Supplementary Material 2. Catalog of the 77 treadmill- and criterion-based validation studies of wearable step counting technologies that were included.

First Author and Year	Participant Characteristics	Treadmill Protocol Details	Use Video*	Analytical Procedures
Abel 2008 ¹	10 men, 10 women; healthy adults; 29.4±7.1 years	3 walking bouts at 0.90- 1.78 m/s; 3 running bouts at 2.23-3.13 m/s; 10 min each;	Yes	Bias: percent of steps taken
Abel 2011 ²	29 men, 30 women; healthy adults; 23.4±3.17 years	6 walking bouts at speeds of 0.98-0.78 m/s; 1 walking bout at a self- selected speed; 3 min each	No	<i>Bias</i> : percent error <i>Accuracy</i> : median absolute percent error
Alsubheen 2016 ³	8 men, 5 women; healthy adults; 40.0±11.9 years	3 walking bouts at a self-selected walking speed from 1.1-2.0 m/s with inclines of 0, 5 and 10%; 10 min each	No	<i>Other</i> : difference in steps
An 2017 ⁴	17 men, 18 women; healthy adults; 31±11.8 years	6 walking bouts with running as needed; speeds 0.89-2.24 m/s; 3 min each	No	<i>Bias</i> : Bland-Altman <i>Accuracy</i> : MAPE <i>Precision</i> : correlation <i>Other</i> : equivalence tests
Bassett 1996 ⁵	5 men (34.6±10 years), 5 women (33.6±16 years); healthy adults	5 walking bouts; speeds 0.90-1.78 m/s; 4 min each	No	<i>Bias</i> : percent of steps taken <i>Precision</i> : standard deviation
Beets 2005 ⁶	10 boys (8.3±1.5 years), 10 girls (8.9±1.7 years); healthy children; 8.6±1.6 years	5 walking bouts; speeds 0.67-1.57 m/s; 2 min each	No	Accuracy: MAPE
Beevi 2016 ⁷	9 men, 5 women; healthy adults; 29.93±4.93 years	3 walking bouts; speeds 0.28-0.83 m/s; 100 steps each	No	<i>Bias</i> : percent error <i>Precision</i> : standard deviation
Bergman 2012 ⁸	10 men, 10 women; healthy adults; 21.85±1.57 years	5 walking bouts; speeds 0.90-1.78 m/s; 2 min each	No	<i>Bias</i> : Bland-Altman <i>Precision</i> : standard error, correlation <i>Other</i> : difference in steps

Brown 2013 ⁹	15 men, 7 women; healthy adults; 28±7 years	1 constant 11-min walking bout at 1.33 m/s; up to 6 incrementally faster 2- min walking/running	Yes	<i>Bias</i> : modified Bland- Altman, percent error <i>Precision</i> : standard deviation <i>Other</i> : difference in steps
Case 2015 ¹⁰	3 men, 11 women; healthy adults; 28.1±6.2 years	bouts at 0.90-3.57 m/s 2 walking bouts; speeds 1.34 m/s; 500 and 1500 steps	No	Bias: percent error
Chen 2016 ¹¹	15 men, 15 women; healthy adults; 22.1±2.2 years	3 walking bouts at 0.90- 1.78 m/s; 1 running bout at 2.23 m/s; 5 min each	Yes	<i>Bias</i> : Bland-Altman, percent of steps taken <i>Accuracy</i> : MAPE
Chow 2017 ¹²	19 men, 12 women; healthy adults; 24.3±5.2 years	5 walking bouts with running as needed; speeds 1.39-3.33 m/s; 3 min each	Yes	<i>Bias</i> : percent error <i>Precision</i> : standard deviation
Colley 2013 ¹³	16 men, 24 women; healthy adults; 31.1±11.2 years	4 walking bouts with running as needed; speeds of 50%-250% of self-selected walking speed; 7 min each	No	<i>Bias</i> : Bland-Altman, percent error
Connolly 2011 ¹⁴	30 pregnant women; 30.6±5.6 years	4 walking bouts; speeds 0.90-1.57 m/s; 2 min each	No	<i>Bias</i> : Bland-Altman, percent of steps taken
Crouter 2003 ¹⁵	5 men, 5 women; healthy adults; 33±12 years	5 walking bouts; speeds 0.90-1.78 m/s; 5 min each	No	<i>Bias</i> : mean difference, percent of steps taken <i>Precision:</i> correlation
Crouter 2005 ¹⁶	20 men, 20 women; overweight and obese adults; 40±13 years	5 walking bouts speeds 0.90-1.78 m/s; 3 min each;	No	<i>Bias</i> : mean difference, Bland-Altman, percent of steps taken
Dahlgren 2010 ¹⁷	12 men, 12 women; healthy adults; 22.5±2.2 years	3 walking bouts at 0.89- 1.25 m/s; 1 running bout at 2.22 m/s; duration not reported	Yes	<i>Bias</i> : mean difference <i>Precision</i> : standard deviation, correlation
Diaz 2015 ¹⁸	10 men, 13 women; healthy adults; 20-54 years	3 walking bouts at 0.85- 1.79 m/s; 1 running bout at 2.32 m/s; 6 min each	Yes	<i>Bias</i> : mean difference <i>Other</i> : difference in steps

Diaz 2016 ¹⁹	10 men, 13 women; healthy adults; 32±9.2 years	3 walking bouts at 0.85- 1.79 m/s; 1 running bout at 2.32 m/s; 6 min each	Yes	<i>Bias</i> : Bland-Altman, percent error <i>Precision</i> : correlation
Dondzila 2012 ²⁰	102 healthy adults; proportion female not reported; 53 from 20- 69 (32.9 ± 10.8) years, 49 from 50-80 (65.4 ± 6.9) years	5 walking bouts; speeds 0.89-1.79 m/s; 5 min each	No	<i>Bias</i> : mean difference, percent of steps taken
Dueker 2012 ²¹	7 boys, 10 girls; healthy children; 12.8±1.7 years	3 walking bouts at 0.89- 1.79 m/s; 1 running bout at 2.24 m/s; 3 min each	No	<i>Bias</i> : percent error <i>Precision</i> : standard deviation
Duncan 2007 ²²	43 boys (19.0% overweight, 7.1% obese), 42 girls (20.0% overweight, 10.0% obese); healthy children; 36 from 5-7 (mean 6.1) years, 49 from 9-11 (mean 10.0) years	3 walking bouts; speeds 0.70-1.50 m/s; 2 min each	Yes	<i>Bias</i> : modified Bland- Altman, percent error <i>Precision</i> : loss of precision
Duncan 2017 ²³	11 men, 22 women; healthy adults; 25.9±9.4 years	4 walking bouts with running as needed: speeds 0.69-2.78 m/s; 1 min each	Yes	<i>Bias</i> : modified Bland- Altman, mean difference <i>Precision</i> : standard deviation
Dwyer 2009 ²⁴	20 men, 14 women; adults with cystic fibrosis and healthy adults; 28±7 years	1 walking bout; at a slightly faster than comfortable pace; 20 min	No	<i>Bias</i> : Bland-Altman <i>Precision:</i> correlation <i>Other</i> : difference in steps
Edbrooke 2012 ²⁵	15 healthy adults; proportion female not reported; 22±7.8 years	4 walking bouts; speeds 0.67-1.67 m/s; 3 min each	Yes	<i>Bias</i> : mean difference <i>Precision</i> : standard error, correlation
Esliger 2007 ²⁶	16 men, 22 women; healthy adults; 34.3±18 years	2 walking bouts at 0.83- 1.38 m/s; 1 running bout at 2.2 m/s; 6 min each	No	<i>Bias</i> : mean difference, modified Bland-Altman <i>Precision</i> : coefficient of variation, standard deviation, standard error, correlation <i>Other</i> : difference in steps

Feito 2012 ²⁷	32 men 39 women; 28 normal weight (27.8± 8.0 years), 24 overweight (34.6± 14.2 years), 19 obese (31.5±11.1 years)	3 walking bouts; speeds 0.67-1.38 m/s; 5 min each	No	<i>Bias</i> : Bland-Altman, percent of steps taken <i>Precision</i> : correlation
Feito 2012 ²⁸	28 men, 28 women; 21 normal weight (28.3±10.5 years), 19 overweight (31.2±9.9 years), 16 obese (29.0±7.9 years)	5 walking bouts; speeds 0.67-1.38 m/s; 100 steps min each	No	<i>Bias</i> : percent of steps taken <i>Precision</i> : standard deviation
Feito 2015 ²⁹	24 healthy adults; proportion female not reported; 23.8±8.8 years	5 walking bouts; speeds 0.67-1.38 m/s; 100 steps each	No	<i>Bias</i> : percent error <i>Precision</i> : standard deviation
Fokkema 2017 ³⁰	16 men, 15 women; healthy adults; 32±12 years	3 walking bouts speeds 0.89-1.78 m/s; 10 min each	Yes	<i>Bias</i> : mean difference, percent error <i>Precision</i> : standard deviation, correlation
Foster 2005 ³¹	10 men, 10 women; 10 normal weight (30±13 years), 10 obese (32±7 years)	3 walking bouts; speeds 0.45-1.34 m/s; 15 min each	No	<i>Bias</i> : percent of steps taken <i>Precision</i> : correlation
Furlanetto 2010 ³²	32 men, 28 women; 30 with COPD (67±8 years), 30 healthy (68±7) years	3 walking bouts; at 30- 100% of average speed during a six-minute walk test; 1 min each	Yes	<i>Bias</i> : Bland-Altman <i>Precision</i> : standard deviation <i>Other</i> : difference in steps
Gaz 2018 ³³	10 men, 22 women; healthy adults; 36±8 years	3 walking bouts; speeds 0.67-1.57 m/s; 5 min each	No	<i>Bias:</i> mean difference <i>Precision</i> : standard deviation
Giannakidou 2012 ³⁴	24 men, 18 women; healthy adults; 22.6±2.8 years	5 walking bouts; speeds 0.9-1.78 m/s; 5 min each	No	<i>Bias</i> : percent of steps taken <i>Precision</i> : standard deviation <i>Accuracy</i> : root mean square percent error
Harrington 2011 ³⁵	0 men, 62 women; healthy adults; 18.5±3.4 years	5 walking bouts; speeds 0.89-1.94 m/s; 7 min each	Yes	<i>Bias</i> : Bland-Altman <i>Precision</i> : standard deviation <i>Other</i> : difference in steps

Hasson 2009 ³⁶	44 men, 48 women; healthy adults; 29±11 years; subset of 21 men, 23 women for variable speed walking condition	3 walking bouts; speeds 1.12-1.56 m/s; 12 min each; 1 walking bout variable speeds (1.12- 2.50 m/s); 18 min of walking with three standing rests	No	<i>Bias</i> : percent error <i>Precision</i> : standard deviation (random error)
Hickey 2016 ³⁷	7 men, 8 women; healthy adults; 24.9±5.1 years	3 walking bouts at 0.67- 2.00 m/s; 1 running bout at 2.68 m/s; 5 min each	Yes	<i>Bias</i> : mean difference <i>Precision</i> : standard deviation
Hiebert 2010 ³⁸	9 men, 9 women; healthy adults; 20.6±4.6 years	9 walking bouts; all at 1.48 m/s with each combination of incline (level, inclined, and declined) and footwear ("tennis shoes", "flip flops", and no shoes); 3 min each	No	<i>Other:</i> difference in steps
Hochsmann 2018 ³⁹	6 men, 14 women; healthy adults; 10 from 18-25 (median=22) years, 10 from 45-70 (median=53) years	4 bouts; 5 min each; walking speeds 0.44- 1.67 m/s	No	<i>Bias</i> : mean difference <i>Accuracy</i> : MAPE
Imboden 2018 ⁴⁰	15 men, 15 women; healthy adults; 49.2±19.2 years	1 walking bout and/or 1 running bout at self- selected speeds; self- selected durations of 2- 15 min	No	<i>Bias:</i> Bland-Altman, mean difference, percent error <i>Precision</i> : standard deviation, correlation <i>Accuracy:</i> MAPE
Huang 2016 ⁴¹	7 men, 3 women; healthy adults; 23.6±2.1 years	3 walking bouts; speeds 0.90-1.78 m/s; 3 min each	Yes	Bias: percent error
Johnson 2015 ⁴²	20 men, 23 women; healthy adults; 20.98±1.17 years	3 walking bouts; speeds 0.89-2.01 m/s; 5 min each	No	<i>Bias</i> : Bland-Altman, percent error <i>Precision</i> : standard deviation <i>Other</i> : difference in steps
Jones 2018 ⁴³	12 men, 18 women; healthy adults; 33±8 years	5 running bouts; 4 min each; running speeds 2.22-4.44 m/s	No	<i>Precision:</i> 95% confidence interval, correlation <i>Accuracy</i> : MAPE

Kanoun 2009 ⁴⁴	9 men, 33 women; healthy adults; 23.5±4 years	4 walking bouts; speeds 0.45-1.33 m/s; 5 min each	No	<i>Bias</i> : Bland-Altman, percent error <i>Precision</i> : standard deviation <i>Accuracy</i> : MAPE
Karabulut 2005 ⁴⁵	10 men, 10 women; healthy adults; 28±3.7 years	6 walking bouts; speeds 0.45-1.78 m/s; 3 min each	No	<i>Bias</i> : Bland-Altman, percent of steps taken <i>Precision</i> : standard deviation
Kumahara 2015 ⁴⁶	0 men, 9 women; healthy adults; 21.6±0.5 years	4 walking bouts; speeds 0.92-1.67 m/s; 6 min each	Yes	<i>Bias</i> : percent error <i>Precision</i> : standard deviation
Larkin 2016 ⁴⁷	3 men, 17 women; adults with rheumatoid arthritis; 55±14 years	1 walking bout; at a self-selected normal pace; 2-5 min (randomly selected)	Yes	<i>Bias</i> : percent error <i>Precision</i> : standard deviation, correlation <i>Other</i> : difference in steps
Le Masurier 2003 ⁴⁸	13 men (30.0±6.1 years), 7 women (26.4±3.6 years); healthy adults	5 walking bouts; speeds 0.90-1.78 m/s; 5 min each;	Yes	<i>Bias</i> : percent of steps taken <i>Precision</i> : standard deviation <i>Other</i> : difference in steps
Le Masurier 2004 ⁴⁹	6 men (30.5 ± 6.6) years), 6 women (27.7 ± 6.3) years); healthy adults	5 walking bouts; speeds 0.90-1.78 m/s; 5 min each	Yes	<i>Bias</i> : mean difference, proportion devices under/overestimating, percent error <i>Accuracy</i> : MAPE
Lee 2015 ⁵⁰	22 men (20.9±1.9 years), 21 women (20.9±2.1 years); healthy adults	5 walking bouts; speeds 0.89-1.78 m/s; 3 min each	No	<i>Bias</i> : mean difference, modified Bland-Altman, percent of steps taken <i>Precision</i> : standard deviation, correlation <i>Other</i> : difference in steps
Lee 2015 ⁵¹	17 men (22.2 \pm 1.5 years), 22 women (21.1 \pm 1.6 years); healthy adults	5 walking bouts; speeds 0.90-1.78 m/s; 3 min each	No	<i>Bias</i> : Bland-Altman, percent of steps taken, mean difference <i>Precision:</i> standard error, correlation <i>Other:</i> difference in steps
Leicht 2009 ⁵²	22 men, 24 women; healthy adults; age not reported	1 walking bout; at a self-selected normal pace; 3 min	No	<i>Bias</i> : mean difference, percent error <i>Accuracy</i> : MAPE

Leong 2017 ⁵³	13 men, 35 women; healthy adults; 22.5±1.4 years	5 walking bouts; speeds 0.89-1.79 m/s; 3 min each	No	<i>Bias</i> : mean difference <i>Accuracy</i> : MAPE <i>Other</i> : equivalence tests
Lutzner 2014 ⁵⁴	25 men, 18 women; healthy adults; 24.3±5.2 years	5 walking bouts at 0.9- 1.8 m/s; 1 running bout at 2.3 m/s; 5 min each	Yes	<i>Bias</i> : Bland-Altman, percent error
Maddocks 2010 ⁵⁵	15 men, 25 women; healthy adults; 28±8 years	5 walking bouts; speeds 0.6-1.4 m/s; 5 min each	Yes	Accuracy: MAPE Other: difference in steps, number of erroneous steps
Mammen 2012 ⁵⁶	5 men, 5 women; healthy adults; 23±1.2 years	5 walking bouts at 0.56- 1.67 m/s; 4 running bouts at 2.22-3.06 m/s; 1 min each	Yes	<i>Bias</i> : mean difference, proportion devices under/overestimating, percent error <i>Other</i> : difference in steps
Melanson 2004 ⁵⁷	108 men, 151 women; healthy adults; 19-85 years; subset of 16 men, 16 women for bouts with speeds controlled across participants	2 walking bouts at a self-selected normal and brisk pace; 10 min each; 3 walking bouts at 0.45- 1.16 m/s; 12 min each	No	<i>Bias</i> : percent of steps taken <i>Precision</i> : standard deviation
Mitre 2009 ⁵⁸	13 men, 14 women; obese and normal weight adults; 11±1 years	4 walking bouts; speeds 0.22-0.89 m/s; 5 min each	No	<i>Bias</i> : Bland-Altman, percent of steps taken
Montes 2018 ⁵⁹	26 men, 23 women; healthy adults; 23.4±6.6 years	3 walking bouts; speeds 0.67-1.57 m/s; 3 min each	No	Precision: correlation
Motl 2011 ⁶⁰	48 men, 20 women; 24 adults with multiple sclerosis (43.5±12.2 years), 24 healthy adults (40.9±11.4 years)	3 walking bouts; speeds 0.9-1.78 m/s; 6 min each	No	<i>Bias</i> : percent of steps taken <i>Precision</i> : standard deviation
Nelson 2016 ⁶¹	15 men, 15 women; 10 healthy adults in each of three age- groups (18–39, 40– 59, and 60–80 years); overall 48.9±19.4 years	1 walking bouts at a self-selected speed; 1 running bout at a self- selected speed; 5 min each	No	<i>Precision</i> : 95% confidence interval <i>Accuracy</i> : MAPE, root mean square error <i>Other</i> : number of erroneous steps

Nielson 2011 ⁶²	50 men, 50 women; healthy adults; 23.3±3.9 years	5 walking bouts; at 80- 120 steps/min; 6 min each	No	<i>Precision</i> : standard deviation <i>Other</i> : difference in steps
Oliver 2011 ⁶³	1 men, 9 women; healthy adults; age not reported	3 walking bouts; speeds 0.90-1.78 m/s; 5 min each	No	<i>Bias</i> : Bland-Altman, percent error <i>Precision</i> : standard deviation, variance, correlation
Park 2014 ⁶⁴	20 men (38.1±13.4 years), 20 women (39.1±14.0 years); healthy adults	5 walking bouts with running as needed; speeds 0.90-2.23 m/s; 6 min each	No	<i>Bias</i> : percent error <i>Precision</i> : standard deviation
Ramirez- Marrero 2002 ⁶⁵	14 men, 17 women; healthy adults; 8.8±1.4 years	3 walking bouts; at a self-selected slow, normal, and fast pace; 2 min each	No	<i>Bias</i> : percent of steps taken <i>Precision</i> : standard deviation <i>Other</i> : difference in steps
Rosenkranz 2011 ⁶⁶	12 men, 7 women; healthy adults; 9.6±1.2 years	3 walking bouts with running as needed; speeds 0.67-2.01 m/s; 3 min each	Yes	<i>Bias</i> : Bland-Altman, mean difference <i>Precision</i> : standard deviation, correlation <i>Other</i> : difference in steps
Rowlands 2007 ⁶⁷	10 men, 0 women; healthy adults; 23.1±3.4 years	2 walking bouts at 1.11- 1.67 m/s; 5 running bouts at 2.78-5.0 m/s; 1 min each; 4 running bouts at 5.56-7.22 m/s; 30 sec each	No	<i>Other</i> : difference in steps
Ryan 2006 ⁶⁸	8 men, 12 women; healthy adults; 34.5±6.9 years	5 walking bouts; speeds 0.90-1.78 m/s; 5 min each	Yes	<i>Bias</i> : Bland-Altman, percent error <i>Precision</i> : standard deviation, correlation <i>Accuracy</i> : MAPE
Ryan 2008 ⁶⁹	1 man, 9 women; adults with chronic lower back pain; 51±10 years	1 walking bouts at a self-selected speed; 5-6 min each	Yes	<i>Bias:</i> Bland-Altman <i>Precision:</i> 95% confidence interval

Sears 2017 ⁷⁰	5 men, 5 women; healthy adults; 23.3±5.2 years	5 walking bouts; speeds 0.89-1.79 m/s; 5 min each	No	<i>Bias</i> : mean difference, percent error <i>Precision:</i> standard deviation, correlation <i>Other</i> : difference in steps
Stackpool 2014 ⁷¹	10 men (21.5±1.4 years), 10 women (22.5±1.3 years); healthy adults	1 walking bout at a self- selected speed; 1 running bout at a self- selected speed; 20 min each	No	<i>Bias</i> : percent error <i>Precision</i> : standard deviation, correlation
Stansfield 2015 ⁷²	10 men, 10 women; healthy adults; 36±10 years	10 walking bouts; speeds 0.1-1 m/s; 5 min each	Yes	<i>Bias</i> : percent of steps taken
Steeves 2011 ⁷³	31 men, 29 women; obese and healthy adults; 35±12.8 years; subset of 20 healthy adults for running trials	3 walking bouts at 0.89- 1.79 m/s; 3 running bouts at 2.68-3.58 m/s; 100 steps each	No	<i>Bias</i> : percent of steps taken
Sushames 2016 ⁷⁴	13 men, 12 women; healthy adults; 23.7±5.8 years	 walking bout at a self-selected Borg RPE of 4; running bout at a self-selected Borg RPE of 7; min each 	Yes	<i>Bias</i> : Bland-Altman, mean difference <i>Precision</i> : coefficient of variation <i>Other</i> : difference in steps
Takacs 2014 ⁷⁵	15 men, 15 women; healthy adults; 29.6±5.7 years	5 walking bouts; speeds 0.90-1.78 m/s; 5 min each	Yes	<i>Bias</i> : Bland-Altman <i>Precision</i> : standard deviation, correlation <i>Accuracy</i> : MAPE
Tam 2018 ⁷⁶	15 men, 15 women; healthy adults; 32.1±8.7 years	5 walking bouts; speeds 0.90-1.78 m/s; 5 min each	No	<i>Bias:</i> mean difference, percent error, Bland-Altman <i>Precision:</i> standard deviation, 95% confidence interval, correlation <i>Other:</i> difference in steps
Tudor- Locke 2006 ⁷⁷	9 healthy adults; proportion female and age reported	1 walking bout; speed of 1.33 m/s; duration not reported	Yes	<i>Bias</i> : percent error, proportion devices under/overestimating <i>Accuracy</i> : MAPE <i>Other</i> : difference in steps

Any apparent inconsistencies in reporting of table values (e.g., age ranges vs. means, number of decimal points etc.) reflect discrepancies in reporting conventions between original articles

Ages presented as mean±SD years except where only ranges reported (min-max years) or otherwise noted

*Use of video indicates whether video back-up recording of directly-observed steps was implemented Abbreviations: MAPE = mean absolute percentage error

References for Supplemental File 2

- Abel MG, Hannon JC, Sell K, Lillie T, Conlin G, Anderson D. Validation of the Kenz Lifecorder EX and ActiGraph GT1M accelerometers for walking and running in adults. *Appl Physiol Nutr Metab.* 2008;33(6):1155-1164.
- Abel MG, Peritore N, Shapiro R, Mullineaux DR, Rodriguez K, Hannon JC. A comprehensive evaluation of motion sensor step-counting error. *Appl Physiol Nutr Metab*. 2011;36(1):166-170.
- Alsubheen SA, George AM, Baker A, Rohr LE, Basset FA. Accuracy of the vivofit activity tracker. *J Med Eng Technol.* 2016;40(6):298-306.
- 4. An HS, Jones GC, Kang SK, Welk GJ, Lee JM. How valid are wearable physical activity trackers for measuring steps? *Eur J Sport Sci.* 2017;17(3):360-368.
- Bassett DR, Jr., Ainsworth BE, Leggett SR, et al. Accuracy of five electronic pedometers for measuring distance walked. *Med Sci Sports Exerc.* 1996;28(8):1071-1077.
- 6. Beets MW, Patton MM, Edwards S. The accuracy of pedometer steps and time during walking in children. *Med Sci Sports Exerc.* 2005;37(3):513-520.
- Beevi FH, Miranda J, Pedersen CF, Wagner S. An Evaluation of Commercial Pedometers for Monitoring Slow Walking Speed Populations. *Telemed J E Health.* 2016;22(5):441-449.
- 8. Bergman RJ, Spellman JW, Hall ME, Bergman SM. Is there a valid app for that? Validity of a free pedometer iPhone application. *J Phys Act Health*. 2012;9(5):670-676.
- Brown DK, Grimwade D, Martinez-Bussion D, Taylor MJ, Gladwell VF. The validity of the ActiPed for physical activity monitoring. *Int J Sports Med.* 2013;34(5):431-437.
- 10. Case MA, Burwick HA, Volpp KG, Patel MS. Accuracy of smartphone applications and wearable devices for tracking physical activity data. *JAMA*. 2015;313(6):625-626.

- 11. Chen MD, Kuo CC, Pellegrini CA, Hsu MJ. Accuracy of Wristband Activity Monitors during Ambulation and Activities. *Med Sci Sports Exerc*. 2016;48(10):1942-1949.
- Chow JJ, Thom JM, Wewege MA, Ward RE, Parmenter BJ. Accuracy of step count measured by physical activity monitors: The effect of gait speed and anatomical placement site. *Gait Posture*. 2017;57:199-203.
- Colley RC, Barnes JD, Leblanc AG, Borghese M, Boyer C, Tremblay MS. Validity of the SC-StepMX pedometer during treadmill walking and running. *Appl Physiol Nutr Metab*. 2013;38(5):520-524.
- 14. Connolly CP, Coe DP, Kendrick JM, Bassett DR, Jr., Thompson DL. Accuracy of physical activity monitors in pregnant women. *Med Sci Sports Exerc*. 2011;43(6):1100-1105.
- 15. Crouter SE, Schneider PL, Karabulut M, Bassett DR, Jr. Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. *Med Sci Sports Exerc*. 2003;35(8):1455-1460.
- 16. Crouter SE, Schneider PL, Bassett DR, Jr. Spring-levered versus piezo-electric pedometer accuracy in overweight and obese adults. *Med Sci Sports Exerc*. 2005;37(10):1673-1679.
- Dahlgren G, Carlsson D, Moorhead A, Hager-Ross C, McDonough SM. Test-retest reliability of step counts with the ActivPAL device in common daily activities. *Gait Posture*. 2010;32(3):386-390.
- Diaz KM, Krupka DJ, Chang MJ, et al. Fitbit(R): An accurate and reliable device for wireless physical activity tracking. *Int J Cardiol.* 2015;185:138-140.
- 19. Diaz KM, Krupka DJ, Chang MJ, et al. Validation of the Fitbit One(R) for physical activity measurement at an upper torso attachment site. *BMC Res Notes*. 2016;9:213.

- 20. Dondzila CJ, Swartz AM, Miller NE, Lenz EK, Strath SJ. Accuracy of uploadable pedometers in laboratory, overground, and free-living conditions in young and older adults. *Int J Behav Nutr Phys Act.* 2012;9:143.
- Dueker D, Gauderman WJ, McConnell R. Accuracy of a new time-resolved step counter in children. *Pediatr Exerc Sci.* 2012;24(4):622-633.
- 22. Duncan JS, Schofield G, Duncan EK, Hinckson EA. Effects of age, walking speed, and body composition on pedometer accuracy in children. *Res Q Exerc Sport*. 2007;78(5):420-428.
- 23. Duncan MJ, Wunderlich K, Zhao Y, Faulkner G. Walk this way: validity evidence of iphone health application step count in laboratory and free-living conditions. *J Sports Sci.* 2017:1-10.
- Dwyer TJ, Alison JA, McKeough ZJ, Elkins MR, Bye PT. Evaluation of the SenseWear activity monitor during exercise in cystic fibrosis and in health. *Respir Med.* 2009;103(10):1511-1517.
- 25. Edbrooke L, Lythgo N, Goldsworthy U, Denehy L. Can an accelerometer-based monitor be used to accurately assess physical activity in a population of survivors of critical illness? *Glob J Health Sci.* 2012;4(3):98-107.
- 26. Esliger DW, Probert A, Connor Gorber S, Bryan S, Laviolette M, Tremblay MS. Validity of the Actical accelerometer step-count function. *Med Sci Sports Exerc*. 2007;39(7):1200-1204.
- 27. Feito Y, Bassett DR, Thompson DL, Tyo BM. Effects of body mass index on step count accuracy of physical activity monitors. *J Phys Act Health*. 2012;9(4):594-600.
- Feito Y, Bassett DR, Thompson DL. Evaluation of activity monitors in controlled and freeliving environments. *Med Sci Sports Exerc.* 2012;44(4):733-741.

- 29. Feito Y, Garner HR, Bassett DR. Evaluation of ActiGraph's low-frequency filter in laboratory and free-living environments. *Med Sci Sports Exerc*. 2015;47(1):211-217.
- Fokkema T, Kooiman TJ, Krijnen WP, CP VDS, M DEG. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed. *Med Sci Sports Exerc*. 2017;49(4):793-800.
- 31. Foster RC, Lanningham-Foster LM, Manohar C, et al. Precision and accuracy of an ankleworn accelerometer-based pedometer in step counting and energy expenditure. *Prev Med.* 2005;41(3-4):778-783.
- 32. Furlanetto KC, Bisca GW, Oldemberg N, et al. Step counting and energy expenditure estimation in patients with chronic obstructive pulmonary disease and healthy elderly: accuracy of 2 motion sensors. *Arch Phys Med Rehabil.* 2010;91(2):261-267.
- 33. Gaz DV, Rieck TM, Peterson NW, et al. Determining the Validity and Accuracy of Multiple Activity-Tracking Devices in Controlled and Free-Walking Conditions. *Am J Health Promot.* 2018;32(8):1671-1678.
- 34. Giannakidou DM, Kambas A, Ageloussis N, et al. The validity of two Omron pedometers during treadmill walking is speed dependent. *Eur J Appl Physiol*. 2012;112(1):49-57.
- 35. Harrington DM, Welk GJ, Donnelly AE. Validation of MET estimates and step measurement using the ActivPAL physical activity logger. *J Sports Sci.* 2011;29(6):627-633.
- Hasson RE, Haller J, Pober DM, Staudenmayer J, Freedson PS. Validity of the Omron HJ-112 pedometer during treadmill walking. *Med Sci Sports Exerc.* 2009;41(4):805-809.
- 37. Hickey A, John D, Sasaki JE, Mavilia M, Freedson P. Validity of Activity Monitor Step Detection Is Related to Movement Patterns. *J Phys Act Health.* 2016;13(2):145-153.

- 38. Hiebert JM, Hoover DL, Connelly A, Hollis J, Marlow J, Schneider N. Effects Of Footwear And Grade Conditions On Pedometer Accuracy. J Strength Cond Res. 2010;24:1-1.
- 39. Hochsmann C, Knaier R, Eymann J, Hintermann J, Infanger D, Schmidt-Trucksass A. Validity of activity trackers, smartphones, and phone applications to measure steps in various walking conditions. *Scand J Med Sci Sports*. 2018;28(7):1818-1827.
- 40. Imboden MT, Nelson MB, Kaminsky LA, Montoye AH. Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure. *Br J Sports Med.* 2018;52(13):844-850.
- 41. Huang Y, Xu J, Yu B, Shull PB. Validity of FitBit, Jawbone UP, Nike+ and other wearable devices for level and stair walking. *Gait Posture*. 2016;48:36-41.
- Johnson M, Meltz K, Hart K, Schmudlach M, Clarkson L, Borman K. Validity of the Actical activity monitor for assessing steps and energy expenditure during walking. *J Sports Sci.* 2015;33(8):769-776.
- 43. Jones D, Crossley K, Dascombe B, Hart HF, Kemp J. Validity and Reliability Of The Fitbit Flex[™] And ActiGraph GT3X+ At Jogging and Running Speeds. *Int J Sports Phys Ther.* 2018;13(5):860-870.
- 44. Kanoun N. Validation of the ActivPAL Activity Monitor as a Measure of Walking at Predetermined Slow Walking Speeds in a Healthy Population in a Controlled Setting. *Reinvention: an International Journal of Undergraduate Research.* 2009;2(2).
- 45. Karabulut M, Crouter SE, Bassett DR, Jr. Comparison of two waist-mounted and two anklemounted electronic pedometers. *Eur J Appl Physiol.* 2005;95(4):335-343.

- 46. Kumahara H, Ayabe M, Ichibakase M, Tashima A, Chiwata M, Takashi T. Validity of activity monitors worn at multiple nontraditional locations under controlled and free-living conditions in young adult women. *Appl Physiol Nutr Metab.* 2015;40(5):448-456.
- 47. Larkin L, Nordgren B, Purtill H, Brand C, Fraser A, Kennedy N. Criterion Validity of the activPAL Activity Monitor for Sedentary and Physical Activity Patterns in People Who Have Rheumatoid Arthritis. *Phys Ther.* 2016;96(7):1093-1101.
- 48. Le Masurier GC, Tudor-Locke C. Comparison of pedometer and accelerometer accuracy under controlled conditions. *Med Sci Sports Exerc.* 2003;35(5):867-871.
- 49. Le Masurier GC, Lee SM, Tudor-Locke C. Motion sensor accuracy under controlled and free-living conditions. *Med Sci Sports Exerc*. 2004;36(5):905-910.
- 50. Lee JA, Williams SM, Brown DD, Laurson KR. Concurrent validation of the Actigraph gt3x+, Polar Active accelerometer, Omron HJ-720 and Yamax Digiwalker SW-701 pedometer step counts in lab-based and free-living settings. *J Sports Sci.* 2015;33(10):991-1000.
- 51. Lee JA, Laurson KR. Validity of the SenseWear armband step count measure during controlled and free-living conditions. *J Exerc Sci Fit.* 2015;13(1):16-23.
- 52. Leicht AS, Crowther RG. Influence of non-level walking on pedometer accuracy. *J Sci Med Sport.* 2009;12(3):361-365.
- 53. Leong JY, Wong JE. Accuracy of three Android-based pedometer applications in laboratory and free-living settings. *J Sports Sci.* 2017;35(1):14-21.
- 54. Lutzner C, Voigt H, Roeder I, Kirschner S, Lutzner J. Placement makes a difference: accuracy of an accelerometer in measuring step number and stair climbing. *Gait Posture*. 2014;39(4):1126-1132.

- 55. Maddocks M, Petrou A, Skipper L, Wilcock A. Validity of three accelerometers during treadmill walking and motor vehicle travel. *Br J Sports Med.* 2010;44(8):606-608.
- 56. Mammen G, Gardiner S, Senthinathan S, McClemont L, Stone M, Faulkner G. Is this Bit Fit? Measuring the Quality of the Fitbit Step-Counter. *Health & Fitness Journal of Canada*. 2012;5(4):30-39.
- 57. Melanson EL, Knoll JR, Bell ML, et al. Commercially available pedometers: considerations for accurate step counting. *Prev Med.* 2004;39(2):361-368.
- 58. Mitre N, Lanningham-Foster L, Foster R, Levine JA. Pedometer accuracy for children: can we recommend them for our obese population? *Pediatrics*. 2009;123(1):e127-131.
- Montes J, Young JC, Tandy R, Navalta JW. Reliability and Validation of the Hexoskin Wearable Bio-Collection Device During Walking Conditions. *Int J Exerc Sci.* 2018;11(7):806-816.
- 60. Motl RW, Snook EM, Agiovlasitis S. Does an accelerometer accurately measure steps taken under controlled conditions in adults with mild multiple sclerosis? *Disabil Health J*. 2011;4(1):52-57.
- 61. Nelson MB, Kaminsky LA, Dickin DC, Montoye AH. Validity of Consumer-Based Physical Activity Monitors for Specific Activity Types. *Med Sci Sports Exerc*. 2016;48(8):1619-1628.
- 62. Nielson R, Vehrs PR, Fellingham GW, Hager R, Prusak KA. Step counts and energy expenditure as estimated by pedometry during treadmill walking at different stride frequencies. *J Phys Act Health.* 2011;8(7):1004-1013.
- 63. Oliver M, Badland H, Shepherd J, Schofield GM. Counting steps in research: A comparison of accelerometry and pedometry. *Open J Prev Med.* 2011;1(1):1-7.

- 64. Park W, Lee VJ, Ku B, Tanaka H. Effect of walking speed and placement position interactions in determining the accuracy of various newer pedometers. *J Exerc Sci Fit.* 2014;12(1):31-37.
- 65. Ramirez-Marrero FA, Smith BA, Kirby TE, Leenders N, Sherman WM. Evaluation of a stepcounter during treadmill walking in 7-12 year old African-American children. *J Natl Black Nurses Assoc.* 2002;13(1):1-5.
- 66. Rosenkranz RR, Rosenkranz SK, Weber C. Validity of the Actical accelerometer step-count function in children. *Pediatr Exerc Sci.* 2011;23(3):355-365.
- 67. Rowlands AV, Stone MR, Eston RG. Influence of speed and step frequency during walking and running on motion sensor output. *Med Sci Sports Exerc*. 2007;39(4):716-727.
- 68. Ryan CG, Grant PM, Tigbe WW, Granat MH. The validity and reliability of a novel activity monitor as a measure of walking. *Br J Sports Med.* 2006;40(9):779-784.
- 69. Ryan CG, Grant PM, Gray H, Newton M, Granat MH. Measuring postural physical activity in people with chronic low back pain. *J Back Musculoskelet Rehabil*. 2008;21(1):43-50.
- 70. Sears T, Avalos E, Lawson S, McAlister I, Eschbach ‡ C, Bunn J. Wrist-worn Physical Activity Trackers Tend to Underestimate Steps During Walking. *Int J Exerc Sci.* 2017;10:764-773.
- 71. Stackpool CM, Porcari JP, Mikat RP, Gillette C, Foster C. The Accuracy of Various Activity Trackers in Estimating Steps Taken and Energy Expenditure. *Journal of Fitness Research*. 2014;3(3):32-48.
- 72. Stansfield B, Hajarnis M, Sudarshan R. Characteristics of very slow stepping in healthy adults and validity of the activPAL3 activity monitor in detecting these steps. *Med Eng Phys.* 2015;37(1):42-47.

- 73. Steeves JA, Tyo BM, Connolly CP, Gregory DA, Stark NA, Bassett DR. Validity and reliability of the Omron HJ-303 tri-axial accelerometer-based pedometer. *J Phys Act Health*. 2011;8(7):1014-1020.
- 74. Sushames A, Edwards A, Thompson F, McDermott R, Gebel K. Validity and Reliability of Fitbit Flex for Step Count, Moderate to Vigorous Physical Activity and Activity Energy Expenditure. *PLoS One.* 2016;11(9):e0161224.
- 75. Takacs J, Pollock CL, Guenther JR, Bahar M, Napier C, Hunt MA. Validation of the Fitbit One activity monitor device during treadmill walking. *J Sci Med Sport*. 2014;17(5):496-500.
- 76. Tam KM, Cheung SY. Validation of Electronic Activity Monitor Devices During Treadmill Walking. *Telemed J E Health.* 2018;24(10):782-789.
- 77. Tudor-Locke C, Sisson SB, Lee SM, Craig CL, Plotnikoff RC, Bauman A. Evaluation of quality of commercial pedometers. *Can J Public Health*. 2006;97 Suppl 1:S10-15, S10-16.