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SUPPLEMENTAL MATERIAL 1 

 2 

Detailed Methods and Results 3 

Feature selection for supervised learning 4 

An overview of MAP recording feature selection process is shown in Online Figure III. 5 

After cropping of the raw signals, each MAP recording was analyzed using the Python tsfresh 6 

library (Reference 20) Using this package, we calculated the complete library output available 7 

for signals of this size. This resulted in N = 794 scalar variables representing the mathematical 8 

features provided by the tsfresh library. This has been shown to effectively filter noise in time 9 

series signals and improve computational efficiency .  We then used the Benjamini-Yekutieli 10 

approach (Reference 21), which can be applied to multiple tests to minimize the false discovery 11 

rate, assuming arbitrary dependence of p-values to select features most strongly linked with 12 

the outcomes (N = 622 [VT/VF] and N = 549 [Mortality]). Next, we dropped features that 13 

correlated highly to others to reduce redundancy left N=274 and N=259 features for each 14 

endpoint, respectively. Finally, the N = 40 features with highest coefficients for each endpoint 15 

were selected using logistic regression with L1 regularization and provided optimal 16 

performance of SVM in training. 17 

 18 

Feature quantity analysis for supervised learning: 19 

We performed an optimization analysis to determine the number of features used to 20 

generate the beat-level model. The top N features from the output of the tsfresh and logistic 21 

regression steps (Online Figure III) were used in iteratively training the SVM beat-level model. N 22 
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was ranged widely between 5 and 100 features with the resulting validation accuracy 23 

optimization curve. The optimal number of features was 40.  24 

 25 

Supervised learning implementation using Support Vector Machine classifier: 26 

For beat-level predictions, we compared several ML approaches including support 27 

vector machines (SVM), convolutional neural networks, and other supervised architectures. 28 

Extensive testing revealed that SVM classifier provided superior test characteristics to CNN 29 

(Online Table I and II).  30 

The inputs (support vectors) were the scalar parameters from the output of the tsfresh 31 

output features described above. The SVM algorithm identifies a subset of inputs, termed 32 

support vectors, that form a decision boundary which optimally should separate output classes 33 

(endpoints). Training aims to increase the distance between input data and boundaries to 34 

improve the generalizability of the model. The supervised learning model was developed in 35 

Python 3.6. The Support Vector Machine classifier was implemented using sklearn library 36 

(scikit-learn 0.21.3). We used an SVM classifier (using “from sklearn.svm import SVC”) with a 37 

linear kernel. To avoid overfitting in the SVM classifier, we trained the SVM classifier in 10-fold 38 

cross-validation using a regularization parameter of C = 1. 39 

 40 

Supervised learning implementation using a convolutional neural network classifier: 41 

The Convolutional Neural Network was implemented using tensorflow 2.1.0 and Keras 2.2.4-tf 42 

framework and written in Python 3.6. The raw voltage-time series data points from each MAP 43 

beat were directly used as inputs to the CNN (in contrast to feature outputs from the tsfresh 44 



 

3 
 

and logistic regression process). Training and testing were performed using the same K-fold 45 

cross validation splits discussed in the methods section for both analyses. The CNN architecture 46 

was implemented according to the architecture below, illustrated in Online Figure IV. 47 

 48 

MAP score calculation and receiver operator characteristics analysis. 49 

We developed the MAP score to generate a continuous patient-level index of risk for 50 

clinical outcomes from the output of the beat-level model. This allows all beats collected in a 51 

patient to be unified into a single risk prediction index despite biological or technical variability 52 

between beats. The MAP score is defined as the proportion of test set beats recorded from 53 

each patient that predict the endpoint of interest by the beat-level model. The proportion is 54 

calculated as: 55 

MAP score = (
# 𝑜𝑓 𝑏𝑒𝑎𝑡𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑏𝑒𝑎𝑡𝑠
) 56 

for each endpoint in turn. For example, a patient in whom 80% of beat-level MAP recordings 57 

predicted VT/VF would be assigned a MAP score of 80%. 58 

The ROC curve analysis was conducted in IBM SPSS v.19 by varying the cut-point of the 59 

MAP score from 0% to 100%.  The output includes the data points used to draw the 60 

curves.  These were imported into Jandel SigmaPlot version 11.0 which was used for graphing 61 

with better appearance. 62 

 63 

Phase 1 repolarization analysis 64 

We quantified phase 1 as the mean voltage of each MAP from the upstroke to dome of 65 

phase II, between 10 ms to 40 ms after phase 0. For MAP beats that predicted mortality, the 66 
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mean Phase 1 standardized voltage was lower than in those predicting survival (2.44 ± 1.31 vs. 67 

3.32 ± 2.47, p < 0.001). This phase 1 metric predicted mortality with a c-statistic of 0.816 (CI: 68 

0.676 to 0.957).  69 

 70 

Biophysical simulation of MAPs classified by machine learning to predict each endpoint 71 

We simulated cardiac cellular electrophysiology (membrane action potentials) using the 72 

O’Hara Rudy model, which has been validated in human ventricles and recommended by the 73 

FDA for drug testing for sudden cardiac death as part of the CiPa initiative (Reference 23). 74 

Cellular transmembrane action potentials were simulated following 160-beat stimulus train at 75 

109 beats/min (550ms cycle length) to reach steady state. Two additional stimuli were applied 76 

at the same cycle length (550ms) and the action potential durations (APDs) of these 77 

extrastimuli were measured. APD measurements (APDXX) were made in standard fashion by 78 

computing difference in time from the pacing stimulus (maximum time derivative of the 79 

tracing) and the time where the amplitude of the normalized tracing falls below 100% – XX% 80 

(where XX = 30 for APD30, 60 for APD60, and 90 for APD90). All waveforms were voltage-81 

normalized across the dataset. If the difference between the APD90 of the first and second 82 

extrastimuli was greater than 50 ms, the case was marked as “APD alternans” and excluded 83 

from our analysis of steady-state action potential shapes. 84 

The O’Hara model represents 14 transmembrane and 2 intracellular ion channels, 85 

pumps, and exchangers, referred to as ionic pathways, which we used to study action potential 86 

shapes. We focused on the hERG channel (IKr), L-Type Ca2+ Channel (ICaL), Na+-Ca2+ 87 

exchanger (NCX), Transient Outward current (Ito) and the sarcoplasmic reticulum ATPase 88 
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(SERCA), which have been reported to be the most important ionic pathways altered in heart 89 

failure (Reference 24). To identify the ionic pathways that may explain clinically measured MAP 90 

morphologies, we performed an extensive grid search. While computationally expensive, this 91 

method provides a global analysis with known accuracy. Of note, MAP measurements are 92 

recorded from patients with extensive cardiac disease and may not be well represented by the 93 

reference published ion pathway densities.  94 

We consider that the densities of Ito, ICaL, IKr, NCX and SERCA could be altered under 95 

pathological conditions over a range of -80% to +100% for each ionic pathway, consistent with 96 

previous reported ranges used to model heart failure in humans (Reference 24). Parameter 97 

ranges for each channel are reported below (Online Methods Table 1). We separated each 98 

parameter range into 21 evenly spaced intervals and evaluate every parameter value 99 

permutation for all 5 ionic pathways. This results in 215 or 4,084,101 cell model parameter sets.  100 

 101 
 Ito (Gto) Ikr (GKr) ICaL (pCa) NCX (Gncx) SERCA (JupMAX) 

Min 0.004 0.0092 0.2e-4 0.00016 0.000875 
Max 0.04 0.092 2e-4 0.0016 0.00875 

Number of 
values 

21 21 21 21 21 

 102 
 Online Methods Table 1. Ionic pathway, labelled by channel, exchanger and pump name and 103 
corresponding cell model parameter in brackets, ranges consider spanning -80% to +100% of 104 

reference values. 105 
 106 

Simulations were performed for both mortality and VT/VF endpoints. For each, MAP 107 

traces representing the average trace for the event and non-event groups were used to explain 108 

the model parameter outputs. The best fit was determined based on smallest discrepancy 109 
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between APD30, 60, and 90 between event and non-event groups and between the spectrum 110 

of the measured and simulated tracings as described below. 111 

 112 

MAP fitting by APDRRXXRR and signal spectrum: 113 

1. We define the set 𝑆1 of the candidates satisfying the following conditions for all the 114 

APDXX:  115 

|𝐴𝑃𝐷𝑋𝑋
𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑

− 𝔼(𝐴𝑃𝐷𝑋𝑋
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)|

𝕊(𝐴𝑃𝐷𝑋𝑋
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

< 𝐶𝑋𝑋 

Here 𝔼(𝐴𝑃𝐷𝑋𝑋
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) is the APDXX of the measured mean trace, 𝕊(𝐴𝑃𝐷𝑋𝑋

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) is 116 

the estimated APDRRXXRR standard deviation and 𝐶𝑋𝑋  is a coefficient that prescribes a 117 

tolerance for APDXX. We chose 𝐶𝑋𝑋 = 1 for all the APDXX. This results in all simulated 118 

APDs from plausible parameter sets falling within one standard deviation of all 119 

measured APD. 120 

2.  In the second step, we associate each candidate 𝑠1
𝑗

∈ 𝑆1 with the cost 𝒞(𝑠1
𝑗
) evaluated 121 

using the modal coefficients of the semi-classical signal analysis (𝒮(𝑠1
𝑗
); see Signal 122 

Spectral Fit below) and the fit of the simulated to measured APD values. We build the 123 

set 𝑆2 ⊂  𝑆1 of the candidates that satisfy:  124 

𝒞(𝑠1
𝑗
) =  𝒮(𝑠1

𝑗
) + ∑

|𝐴𝑃𝐷𝑋𝑋
𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑

− 𝔼(𝐴𝑃𝐷𝑋𝑋
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)|

𝕊(𝐴𝑃𝐷𝑋𝑋
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

𝑋𝑋

 

We adopt a 1% cut-off on 𝒞(𝑠1
𝑗
), for course resolution (21 values) data sets and a 0.5% 125 

cut-off for fine resolution (91 values) data sets, to identify a final list 𝑆2  of retained 126 
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candidate parameter sets. The set 𝑆2 represents the model parameters that produce the 127 

Vm trace closest to the measured MAP trace within the prescribed tolerances.  128 

 129 

Signal spectral fit: 130 

In step 2 of determining the plausible parameters, we aim to identify parameters that 131 

generate an action potential morphology that best matches the clinically measured MAP 132 

morphology. We use semi-classical signal analysis (SCSA) to perform the comparison (Reference 133 

25). SCSA is the non-linear counterpart of the Fourier transform. We chose SCSA as it requires a 134 

limited number of modes (the negative spectrum) resulting in increased efficiency. 135 

1. We evaluate the cost 𝒮(𝑠1
𝑗
) with the following procedure. First, we rescale the time axis 136 

within the interval [0,1] and then normalize each trace 𝑢(t) (MAP and computed Vm) as 137 

follows: 138 

𝑢̂(𝑡) =
𝑢(𝑡) − min (𝑢(𝑡 ≥ 35 𝑚𝑠))

𝑚𝑎𝑥 (𝑢(𝑡 ≥ 35 𝑚𝑠)) − min (𝑢(𝑡 ≥ 35 𝑚𝑠))
 

Here we consider 𝑡 ≥ 35 𝑚𝑠 in the rescaling to remove artefact due to the pacing 139 

stimulus and rescale the signal to be greater than 0. 140 

2. Next, we evaluate the Eigen-functions of the Schrödinger problem: 141 

𝑑2

𝑑𝑡2
(𝜑) + 𝜒𝑢̂(𝑡)𝜑 = 𝜆𝜑 

We have discretized the problem using a pseudo-spectral method. Here the parameter 142 

𝜒 plays the role of a parameter that increases the accuracy of  𝑢̂(𝑡) by reducing the 143 

smoothness of the function. As 𝜒 gets larger, the representation is more accurate, since 144 
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the number of negative eigenvalues increases. We chose 𝜒 = 8000, which adequately 145 

bounded the differences in MAP waveforms. 146 

3. Finally, we evaluated: 147 

𝒮(𝑠2
𝑗
) = ∑

|√−𝜆𝑗
𝐶 − √−𝜆𝑗

𝑀|

√−𝜆𝑗
𝑀

𝑁

𝑗=1

 

Here 𝜆𝑗
𝐶,𝑀is the jth negative eigenvalue obtained from the SCSA on the computed and 148 

measured traces respectively; N is the minimum between the number of negative 149 

eigenvalues in the SCSA on the computed and clinically measured traces respectively. 150 

This provides a measure of the similarity in the shape of the two traces. 151 

 152 

Global sensitivity analysis: 153 

A Saltelli global sensitivity analysis (GSA) (Reference 26) of the APD values to the ionic 154 

pathway densities was performed using the data base of generated simulations, to identify 155 

variables with the greatest influence on APD. The implementation was verified against the 156 

Ishigami analytic solutions (Reference 27). GSA was not performed on SCSA due to the 157 

computational cost. We found that APD values were predominantly defined by IKr, with the 158 

least contribution from SERCA (Figure 5A of main manuscript). 159 

We now considered a reduced analysis. We considered Ito due to its prominent role in 160 

phase 1, where measured MAP morphology differed between patients who died versus those 161 

who survived (Figure 4B from main manuscript). IKr was maintained due to its important in 162 

determining APD (Figure 5A from main manuscript). We cannot differentiate between NCX and 163 
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ICaL as they have similar importance (Figure 5A from main manuscript) and both cause a 164 

depolarizing current prolonging the action potential. As both NCX and ICaL are equally plausible 165 

explanations for the data we considered 2 sets of ionic pathways. Dataset 1: Ito, IKr and ICaL or 166 

Dataset 2: Ito, IKr and NCX. We repeated the analysis, described above, to identify the plausible 167 

parameter sets for these two new sets of ionic pathways. Parameter ranges for Dataset 1 and 2 168 

are defined below. 169 

 170 

DATASET 1: ICaL (753,571 samples) 171 
 Ito (Gto) IKr (GKr) ICaL (pCa) 

Min 0.004 0.0092 0.2e-4 
Max 0.04 0.092 2e-4 

Number of values 91 91 91 
 172 
 173 

DATASET 2: NCX (753,571 samples) 174 
 Ito (Gto)   Ikr (GKr) NCX (Gncx) 

Min 0.004 0.0092  0.16 e-3 

Max 0.04 0.092 1.6 e-3 

Number of values 91 91 91 

 175 

 176 

Analysis of APD alternans 177 

For each dataset (altered PCa or altered NCX) and for VT/VF or non-VT/VF phenotypes, 178 

we performed single cell simulations by pacing each 0D model at a fixed pacing cycle length for 179 

320 stimuli, followed by 2 additional stimuli in which we evaluated APD60. This procedure was 180 

conducted for pacing cycle length starting at 250 ms and shortened (accelerated) progressively 181 

to 200 in increments of 5ms.  182 
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 Alternans was assigned whenever APD60 in those 2 beats differed by > 50 ms.  For each 183 

cell model, we quantified alternans as the percentage of pacing trials that exhibited alternans at 184 

slow rates (paced cycle lengths ≥ 220 ms) or at fast rates (< 220 ms).  The presence of APD 185 

alternans at slower rates indicates that it arises from a lesser perturbation, which may indicate 186 

a greater vulnerability to arrhythmia (Reference 44).  187 

We found that cell models with higher ICaL more often presented APD alternans at slow 188 

rates (cycle lengths 220-235 ms) than models with lower ICaL, with similar prevalence at faster 189 

rates (cycle lengths 200-215 ms).  Conversely, the prevalence of APD alternans was similar 190 

between cell models with enhanced versus non-enhanced NCX for slower or faster rates. 191 

  192 
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Online Tables: 193 
 194 
Online Table I 195 
 196 

Layer Parameters 

Conv1D filters = 32, kernel_size = 16, strides = 1 

BatchNormalization None 

Activation activation = ‘relu’ 

Dropout 0.3 

MaxPooling1D pool_size=2, strides = 1 

Conv1D filters = 64, kernel_size = 16, strides = 1 

BatchNormalization None 

Activation activation  = ‘relu’ 

Dropout 0.3 

MaxPooling1D pool_size=2, strides = 1 

Bidirectional 
(layers.LSTM) 

units = 128, dropout = 0.2, recurrent_dropout = 0.3 

Dense units = 1, activation = ‘sigmoid’ 

 197 
Online Table I Convolutional Neural Network architecture with parameters and descriptions of 198 
each layer.  199 
 200 
 201 
Online Table II – Test characteristics at the beat-level, for all MAPs across all 10 k-cross 202 
validation sets results from CNN model and SVM model. 203 
 204 

 

Mortality 

 

Accuracy Sensitivity Specificity NPV PPV 

SVM 75.4% 60.0% 81.6% 83.4% 57.0% 

CNN 70.6% 11.7% 94.6% 72.5% 46.8% 

      

 

VT/VF 

 

Accuracy Sensitivity Specificity NPV PPV 

SVM 83.2% 72.6% 89.0% 85.6% 78.2% 

CNN 56.7% 40.3% 65.6% 66.9% 39.0% 

  205 
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Online Table III - Baseline Characteristics of Population Split by all-cause mortality at 3-years 206 

       

 
 

All Subjects Death No Death 

  

 
 

(n=42) (n=14) (n=28) p 

 

 

Age, y 64.7 + 13.0 71.5 + 8.5 61.3 + 13.6 0.014 

 

 

Gender, M/F 41/1 14/0 27/1 1 

 

 

LVEF, % 27.0 + 7.6 27.5 + 7.4 26.70 + 7.8 0.766 

 

 

QRS Duration, ms 126 + 33 121 + 19.9 129 + 38 0.495 

 

 

LBBB, % (n) 28.6 (12) 23.1 (3) 31.0 (9) 0.716 

 

 

RBBB, % (n) 14.3 (6) 14.3 (2) 14.3 (4) 1 

 

 

IVCD, % (n) 21.4 (9) 30.8 (4) 17.2 (5) 0.437 

 

 

Any IVCD, % (n) 64.3 (27) 62.1 (18) 69.2 (9) 1 

 

 

Myocardial Infarct, % (n) 88.1 (37) 100 (14) 82.1 (23) 0.151 

 

 
Days from MI to EPS (IQR) 3036 (1319-7015) 2248 (1270-3036) 6550 (1260-7555) 0.154 

 

 

Days from revasc. to EPS 
(IQR) 

2495 (1260-4714) 2248 (1449-3873) 2529 (903-6372) 0.658 

 

 

CAD Vessels, % (n)         

 

 
LAD 59.5 (25) 69.2 (9) 55.2 (16) 0.73 

 

 
LCx 54.8 (23) 61.5 (8) 51.7 (15) 1 

 

 
RCA 61.9 (26) 61.5 (8) 62.1 (18) 1 

 

 

Hypertension, % (n) 19.0 (8) 7.1 (1) 0.25 (7) 0.233 

 

 

Diabetes Mellitus, % (n) 14.3 (6) 7.1 (1) 17.9 (5) 0.645 

 

 

Laboratory values         

 

 

BNP, pg/ml (median, IQR) 341 (157–999) 900 (326.25-1325) 277 (109-502) 0.014 

 

 

Sodium, mmol/L 139 + 3.6 138 + 4.2 139 + 3.3 0.915 

 

 

Potassium, mmol/L 4.3 + 0.4 4.2 + 0.4 4.4 + 0.4 0.109 

 

 

Magnesium, mmol/L 2.0 + 0.4 2.2 + 0.2 2.0 + 0.4 0.134 

 

 

Prior Medications, % (n)         

 

 

Beta-Blocker 78.6 (31) 72.9 (6) 89.3 (25) 0.002 

 

 

ACE inhibitors/ARB 92.9 (39) 85.7 (12) 96.4 (27) 0.254 

 

 

Spironolactone 19.0 (8) 14.3 (2) 21.4 (6) 697 

 

 

CCB 14.3 (6) 21.4 (3) 10.7 (3) 0.383 

 

 

Digoxin 38.1 (16) 31.4 (3) 46.4 (13) 0.18 

 

 

Amiodarone 9.5 (4) 14.3 (2) 7.1 (2) 0.59 

 

 

Statins 71.4 (30) 78.6 (11) 67.9 (19) 0.719 

 

 

Implantable Device at EPS* 85.7 (36) 92.3 (12) 82.8 (24) 1 
 

 
*within 14 days 

     

       Key: All patients had electrophysiology study based on the presence of ischemic cardiomyopathy, left 207 
ventricular ejection fraction <40% and non-sustained VT/VF (ref 18 in main manuscript).  Values are n, 208 
mean + standard deviation, or median (interquartile range). Categorical variables are compared using 209 
Fisher’s exact test; continuous variables using the t-test (except BNP: Mann-Whitney U test performed 210 
because data is not normally distributed). ACE, angiotensin converting enzyme; ARB, angiotensin 211 
receptor blockers; BNP, B-type natriuretic peptide concentration; CCB, calcium channel blockers; CAD, 212 
coronary artery disease; EPS, electrophysiology study; IVCD, intraventricular conduction delay; LAD, left 213 
anterior descending artery; LBBB, left bundle branch block; LCx, left circumflex artery; MI, myocardial 214 
infarction; RBBB, right bundle branch block; RCA, right coronary artery, Revasc., coronary 215 
revascularization; Statins, HMG-CoA reductase inhibitors. 216 
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Online Table IV - Baseline Characteristics of Population Split by Inducibility of VT or VF in EPS 217 

   
  

  

  

All Subjects Induced VT/VF VT/VF Not Induced 

  

  

(n=42) (n=14) (n=28) p 

 

 

Age, y 64.7 + 13.0 67.2 + 13.1 63.4 + 12.9 0.379 

 

 

Gender, M/F 41/1 14/0 27/1 1 

 

 

LVEF, % 27.0 ± 7.6 27.4 ± 10.0 26.8 ± 6.2 0.831 

 

 

QRS Duration, ms 126 ± 33 123 ± 29 127 ± 36 0.761 
 

 

LBBB, % (n) 28.6 (12) 28.6 (4) 28.6 (8) 1 
 

 

RBBB, % (n) 14.3 (6) 14.3 (2) 14.3 (4) 1 
 

 

IVCD, % (n) 21.4 (9) 28.6 (4) 17.9 (5) 0.437 
 

 

Any IVCD, % (n) 64.3 (27) 71.4 (10) 60.7 (17) 0.484 
 

 

Myocardial Infarct, % (n) 88.1 (37) 92.9 (13) 85.7 (24) 0.65 

 

 

Days from MI to EPS (IQR) 3036 (1319-7015) 2666 (1535-6395) 2450 (1591-3598) 0.612 
 

 

Days from revasc. to EPS (IQR) 2495 (1260-4714) 2450 (1591-3597) 3160 (775-5071) 0.763 
 

 

CAD Vessels, % (n)   
 

    
 

 

LAD 59.5 (25) 64.3 (9) 57.1 (16) 0.73 
 

 

LCx 54.8 (23) 57.1 (8) 53.6 (15) 1 
 

 

RCA 61.9 (26) 71.4 (10) 57.1 (16) 0.316 
 

 

Hypertension, % (n) 19.0 (8) 0 (0) 28.6 (8) 0.037 

 

 

Diabetes Mellitus, % (n) 14.3 (6) 0 (0) 21.4 (6) 0.083 

 

 

Laboratory values         
 

 

BNP, pg/ml (median, IQR) 341 (157–999) 490.5 (288-1433) 270 (221-721) 0.104 

 

 

Sodium, mmol/L 139 + 3.6 138 ± 4.1 139 ± 3.3 0.915 
 

 

Potassium, mmol/L 4.3 + 0.4 4.4 ± 0.5 4.4 ± 0.4 0.949 
 

 

Magnesium, mmol/L 2.0 + 0.4 2.1 ± 0.2 2.0 ± 0.4 0.34 
 

 

Prior Medications, % (n)         

 

 

Beta-Blocker 78.6 (31) 64.3 (9) 78.6 (22) 0.459 

 

 

ACE inhibitors/ARB 92.9 (39) 85.7 (12) 96.4 (27) 0.254 

 

 

Spironolactone 19.0 (8) 35.7 (5) 10.7 (3) 1 

 

 

CCB 14.3 (6) 21.4 (3) 10.7 (3) 0.383 

 

 

Digoxin 38.1 (16) 92.9 (13) 10.7 (3) 0.18 

 

 

Amiodarone 9.5 (4) 14.3 (2) 7.1 (2) 0.59 

 

 

Statins 71.4 (30) 71.4 (20) 71.4 (10) 1 

 

 

Implantable Device at EPS* 85.7 (36) 85.7 (12) 85.7 (24) 1 
 

 

*within 14 days 
 

  
   218 

Key: Values are n, mean + standard deviation, or median (interquartile range). Categorical variables are 219 
compared using Fisher’s exact test; continuous variables using the t-test (except BNP: Mann-Whitney U 220 
test performed because data is not normally distributed). All patients had electrophysiology study based 221 
on the presence of ischemic cardiomyopathy, left ventricular ejection fraction ≤ 40% and non-sustained 222 
VT/VF. ACE, angiotensin converting enzyme; ARB, angiotensin receptor blockers; BNP, B-type natriuretic 223 
peptide concentration; CCB, calcium channel blockers; CAD, coronary artery disease; EPS, 224 
electrophysiology study; IVCD, intraventricular conduction delay; LAD, left anterior descending artery; 225 
LBBB, left bundle branch block; LCx, left circumflex artery; MI, myocardial infarction; RBBB, right bundle 226 
branch block; RCA, right coronary artery, Revasc., coronary revascularization; Statins, HMG-CoA 227 
reductase inhibitors. 228 
  229 
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Online Table V. 230 
Top 40 Extracted Features for endpoint of VT/VF used in the SVM model  231 

Feature 
Ampli-
tude 

VT/VF Description Category 

1 1.738 
time_reversal_asymmetry_statistic__lag_

3 
Direction reversal, i.e. vectorial change, at 3ms Time 

2 1.440 spkt_welch_density__coeff_5 Cross power spectral density at 5 frequencies Frequency 

3 -1.068 
agg_linear_trend__f_agg_"min"__chunk_

len_50__attr_"rvalue" 
Correlation of linear trend across minima of all 

50ms chunks 
Time 

4 1.038 
change_quantiles__f_agg_"mean"__isabs

_False__qh_0.8__ql_0.4 
Absolute consecutive change between 0.4 and 0.8 

of amplitude 
Time 

5 1.007 variance_larger_than_standard_deviation Is variance larger than SD? (Boolean 1/0) Time 

6 -0.956 last_location_of_minimum Last time point of minimum value Time 

7 0.891 
agg_linear_trend__f_agg_"var"__chunk_l

en_10__attr_"rvalue" 
Correlation of linear trend across variance of all 

10ms chunks 
Time 

8 0.848 number_peaks__n_3 Number of peaks greater than 3 ms Time 

9 0.803 fft_coefficient__coeff_48__attr_"abs" Absolute value of Fourier coefficient at 130Hz 
Frequency 

(High) 

10 -0.740 
change_quantiles__f_agg_"mean"__isabs

_True__qh_0.8__ql_0.6 
Absolute consecutive change between 0.6 and 0.8 

of amplitude 
Time 

11 -0.719 
agg_linear_trend__f_agg_"var"__chunk_l

en_50__attr_"rvalue" 
Correlation of linear trend across variance of all 

chunks of data of duration 50 ms  
Time 

12 -0.649 fft_coefficient__coeff_61__attr_"abs" Absolute value of the Fourier coefficient at 165Hz 
Frequency 

(High) 

13 -0.639 index_mass_quantile__q_0.8 Time point of 0.8 of cumulative mass Time 

14 0.618 fft_coefficient__coeff_41__attr_"abs" Absolute value of the Fourier coefficient at 111Hz 
Frequency 

(High) 

15 -0.546 
agg_linear_trend__f_agg_"var"__chunk_l

en_5__attr_"slope" 
Slope of linear trend across variance of all chunks of 

data of duration 50 ms  
Time 

16 -0.524 
percentage_of_reoccurring_values_to_all

_values 
Percentage of recurring values Time 

17 0.517 
large_standard_deviation__r_0.15000000

000000002 
Boolean is SD > 0.15 range Time 

18 0.510 fft_coefficient__coeff_20__attr_"angle" Angle value of the Fourier coefficient at 54Hz 
Frequency 

(Mid) 

19 -0.482 
change_quantiles__f_agg_"var"__isabs_F

alse__qh_0.8__ql_0.4 
Variance between 0.4 and 0.8 of magnitude Time 

20 0.425 fft_coefficient__coeff_98__attr_"imag" Imaginary part of the Fourier coefficient at 264Hz 
Frequency 

(High) 

 232 
 233 
 234 
 235 
 236 
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Feature 
Ampli-
tude 

VT/VF Description Category 

21 -0.422 has_duplicate_min Boolean is minimum repeated Time 

22 -0.360 
energy_ratio_by_chunks__num_segments_10__s

egment_focus_8 
Energy in chunk 8 of 10 vs. entire series Time 

23 0.356 fft_coefficient__coeff_19__attr_"imag" 
Imaginary part of the Fourier coefficient at 

51Hz 
Frequency 

(Mid) 

24 -0.355 fft_coefficient__coeff_8__attr_"real" 
Real part of the Fourier coefficient at 

265Hz 
Frequency 

(High) 

25 0.347 approximate_entropy__m_2__r_0.1 
Approximate entropy across 2ms fitered at 

0.1 
Frequency 

26 -0.346 fft_coefficient__coeff_27__attr_"angle" 
Angle value of the Fourier coefficient at 

73Hz 
Frequency 

(Mid) 

27 0.343 partial_autocorrelation__lag_2 Partial autocorrelation at 2ms Time 

28 -0.317 fft_coefficient__coeff_37__attr_"real" 
Real part of the Fourier coefficient at 

100Hz 
Frequency 

(Mid) 

29 0.316 friedrich_coefficients__m_3__r_30__coeff_1 
Friedrich coefficient 1 of 3-degree 

polynomial across 30 quantiles 
Time 

30 0.309 
cwt_coefficients__widths_(2, 5, 10, 

20)__coeff_14__w_5 
Continuous wavelet transform for 5ms 

among 2, 5, 10, and 20ms 
Time 

31 0.300 fft_coefficient__coeff_12__attr_"real" Real part of the Fourier coefficient at 32Hz 
Frequency 

(Low) 

32 0.300 fft_coefficient__coeff_43__attr_"angle" 
Angle value of the Fourier coefficient at 

116Hz 
Frequency 

(High) 

33 -0.285 fft_coefficient__coeff_38__attr_"real" 
Real part of the Fourier coefficient at 

103Hz 
Frequency 

(High) 

34 -0.276 
large_standard_deviation__r_0.35000000000000

003 
Boolean is SD > 0.35 range Time 

35 -0.250 
cwt_coefficients__widths_(2, 5, 10, 

20)__coeff_3__w_2 
Continuous wavelet transform for 2ms 

among 2, 5, 10, and 20ms 
Time 

36 0.242 fft_coefficient__coeff_25__attr_"angle" 
Angle value of the Fourier coefficient at 

68Hz 
Frequency 

(Mid) 

37 -0.239 fft_coefficient__coeff_28__attr_"angle" 
Angle value of the Fourier coefficient at 

76Hz 
Frequency 

(Mid) 

38 -0.236 
change_quantiles__f_agg_"mean"__isabs_True__

qh_0.2__ql_0.0 
Absolute consecutive change between 0.0 

and 0.2 of amplitude 
Time 

39 0.227 fft_coefficient__coeff_94__attr_"real" 
Real part of the Fourier coefficient at 

254Hz 
Frequency 

(High) 

40 -0.218 fft_coefficient__coeff_29__attr_"angle" 
Angle value of the Fourier coefficient at 

78Hz coefficient 
Frequency 

(Mid) 

Key: Frequency descriptions are subdivided into low bandwidth (<50 Hz), corresponding to 237 
MAP waveform shape and resting potential, high bandwidth (>100 Hz), corresponding to 238 
transients such as Phase 0 and 1, and mid- bandwidth (51-100 Hz). 239 
 240 
  241 
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Online Table VI 242 
Top 40 Extracted Features for endpoint of all-cause mortality used in the SVM model  243 
 244 

Feature 
Ampli- 
tude 

Death Description Category 

1 -2.876 approximate_entropy__m_2__r_0.1 
Approximate entropy across 2ms filtered at 

0.1 
Frequency 

(Low) 

2 -1.798 ratio_beyond_r_sigma__r_2 Ratio of values > 2SD Time 

3 -1.750 
agg_autocorrelation__f_agg_"median"__maxlag

_40 
Autocorrelation of medians at lags up to 

40ms 
Time 

4 1.152 time_reversal_asymmetry_statistic__lag_3 Direction reversal at 3ms Time 

5 -0.963 spkt_welch_density__coeff_2 
Cross power spectral density at 2 

frequencies 
Frequency 

6 -0.700 
agg_linear_trend__f_agg_"var"__chunk_len_50

__attr_"rvalue" 
Correlation of linear trend across variance 

of all 50ms chunks 
Time 

7 -0.669 
change_quantiles__f_agg_"var"__isabs_False__

qh_0.4__ql_0.0 
Absolute consecutive variance change 

between 0.0 and 0.4 of amplitude 
Time 

8 0.656 fft_coefficient__coeff_98__attr_"abs" 
Absolute value of the Fourier coefficient at 

265Hz 
Frequency 

(High) 

9 0.655 large_standard_deviation__r_0.2 Boolean is SD > 0.20 range Time 

10 -0.640 ratio_beyond_r_sigma__r_1.5 Ratio of values > 1.5SD Time 

11 -0.606 number_peaks__n_3 
Number of peaks greater than 3 ms left or 

right 
Time 

12 0.573 fft_coefficient__coeff_23__attr_"real" 
Real part of the 23Fourier coefficient at 

62Hz 
Frequency 

(Mid) 

13 0.555 ar_coefficient__k_10__coeff_0 Autoregression coefficient max lag = 10 Time 

14 -0.537 fft_coefficient__coeff_37__attr_"real" Real part of the Fourier coefficient at 100Hz 
Frequency 

(High) 

15 -0.488 
agg_linear_trend__f_agg_"var"__chunk_len_5_

_attr_"rvalue" 
Correlation of linear trend across variance 

of all 5ms chunks 
Time 

16 0.446 
agg_linear_trend__f_agg_"max"__chunk_len_5

0__attr_"rvalue" 
Correlation of linear trend across 

maximums of all 5ms chunks 
Time 

17 -0.307 fft_coefficient__coeff_28__attr_"angle" 
Angle value of the Fourier coefficient at 

76Hz 
Frequency 

(Mid) 

18 -0.287 
energy_ratio_by_chunks__num_segments_10__

segment_focus_7 
Energy in chunk 7 of 10 vs. entire series 

Frequency 
(Mid) 

19 -0.286 
agg_linear_trend__f_agg_"min"__chunk_len_50

__attr_"slope" 
Slope of linear trend across minimum of all 

50ms chunks 
Time 

20 0.283 fft_coefficient__coeff_8__attr_"real" Real part of the Fourier coefficient at 22Hz 
Frequency 

(Low) 

 245 
 246 
 247 
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Feature 
Ampli- 
tude 

Death Description Category 

21 0.277 fft_coefficient__coeff_46__attr_"angle" 
Angle value of the Fourier coefficient at 

14Hz 
Frequency 

(Low) 

22 0.249 fft_coefficient__coeff_2__attr_"imag" 
Imaginary party of the Fourier coefficient at 

5.4Hz 
Frequency 

(Low) 

23 -0.236 binned_entropy__max_bins_10 Entropy max in up to 10 bins 
Frequency 

(High) 

24 0.232 fft_coefficient__coeff_5__attr_"angle" 
Angle value of the Fourier coefficient at 

13.5Hz 
Frequency 

(Low) 

25 0.225 
cwt_coefficients__widths_(2, 5, 10, 

20)__coeff_13__w_5 
Continuous wavelet transform for 5ms 

among 2, 5, 10, and 20ms 
Time 

26 -0.215 
cwt_coefficients__widths_(2, 5, 10, 

20)__coeff_10__w_2 
Continuous wavelet transform for 2ms 

among 2, 5, 10, and 20ms 
Time 

27 0.205 
change_quantiles__f_agg_"mean"__isabs_True_

_qh_1.0__ql_0.8 
Absolute consecutive mean change 
between 0.8 and 1.0 of amplitude 

Time 

28 -0.205 fft_coefficient__coeff_78__attr_"abs" 
Absolute value of the Fourier coefficient at 

211Hz 
Frequency 

(High) 

29 0.202 fft_coefficient__coeff_64__attr_"angle" 
Angle value of the Fourier coefficient at 

173Hz 
Frequency 

(High) 

30 -0.200 fft_coefficient__coeff_82__attr_"angle" 
Angle value of the Fourier coefficient at 

222Hz 
Frequency 

(High) 

31 0.197 longest_strike_above_mean Length of longest string above mean Time 

32 -0.193 
large_standard_deviation__r_0.1500000000000

0002 
Boolean is SD > 0.15 range Time 

33 0.191 last_location_of_maximum Last time point of maximum Time 

34 -0.191 sum_of_reoccurring_data_points Sum of all recurring data points Time 

35 0.189 fft_coefficient__coeff_42__attr_"angle" 
Angle value of the Fourier coefficient at 

114Hz 
Frequency 

(High) 

36 0.174 fft_coefficient__coeff_79__attr_"real" Real part of the Fourier coefficient at 214Hz 
Frequency 

(High) 

37 0.173 
energy_ratio_by_chunks__num_segments_10__

segment_focus_9 
Energy in chunk 9 of 10 vs. entire series Time 

38 -0.166 fft_coefficient__coeff_29__attr_"angle" 
Angle value of the Fourier coefficient at 

78Hz 
Frequency 

(Mid) 

39 0.165 value_count__value_0 Number of 0 values Time 

40 0.162 has_duplicate_min Boolean is minimum duplicated Time 

Key: Frequency descriptions are subdivided into low bandwidth (<50 Hz), corresponding to 248 
MAP waveform shape and resting potential, high bandwidth (>100 Hz), corresponding to 249 
transients such as Phase 0 and 1, and mid- bandwidth (51-100 Hz). 250 
  251 
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Online Table VII – Confusion matrices for all single-beat MAPs across all 10 test sets 252 
 253 
 254 

  VT/VF     Mortality   
  

    
    

    
  

  
  

95% Conf. 
Intervals     

  
95% Conf. Intervals   

  
 

Percent Lower Upper     
 

Percent Lower Upper   

  Sensitivity 72.65 71.49 73.78     Sensitivity 59.95 58.54 61.35   

  Specificity 88.98 88.38 89.56     Specificity 81.64 80.92 82.34   

  PPV 78.24 77.12 79.32     PPV 57.03 55.64 58.41   

  NPV 85.65 84.98 86.29     NPV 83.38 82.68 84.05   

  Accuracy 83.22 82.64 83.78     Accuracy 75.37 74.71 76.03   
            

 255 
 256 

Online Table VIII - Similar Respiratory Rate for MAPs predicting/not predicting each endpoint 257 
 258 

 259 
 260 
 261 
Online Table IX - Similar recording quality, measured as the peak of autocorrelation for 262 
successive beats, for MAPs predicting/not predicting each endpoint 263 
 264 
 265 

 
VT/VF No VT/VF Mortality No Mortality 

MAP consistency by 
autocorrelation 

0.89 0.86 0.86 0.88 

Standard deviation 0.09 0.08 0.09 0.09 

t-test p 0.41 
 

0.57 
 

  266 

 
VT/VF No VT/VF Mort No Mort 

Respiratory Rate 14.71 15.45 15.59 14.94 
Standard deviation 2.87 3.00 2.99 2.95 

     
t-test p 0.45 

 
0.49 
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Supplemental Figures: 267 
 268 

Online Figure I 269 

 270 

 271 

Online Figure I. Preprocessing Applied to MAPs.  A. Clipping phase 0 overshoot, in an RV MAP 272 

from a 67-year-old male with LVEF 25%. Outlier removal eliminated this phase 0 overshoot 273 

while maintaining MAP shape. B. Clipping undershoot from a Ventricular MAP in a 59-year-old 274 

male with LVEF 10%. The negative undershoot just before phase 0, possibly related to pacing 275 

artifact, was attenuated by this uniform approach to outlier removal.  Results from the analysis 276 

did not change qualitatively if this step was omitted. 277 

  278 
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Online Figure II 279 

 280 

 281 

 282 

Online Figure II. K=10 Cross Validations Used in Study.  Each panel shows a single MAP from 283 

each patient (N=42) to represent the set of all recordings from that patient. Data were 284 

randomly allocated into either training (unboxed) or test (red boxes) cohorts, with all beats 285 

from each patient allocated together (stratified Monte Carlo cross-validation). This process was 286 

repeated for 10 cross-validation splits. In each split, approximately 70% of beats were used for 287 

training and 30% were reserved for testing. Training and testing data were distinct for each K-288 

cross validation split.  289 
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Online Figure III 290 

 291 

Online Figure III. Calculation and selection of features for supervised learning – Raw MAP 292 

signals (N = 5706) are analyzed using the Python tsfresh package to calculate 794 features for 293 

each single-beat recording. Each calculated feature is assigned a p value according to the 294 

outcome label (VTVF or mortality) and filtered using the Benjamini Yekutieli procedure 295 

(resulting in 622 and 549 features, respectively. When features correlate highly to each other, 296 

all but the feature with the highest p-value is removed to result in 274 and 259 features. The 297 

top 40 features selected by logistic regression optimized prediction in training and were input 298 

to the supervised learning (SVM) model for each endpoint. 299 
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300 
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Online Figure IV 301 

 302 

Online Figure IV. CNN model architecture – CNN model, on input size of 370 samples for a 303 

single-beat MAP, with two convolutional layers and a bidirectional long-short term memory 304 

(LSTM) layer that classified events (VT/VF or mortality) vs. non-events (arrhythmia-free or 305 

survival) 306 

  307 
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Glossary of Terms 308 
 309 
Computational phenotyping - Computational phenotypes are disease phenotypes, identified in 310 

this case from machine learning of clinically measured ventricular action potentials coupled 311 

with computational cell models, which indicate a high or low risk of clinical events (here, 312 

ventricular arrhythmias or death on long-term follow-up). 313 

 314 

tsfresh - tsfresh is a library of mathematical time-series parameters that efficiently represents 315 

time and frequency-based features for supervised learning. To produce features using tsfresh, 316 

the voltage time series data from MAP recordings are passed into the functions of the library 317 

and scalar values are returned for each of 794 features. These are ranked based on p-values for 318 

each output label in turn, and those with least significant features are removed by the 319 

Benjamini-Yekutieli procedure. Resulting features are further filtered as inputs for supervised 320 

learning.1 321 

 322 

Features – Features are mathematical descriptions of an input signal or image described by a 323 

value, function, or pattern that can be used as inputs to supervised learning models.  324 

 325 

Parameter sets – Parameter sets are the group of channel conductance values that are used for 326 

a given state of the O’Hara Rudy model simulation. Each parameter set contains 5 values 327 

corresponding to the 5 channels evaluated in this work. 328 

 329 



 

25 
 

L1 regularization, regularization factor, ‘liblinear’ solver –  L1 regularization, regularization 330 

factor, and the ‘liblinear’ solver are parameters of the linear regression model used to choose 331 

the top 40 features that correlated with the endpoints.  332 

 333 

Scikit-learn library – A python library containing various classification, regression, and 334 

clustering algorithms for data science applications. 335 

  336 
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ReadMe Document for Source Code and Demo 337 
 338 
1. Background 339 
This document provides readme documentation for the source code used to generate the 340 
results for the manuscript entitled “Machine Learning of in vivo Tissue Electrophysiology in 341 
Patients with Heart Failure “. 342 
 343 
There is also a demo code to show the results of the trained model for a sample dataset. 344 
 345 
2. Files attached 346 

 Code: The main code is presented in a Jupyter notebook format (.ipynb). The code 347 
provides information for all the steps and the functions that are used in the result. 348 
Comments are provided for each function.  349 

o The main code is saved in “Code_for_manuscript_submission.ipynb” as jupyter 350 
notebook in the Code folder. The rest of the functions are helper functions saved 351 
as a .py file. The full source code will only run with full dataset (we only provide 352 
demo dataset). 353 

 Data: Only a subset of the data is provided for demo purposes and can be found in the 354 
Demo folder. 355 

 Demo Folder contents: 356 
o 20191219 is an excel sheet showing the actual labels for both VTVF and 357 

Mortality endpoints and whether they were in training/validation splits in the 358 
trained model 359 

o Calc_metrics_v2: helper function to calculate accuracy, sensitivity, specificity, 360 
NPV, PPV. 361 

o Demo_Code.ipynb: Jupyter notebook to run demo. Running this demo will show 362 
results from the sample dataset provided. 363 

o Mortality_CV1_finalized_mode.sav: trained model using cross validation 1 for 364 
mortality endpoint. 365 

o VTVF_CV1_finalized_model.sav: trained model using cross validation 1 for VTVF 366 
endpoint. 367 

o Mortality_labels_demo & Mortality_tsfresh_features_demo: input and true 368 
output for model (Mortality). First 5-digit contain patient ID, and last 4 digits 369 
contain beat ID. 370 

o VTVF_labels_demo & VTVF_tsfresh_features_demo: input and true output for 371 
model (VTVF). 372 

o demo_data_20191219.npz: numpy (.npz) file that has the voltage-timeseries 373 
MAPs. Each point is 1msec apart and the values are voltages in mV. 374 
 375 

3. Hardware and Software 376 
 377 

This program runs on a desktop computer system with following specifications: 378 

 Inter Core i9-9900K CPU @3.6Ghz, 3600 Mhz, * cores, 16 Logical Processors 379 

 Microsoft Windows 10 Pro 380 
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 32 GB RAM381 
382 

All computations were performed on Python 3.6 using Anaconda Navigator 1.9.7. The following 383 
packages were used: 384 

 numpy 1.17.3385 

 pandas 0.23.4386 

 pandas-datareader 0.8.0387 

 scikit-learn 0.21.3388 

 scipy 1.3.1389 

 tsfresh 0.12.0390 

 xlrd 1.2.0391 

 xlsxwriter 1.2.6392 

 jupyter 1.0.0393 

 pickle 1.0 or higher394 

 matplotlib 3.3.0395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 

4. Time to execute
All runtimes are based on the hardware specifications provided in section 3. Most commands 
run in less than 1 minute and a few take up to 3 minutes. The only part that takes a considerable 
time (~15 minutes) is “extract_features_without_label” which extracts all the tsfresh features. 
This command is performed in the “Code_for_manuscript_submission.ipynb” Jupyter file under 
section “Feature extraction using tsfresh” (this requires the full dataset to run. Only code is 
provided).

5. Instructions to run
1. If downloaded as a zipped folder, you will need to unzip the folder.
2. You will need to install the packages listed in section 3.
3. Running every cell in the Demo Jupyter file notebook in order will run the program and 

produce the results in the Jupyter notebook.
4. The Demo also allows to plot different MAP beats for the demo files (can be configured). 

The runtime for the demo file takes a few minutes or less (tested on machine with 
specifications in section 3, but it should run fast on any modern machine as well).

6. Software License
Creative Commons Attribution-NonCommercial-NoDerivatives415 
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