Supporting Information for

Narrower Nanoribbon Biosensors Fabricated by Chemical Lift-Off Lithography Show Higher Sensitivity

Chuanzhen Zhao,†§ Qingzhou Liu,[□] Kevin M. Cheung,†§ Wenfei Liu,†§ Qing Yang,†§ Xiaobin Xu,†§ Tianxing Man,¶ Paul S. Weiss†§,▲,▼,* Chongwu Zhou,□,#,* and

Anne M. Andrews,†,§,▽,∗

[†]Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States

§California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States

 \Box Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States

TDepartment of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States

 \triangle Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States

▼Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States

#Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States

 ∇ Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience

and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States

*Address correspondence to aandrews@mednet.ucla.edu (AMA), chongwuz@usc.edu (CZ), and psw@cnsi.ucla.edu (PSW)

Supplemental Methods

Artificial cerebrospinal fluid (aCSF) was prepared from stock solutions. The $10\times$ base stock contains NaCl (1470 mM), KCl (35 mM), NaH₂PO₄ (10 mM), and NaHCO₃ (25 mM) in deionized distilled water. The base stock is aliquoted and stored at room temperature. It is stable for at least one year. **Preparation note:** Neither CaCl₂ nor MgCl₂ should be added directly to the 10x base stock solution due to their low solubility in aqueous solution at pH >7.5. The Mg²⁺ and Ca²⁺ precipitate as $Mg(OH)_2$ and Ca(OH)₂ causing the stock solution to appear cloudy and/or for a visible precipitate to form. Stock solutions of CaCl₂ (901 mM) and MgCl₂ (1050 mM) in deionized distilled water are each prepared separately. **Safety note:** The addition of CaCl₂ or MgCl₂ to water is exothermic. Use caution, cold water, and slow stirring when preparing these solutions. The CaCl₂ and MgCl₂ stocks are aliquoted into 1-mL Eppendorf tubes and stored at -80 °C indefinitely.

Before experiments, the working aCSF solution (physiological concentration, " $1\times$ ") was prepared. One aliquot each of the CaCl₂ and MgCl₂ stocks was thawed. Deionized distilled water was added to a beaker at \sim 80% of the final volume of the working solution. The 10 \times base stock was added, *e.g.*, 50 mL 10 \times base stock was added to ~400 mL water for 500 mL final volume of working solution. The pH was initially adjusted to 7.4-7.5 with \sim 1% HCl. The CaCl₂ stock was then added dropwise slowly using a pipette. The working solution was constantly stirred to avoid precipitation for a final concentration of 1.0 mM CaCl₂, *e.g.*, 555 µL for a final volume of 500 mL working solution. Next, the MgCl₂ stock solution was added dropwise slowly while stirring, for a final concentration of 1.2 mM, *e.g.*, 571 µL for a final volume of 500 mL working solution. The pH of the working solution was adjusted to 7.30 \pm 0.03 using ~1% HCl. Finally, the solution was brought to the final volume with deionized distilled water, *e.g.*, final volume 500 mL. The final concentrations of the working aCSF solution (1x) were NaCl (147 mM), KCl (3.5 mM), NaH₂PO₄ (1.0 mM), NaHCO₃ (2.5 mM), CaCl₂ (1.0 mM), and MgCl₂ (1.2 mM). The working solution was stored at 4 °C for \leq 2 weeks.

Figure S1. Elemental energy spectrum for In₂O₃ nanoribbons from energy-dispersive X-ray mapping.

Element Line	Net Counts	Element $wt. \%$	Element wt.% Error	Atom%	Atom% Error
O K	26915	50.60	$---$	66.48	± 0.51
Si L	$\boldsymbol{0}$	---			---
Si K	213374	43.30	± 0.14	32.40	± 0.11
In M	$\boldsymbol{0}$	---	---		---
In L	10378	6.10	± 0.26	1.12	± 0.05
Total		100.0		100.0	

Table S1. Elemental quantification analysis of In₂O₃ nanoribbons by energy-dispersive X-ray mapping.

Figure S2. Optical microscope image of interdigitated electrodes (yellow). Orientations of In₂O₃ nanoribbons are depicted in overlay (light blue).

Figure S3. Optical microscope image of 20-µm wide In₂O₃ nanoribbons with source and drain electrodes.

Figure S4. Solid-state transfer characteristics of In₂O₃ FETs with different nanoribbon widths,

(a) 2 µm, **(b)** 20 µm, and **(c)** thin film.

Figure S5. Gate leakage current (gate current to gate voltage) in buffer solution (pH = 7.4) at

 $V_{DS} = 100$ mV.

Figure S6. Liquid-state transfer characteristics of In₂O₃ FETs with nanoribbons of different widths, **(a)** 2 µm, **(b)** 20 µm, or **(c)** thin film.

Calculation of surface-to-volume ratios

Figure S7. Schematic of nanoribbons for calculation of surface-to-volume ratios.

Consider a nanoribbon array, where the surface-to-volume ratio of an arbitrary area with width W is calculated. For each In₂O₃ nanoribbon, the length is denoted as *L*, width as *w*, and thickness as *t*. The pitch of the nanoribbons is 2*w* for different widths of nanoribbons. For nanoribbon surface area calculations, only the top surface and the two side surfaces are included. Results are summarized in **Table S2**.

Number of ribbons (per arbitrary area):
$$
N = \frac{W}{2w}
$$
 Eq. 1

Surface area:
$$
S = (w * L) + (2 * L * t)
$$
 Eq. 2

$$
Volume: V = w * L * t
$$
 Eq. 3

Surface-to-volume ratio (per nanoribbon): $\frac{S}{V} = \frac{W*L+2*L*t}{W*L*t} = \frac{W+2*t}{W*t} = \frac{1+2*\frac{t}{w}}{t}$ $\frac{2}{t}$ Eq. 4

Surface-to-volume ratio (per arbitrary area):
$$
\frac{S}{V} = \frac{(w*L+2*L*t)*N}{(w*L*t)*N} = \frac{(w*L+2*L*t)}{(w*L*t)} = \frac{1+2*\frac{t}{w}}{t}
$$
 Eq. 5

For w_1 = 350 nm:

$$
\frac{S}{V} = \frac{1+2*\frac{t}{W}}{t} = \frac{1+2*\frac{20 \text{ nm}}{350 \text{ nm}}}{20 \text{ nm}} = \frac{1+0.11}{20} \text{ nm}^{-1} = \frac{1.11}{20} \text{ nm}^{-1}
$$

S-11

For $w_2 = 2 \mu m$:

$$
\frac{S}{V} = \frac{1+2*\frac{t}{W}}{t} = \frac{1+2*\frac{20 \, nm}{2000 \, nm}}{20 \, nm} = \frac{1+0.02}{20} \, nm^{-1} = \frac{1.02}{20} \, nm^{-1}
$$

For $w_3 = 20 \mu m$:

$$
\frac{S}{V} = \frac{1+2*\frac{t}{W}}{t} = \frac{1+2*\frac{20 \, nm}{20000 \, nm}}{20 \, nm} = \frac{1+0.002}{20} \, nm^{-1} = \frac{1.002}{20} \, nm^{-1}
$$

For thin-films:

$$
\frac{t}{w} \to 0, \frac{s}{v} = \frac{1+2*\frac{t}{w}}{t} = \frac{1}{20}nm^{-1}
$$

Figure S8. COMSOL simulations of effects of nanoribbon width on surface-to-volume ratio. (a) Model used in the simulation, where nanoribbons are 20-nm-thick with widths varying from 5 nm to 20 µm. (b) Simulation results of the electrostatic potential due to the charge of the biomolecules. (c) Simulated normalized calibrated responses at different ribbon widths showing that the sensitivity of In_2O_3 nanoribbon FETs is predicted to increase at widths below 2 μ m. Simulated calibrated response values were normalized to responses for 20-um microribbons. Simulated responses are not directly comparable with experimental results in the main text due to the nature of the simulation complexity for the semiconductor system under study.

S-14

Table S3. Field-effect transistor data were analyzed by two-way analysis of variance with nanoribbon width and target concentration as the independent variables.

