification of *Serca1* exon 22 inclusion. (K) Quantification of *Clcn1* exon 7A inclusion. For all panels: error bars represent SD, **, P < 0.01; ***, P < 0.001; as determined by a one-way ANOVA relative to vehicle treated (0). For *HSA*^{LR} experiments, n = 4 mice/group; for FVB experiments, n = 3 mice/group.

Figure S5. Activity of **2b** in FECD and wild-type corneal endothelial cells (related to Figure 5). (A) Toxicity of **2b** in FECD cells (F35T), as determined by CellTiter-Glo (n = 5). (B) Representative images of r(CUG)^{exp}-MBNL1 foci as determined by MBNL1 immunostaining and RNA FISH. (C) Quantification of the number of nuclear foci/cell (n = 3, 40 nuclei counted/replicate); **, P < 0.01, as determined by a two-tailed Student *t*-test. (D) Representative gel image of *MBNL1* exon 5 splicing in FECD cells treated with **2b** (top) and quantification of *MBNL1* exon 5 splicing (bottom) (n =3); *, P < 0.05; **, P < 0.01; ****, P < 0.001, as determined by a one-way ANOVA. (E) Representative gel

image of *MAP4K4* exon 22a (non-MBNL1 regulated) splicing in FECD cells treated with **2b** (top) and quantification of *MAP4K4* exon 22a splicing (bottom) (n =3). (F) Representative gel image of *MBNL1* exon 5 splicing in wild-type (F2oT) cells treated with **2b** (top) and quantification of *MBNL1* exon 5 splicing (n = 3). (G) Abundance of *TCF4* intron 3 levels in F2oT cells treated with **2b** assessed by RT-qPCR (n = 3). For all panels error bars represent SD.

Figure S6. Studying the RNA quality control pathways responsible for intron degradation upon **2b** treatment in FECD cells (related to Figure 6). (A) Decay mechanisms for the exosome complex and XRN1. (B, C) Impact of the siRNA knock down of *XRN1* on **2b**'s ability to reduce *TCF4* intron 3 levels in FECD cells. (B) *XRN1* mRNA levels, as determined by RT-qPCR. (C) *TCF4* mature mRNA levels, as determined by RT-qPCR. (D, E) Impact of the siRNA knock down of *hRRP6* on **2b**'s ability to reduce *TCF4* intron 3 levels in FECD cells. (D) *EXOSC10* (*hRRP6*) mRNA levels, as determined by RT-qPCR. (E) *TCF4* mature mRNA levels, as determined by RT-qPCR. (E) *TCF4* mature mRNA levels, as determined by RT-qPCR. (E) *TCF4* mature mRNA levels, as determined by RT-qPCR. (E) *TCF4* mature mRNA levels, as determined by RT-qPCR. (F, G) Effect of knock-down of *hRRP44* via an siRNA on **2b**'s ability to reduce *TCF4* intron 3 levels in FECD

cells. (F) *DIS3* (hRRP44) mRNA levels, as determined by RT-qPCR. (G) *TCF4* mature mRNA levels, as determined by RT-qPCR. For all panels, n = 3, and error bars represent SD. **, P < 0.01; ***, P < 0.001, as determined by one-way ANOVA compared to untreated cells ("0").

Data S1. Compound characterization (NMR and HRMS spectra and analytical HPLC traces) (related to STAR Methods).

Supporting Information Page 13

2b:

Supporting Information Page 19

Supporting Information Page 21