Supplemental Information For

Detergent wash improves vaccinated lymph node handling ex vivo

Alexander G. Ball^{a,b}, Maura C. Belanger^{b,c}, and Rebecca R. Pompano^{b,c,d†}

^a Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, USA

^b Carter Immunology Center, University of Virginia, Charlottesville, USA

^c Department of Chemistry, University of Virginia, Charlottesville, USA

^d Department of Biomedical Engineering, University of Virginia, Charlottesville, USA

Contents

- Supplemental Video Caption
- Supplementary Figures

Supplementary Video 1: Movie of washing lymph nodes in digitonin solution. Harvested lymph

nodes were quickly dipped into a 100 µg/mL digitonin solution (< 1 sec) before being rinsed in

phosphate-buffered saline (3 – 5 sec) and placed into complete RPMI. Movie plays in real time.

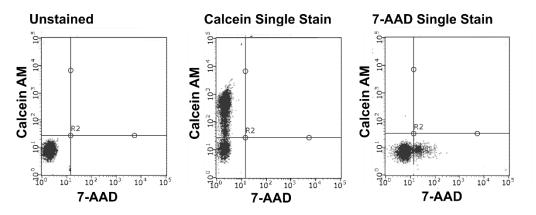


Figure S1: Single stain controls for flow cytometry, as described in Methods.

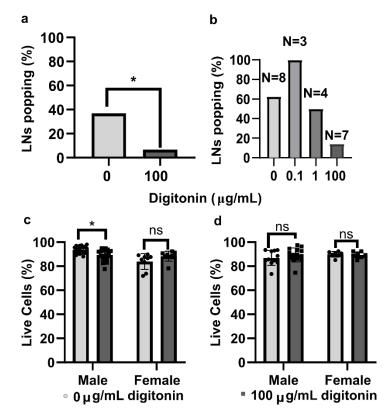


Figure S2: Optimization of digitonin wash and analysis of sex differences in digitonin washing. (a) Popping frequency of LNs from male vaccinated mice with or without digitonin wash. n = 16 for 0 µg/mL, n = 15 for 100 µg/mL. * indicates p < 0.05 by unpaired t test. (b) Popping frequencies of LNs from vaccinated animals (male) in preliminary tests with varied concentration of digitonin. (c,d) Overnight viability of lymph node slices with or without a digitonin wash, broken out by sex, for vaccinated mice (c) or naïve mice (d), as assessed by flow cytometry using 7-AAD and Calcein staining. Each dot represents one slice. Bars show mean and standard deviation. * indicates p < 0.05 by Two-way ANOVA Multiple Comparisons.