Supporting Information for

Narrower Nanoribbon Biosensors Fabricated by Chemical Lift-Off Lithography Show Higher Sensitivity

Chuanzhen Zhao,^{†,§} Qingzhou Liu,^{\Box} Kevin M. Cheung,^{†,§} Wenfei Liu,^{†,§} Qing Yang,^{†,§} Xiaobin Xu,^{†,§} Tianxing Man,[¶] Paul S. Weiss^{†,§, ▲}, [♥],* Chongwu Zhou,^{\Box ,#,*} and

Anne M. Andrews,^{†,§,▽,}*

[†]Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States

[§]California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States

^DMork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States

[¶]Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States

▲Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States

▼Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States

[#]Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States

^{\normalforderightary} Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience

and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States

*Address correspondence to aandrews@mednet.ucla.edu (AMA), chongwuz@usc.edu (CZ), and psw@cnsi.ucla.edu (PSW)

Supplemental Methods

Artificial cerebrospinal fluid (aCSF) was prepared from stock solutions. The 10× base stock contains NaCl (1470 mM), KCl (35 mM), NaH₂PO₄ (10 mM), and NaHCO₃ (25 mM) in deionized distilled water. The base stock is aliquoted and stored at room temperature. It is stable for at least one year. <u>Preparation note:</u> Neither CaCl₂ nor MgCl₂ should be added directly to the 10x base stock solution due to their low solubility in aqueous solution at pH >7.5. The Mg²⁺ and Ca²⁺ precipitate as Mg(OH)₂ and Ca(OH)₂ causing the stock solution to appear cloudy and/or for a visible precipitate to form. Stock solutions of CaCl₂ (901 mM) and MgCl₂ (1050 mM) in deionized distilled water are each prepared separately. <u>Safety note:</u> The addition of CaCl₂ or MgCl₂ to water is exothermic. Use caution, cold water, and slow stirring when preparing these solutions. The CaCl₂ and MgCl₂ stocks are aliquoted into 1-mL Eppendorf tubes and stored at -80 °C indefinitely.

Before experiments, the working aCSF solution (physiological concentration, "1×") was prepared. One aliquot each of the CaCl₂ and MgCl₂ stocks was thawed. Deionized distilled water was added to a beaker at ~80% of the final volume of the working solution. The 10× base stock was added, *e.g.*, 50 mL 10× base stock was added to ~400 mL water for 500 mL final volume of working solution. The pH was initially adjusted to 7.4-7.5 with ~1% HCl. The CaCl₂ stock was then added dropwise slowly using a pipette. The working solution was constantly stirred to avoid precipitation for a final concentration of 1.0 mM CaCl₂, *e.g.*, 555 µL for a final volume of 500 mL working solution. Next, the MgCl₂ stock solution was added dropwise slowly while stirring, for a final concentration of 1.2 mM, *e.g.*, 571 µL for a final volume of 500 mL working solution. The pH of the working solution was adjusted to 7.30 \pm 0.03 using ~1% HCl. Finally, the solution was brought to the final volume with deionized distilled water, *e.g.*, final volume 500 mL. The final concentrations of the working aCSF solution (1×) were NaCl (147 mM), KCl (3.5 mM), NaH₂PO₄ (1.0 mM), NaHCO₃ (2.5 mM), CaCl₂ (1.0 mM), and MgCl₂ (1.2 mM). The working solution was stored at 4 °C for ≤2 weeks.

Figure S1. Elemental energy spectrum for In_2O_3 nanoribbons from energy-dispersive X-ray mapping.

Element Line	Net Counts	Element wt.%	Element wt.% Error	Atom%	Atom% Error
ОК	26915	50.60		66.48	± 0.51
Si L	0				
Si K	213374	43.30	± 0.14	32.40	± 0.11
In M	0				
In L	10378	6.10	± 0.26	1.12	± 0.05
Total		100.0		100.0	

Table S1. Elemental quantification analysis of In2O3 nanoribbonsby energy-dispersive X-ray mapping.

Figure S2. Optical microscope image of interdigitated electrodes (yellow). Orientations of In₂O₃ nanoribbons are depicted in overlay (light blue).

Figure S3. Optical microscope image of $20-\mu m$ wide In_2O_3 nanoribbons with source and drain electrodes.

Figure S4. Solid-state transfer characteristics of In_2O_3 FETs with different nanoribbon widths,

(a) 2 μm, (b) 20 μm, and (c) thin film.

Figure S5. Gate leakage current (gate current to gate voltage) in buffer solution (pH = 7.4) at

 $V_{DS} = 100 \text{ mV}.$

Figure S6. Liquid-state transfer characteristics of In_2O_3 FETs with nanoribbons of different widths, (a) 2 μ m, (b) 20 μ m, or (c) thin film.

Calculation of surface-to-volume ratios

Figure S7. Schematic of nanoribbons for calculation of surface-to-volume ratios.

Consider a nanoribbon array, where the surface-to-volume ratio of an arbitrary area with width W is calculated. For each In_2O_3 nanoribbon, the length is denoted as *L*, width as *w*, and thickness as *t*. The pitch of the nanoribbons is 2*w* for different widths of nanoribbons. For nanoribbon surface area calculations, only the top surface and the two side surfaces are included. Results are summarized in **Table S2**.

Number of ribbons (per arbitrary area):
$$N = \frac{W}{2w}$$
 Eq. 1

Surface area:
$$S = (w * L) + (2 * L * t)$$
 Eq. 2

Volume:
$$V = w * L * t$$
 Eq. 3

Surface-to-volume ratio (per nanoribbon): $\frac{S}{V} = \frac{w + L + 2 + L + t}{w + L + t} = \frac{w + 2 + t}{w + t} = \frac{1 + 2 + \frac{t}{w}}{t}$ Eq. 4

Surface-to-volume ratio (per arbitrary area):
$$\frac{s}{v} = \frac{(w*L+2*L*t)*N}{(w*L*t)*N} = \frac{(w*L+2*L*t)}{(w*L*t)} = \frac{1+2*\frac{t}{w}}{t}$$
 Eq. 5

For *w*¹ = 350 nm:

$$\frac{S}{V} = \frac{1+2*\frac{t}{w}}{t} = \frac{1+2*\frac{20\,nm}{350\,nm}}{20\,nm} = \frac{1+0.11}{20}nm^{-1} = \frac{1.11}{20}nm^{-1}$$
S-11

For $w_2 = 2 \ \mu m$:

$$\frac{S}{V} = \frac{1+2*\frac{t}{w}}{t} = \frac{1+2*\frac{20\,nm}{2000\,nm}}{20\,nm} = \frac{1+0.02}{20}\,nm^{-1} = \frac{1.02}{20}\,nm^{-1}$$

For $w_3 = 20 \ \mu m$:

$$\frac{S}{V} = \frac{1+2*\frac{t}{w}}{t} = \frac{1+2*\frac{20\,nm}{20\,000\,nm}}{20\,nm} = \frac{1+0.002}{20}\,nm^{-1} = \frac{1.002}{20}\,nm^{-1}$$

For thin-films:

$$\frac{t}{w} \to 0, \frac{s}{v} = \frac{1+2*\frac{t}{w}}{t} = \frac{1}{20}nm^{-1}$$

Width	Pitch	Thickness	Surface-to-Volume Ratio	Surface-to-Volume Ratio Increase <i>vs</i> Thin Film
350 nm	700 nm	20 nm	$rac{1.11}{20} \ nm^{-1}$	11%
$2 \mu m$	4 µm	20 nm	$\frac{1.02}{20} \ nm^{-1}$	2%
20 µm	40 µm	20 nm	$\frac{1.002}{20} \ nm^{-1}$	0.2%
Thin Film		20 nm	$\frac{1}{20} nm^{-1}$	

Figure S8. COMSOL simulations of effects of nanoribbon width on surface-to-volume ratio.
(a) Model used in the simulation, where nanoribbons are 20-nm-thick with widths varying from 5 nm to 20 μm. (b) Simulation results of the electrostatic potential due to the charge of the biomolecules. (c) Simulated normalized calibrated responses at different ribbon widths showing that the sensitivity of In₂O₃ nanoribbon FETs is predicted to increase at widths below 2 μm. Simulated calibrated response values were normalized to responses for 20-μm microribbons.
Simulated responses are not directly comparable with experimental results in the main text due to the nature of the simulation complexity for the semiconductor system under study.

S-14

Table S3. Field-effect transistor data were analyzed by two-way analysis of variance withnanoribbon width and target concentration as the independent variables.

Туре	Figure	Interaction Term	Nanoribbon Width	Concentration
рН	Fig. 4f	F(5,24) = 3.395 P = 0.019	F $(1,24) = 13.09$ P = 0.001	F (5,24) = 307.0 P < 0.0001
Serotonin	Fig. 5c	F(5,18) = 0.375 P = 0.859	F(1,18) = 4.010 P = 0.061	F(5,18) = 9.107 P = 0.0002
DNA	Fig. 5f	F(3,10) = 0.054 P = 0.982	F(1,10) = 7.293 P = 0.022	F $(3,10) = 1.518$ P = 0.269