1 SUPPLEMENTAL MATERIAL

2

3 Detailed Methods and Results

4 Feature selection for supervised learning

5 An overview of MAP recording feature selection process is shown in Online Figure III. 6 After cropping of the raw signals, each MAP recording was analyzed using the Python tsfresh 7 library (Reference 20) Using this package, we calculated the complete library output available 8 for signals of this size. This resulted in N = 794 scalar variables representing the mathematical 9 features provided by the *tsfresh* library. This has been shown to effectively filter noise in time 10 series signals and improve computational efficiency. We then used the Benjamini-Yekutieli 11 approach (Reference 21), which can be applied to multiple tests to minimize the false discovery 12 rate, assuming arbitrary dependence of p-values to select features most strongly linked with 13 the outcomes (N = 622 [VT/VF] and N = 549 [Mortality]). Next, we dropped features that 14 correlated highly to others to reduce redundancy left N=274 and N=259 features for each 15 endpoint, respectively. Finally, the N = 40 features with highest coefficients for each endpoint 16 were selected using logistic regression with L1 regularization and provided optimal 17 performance of SVM in training.

18

19 Feature quantity analysis for supervised learning:

We performed an optimization analysis to determine the number of features used to
 generate the beat-level model. The top N features from the output of the tsfresh and logistic
 regression steps (Online Figure III) were used in iteratively training the SVM beat-level model. N

23 was ranged widely between 5 and 100 features with the resulting validation accuracy

24 optimization curve. The optimal number of features was 40.

25

26 <u>Supervised learning implementation using Support Vector Machine classifier:</u>

For <u>beat-level predictions</u>, we compared several ML approaches including support
 vector machines (SVM), convolutional neural networks, and other supervised architectures.
 Extensive testing revealed that SVM classifier provided superior test characteristics to CNN
 (Online Table I and II).

31 The inputs (support vectors) were the scalar parameters from the output of the tsfresh 32 output features described above. The SVM algorithm identifies a subset of inputs, termed 33 support vectors, that form a decision boundary which optimally should separate output classes 34 (endpoints). Training aims to increase the distance between input data and boundaries to 35 improve the generalizability of the model. The supervised learning model was developed in 36 Python 3.6. The Support Vector Machine classifier was implemented using sklearn library 37 (scikit-learn 0.21.3). We used an SVM classifier (using "from sklearn.svm import SVC") with a 38 linear kernel. To avoid overfitting in the SVM classifier, we trained the SVM classifier in 10-fold 39 cross-validation using a regularization parameter of C = 1.

40

41 <u>Supervised learning implementation using a convolutional neural network classifier:</u>

The Convolutional Neural Network was implemented using tensorflow 2.1.0 and Keras 2.2.4-tf
framework and written in Python 3.6. The raw voltage-time series data points from each MAP
beat were directly used as inputs to the CNN (in contrast to feature outputs from the *tsfresh*

45 and logistic regression process). Training and testing were performed using the same K-fold

46 cross validation splits discussed in the methods section for both analyses. The CNN architecture

47 was implemented according to the architecture below, illustrated in Online Figure IV.

48

49 MAP score calculation and receiver operator characteristics analysis.

50 We developed the MAP score to generate a continuous patient-level index of risk for 51 clinical outcomes from the output of the beat-level model. This allows all beats collected in a 52 patient to be unified into a single risk prediction index despite biological or technical variability 53 between beats. The MAP score is defined as the proportion of test set beats recorded from 54 each patient that predict the endpoint of interest by the beat-level model. The proportion is 55 calculated as:

56
$$MAP \text{ score} = \left(\frac{\# \text{ of beats predicting the endpoint}}{\text{ total $\#$ of beats}}\right)$$

57 for each endpoint in turn. For example, a patient in whom 80% of beat-level MAP recordings

58 predicted VT/VF would be assigned a MAP score of 80%.

59 The ROC curve analysis was conducted in IBM SPSS v.19 by varying the cut-point of the 60 MAP score from 0% to 100%. The output includes the data points used to draw the

61 curves. These were imported into Jandel SigmaPlot version 11.0 which was used for graphing

62 with better appearance.

63

64 **Phase 1 repolarization analysis**

65 We quantified phase 1 as the mean voltage of each MAP from the upstroke to dome of 66 phase II, between 10 ms to 40 ms after phase 0. For MAP beats that predicted mortality, the

mean Phase 1 standardized voltage was lower than in those predicting survival (2.44 ± 1.31 vs.
3.32 ± 2.47, p < 0.001). This phase 1 metric predicted mortality with a c-statistic of 0.816 (CI:
0.676 to 0.957).

70

71 Biophysical simulation of MAPs classified by machine learning to predict each endpoint

72 We simulated cardiac cellular electrophysiology (membrane action potentials) using the 73 O'Hara Rudy model, which has been validated in human ventricles and recommended by the 74 FDA for drug testing for sudden cardiac death as part of the CiPa initiative (Reference 23). 75 Cellular transmembrane action potentials were simulated following 160-beat stimulus train at 76 109 beats/min (550ms cycle length) to reach steady state. Two additional stimuli were applied 77 at the same cycle length (550ms) and the action potential durations (APDs) of these 78 extrastimuli were measured. APD measurements (APD_{XX}) were made in standard fashion by 79 computing difference in time from the pacing stimulus (maximum time derivative of the 80 tracing) and the time where the amplitude of the normalized tracing falls below 100% – XX% 81 (where XX = 30 for APD30, 60 for APD60, and 90 for APD90). All waveforms were voltage-82 normalized across the dataset. If the difference between the APD90 of the first and second 83 extrastimuli was greater than 50 ms, the case was marked as "APD alternans" and excluded 84 from our analysis of steady-state action potential shapes. 85 The O'Hara model represents 14 transmembrane and 2 intracellular ion channels,

pumps, and exchangers, referred to as ionic pathways, which we used to study action potential
shapes. We focused on the hERG channel (IKr), L-Type Ca2+ Channel (ICaL), Na+-Ca2+

88 exchanger (NCX), Transient Outward current (Ito) and the sarcoplasmic reticulum ATPase

89 (SERCA), which have been reported to be the most important ionic pathways altered in heart 90 failure (Reference 24). To identify the ionic pathways that may explain clinically measured MAP 91 morphologies, we performed an extensive grid search. While computationally expensive, this 92 method provides a global analysis with known accuracy. Of note, MAP measurements are 93 recorded from patients with extensive cardiac disease and may not be well represented by the 94 reference published ion pathway densities. 95 We consider that the densities of Ito, ICaL, IKr, NCX and SERCA could be altered under 96 pathological conditions over a range of -80% to +100% for each ionic pathway, consistent with 97 previous reported ranges used to model heart failure in humans (Reference 24). Parameter 98 ranges for each channel are reported below (Online Methods Table 1). We separated each 99 parameter range into 21 evenly spaced intervals and evaluate every parameter value permutation for all 5 ionic pathways. This results in 21^5 or 4,084,101 cell model parameter sets. 100

101

		<u>lto (Gto)</u>	<u>lkr (GKr)</u>	<u>ICaL (pCa)</u>	NCX (Gncx)	SERCA (JupMAX)		
	Min	0.004	0.0092	0.2e ⁻⁴	0.00016	0.000875		
	Max	0.04	0.092	2e ⁻⁴	0.0016	0.00875		
	Number of values	21	21	21	21	21		
102								
103	Online Metho	ds Table 1. Io	nic pathway,	labelled by cha	annel, exchang	er and pump name and		
104	corresponding	g cell model p	arameter in b	rackets, range	s consider spar	ning -80% to +100% of		
105	reference values.							
106								
107	Simulat	ions were per	formed for bo	th mortality ar	nd VT/VF endpo	ints. For each, MAP		
108	traces represer	nting the aver	age trace for t	he event and n	ion-event group	os were used to explain		

109 the model parameter outputs. The best fit was determined based on smallest discrepancy

- 110 between APD30, 60, and 90 between event and non-event groups and between the spectrum
- 111 of the measured and simulated tracings as described below.
- 112

113 MAP fitting by APD_{XX} and signal spectrum:

114 1. We define the set S_1 of the candidates satisfying the following conditions for <u>all</u> the 115 APD_{XX}:

$$\frac{\left|APD_{XX}^{computed} - \mathbb{E}\left(APD_{XX}^{measured}\right)\right|}{\mathbb{S}\left(APD_{XX}^{measured}\right)} < C_{XX}$$

Here $\mathbb{E}(APD_{XX}^{measured})$ is the APD_{XX} of the measured mean trace, $\mathbb{S}(APD_{XX}^{measured})$ is 116 117 the estimated APD_{XX} standard deviation and C_{XX} is a coefficient that prescribes a tolerance for APD_{XX}. We chose $C_{XX} = 1$ for all the APD_{XX}. This results in all simulated 118 119 APDs from plausible parameter sets falling within one standard deviation of all 120 measured APD. In the second step, we associate each candidate $s_1^j \in S_1$ with the cost $\mathcal{C}(s_1^j)$ evaluated 121 2. using the modal coefficients of the semi-classical signal analysis ($S(s_1^j)$; see <u>Signal</u> 122 123 Spectral Fit below) and the fit of the simulated to measured APD values. We build the

124 set $S_2 \subset S_1$ of the candidates that satisfy:

$$\mathcal{C}(s_1^j) = \mathcal{S}(s_1^j) + \sum_{XX} \frac{|APD_{XX}^{computed} - \mathbb{E}(APD_{XX}^{measured})|}{\mathbb{S}(APD_{XX}^{measured})}$$

125 We adopt a 1% cut-off on $C(s_1^j)$, for course resolution (21 values) data sets and a 0.5% 126 cut-off for fine resolution (91 values) data sets, to identify a final list S_2 of retained 127 candidate parameter sets. The set S_2 represents the model parameters that produce the 128 V_m trace closest to the measured MAP trace within the prescribed tolerances.

129

130 Signal spectral fit:

In step 2 of determining the plausible parameters, we aim to identify parameters that
generate an action potential morphology that best matches the clinically measured MAP
morphology. We use semi-classical signal analysis (SCSA) to perform the comparison (Reference
SCSA is the non-linear counterpart of the Fourier transform. We chose SCSA as it requires a
limited number of modes (the negative spectrum) resulting in increased efficiency.

136 1. We evaluate the cost $S(s_1^j)$ with the following procedure. First, we rescale the time axis 137 within the interval [0,1] and then normalize each trace u(t) (MAP and computed V_m) as 138 follows:

$$\hat{u}(t) = \frac{u(t) - \min(u(t \ge 35 \, ms))}{\max(u(t \ge 35 \, ms)) - \min(u(t \ge 35 \, ms))}$$

Here we consider $t \ge 35 ms$ in the rescaling to remove artefact due to the pacing

140 stimulus and rescale the signal to be greater than 0.

141 2. Next, we evaluate the Eigen-functions of the Schrödinger problem:

$$\frac{d^2}{dt^2}(\varphi) + \chi \hat{u}(t)\varphi = \lambda \varphi$$

142 We have discretized the problem using a pseudo-spectral method. Here the parameter 143 χ plays the role of a parameter that increases the accuracy of $\hat{u}(t)$ by reducing the

144 smoothness of the function. As χ gets larger, the representation is more accurate, since

- 145 the number of negative eigenvalues increases. We chose $\chi = 8000$, which adequately
- bounded the differences in MAP waveforms.
- 147 3. Finally, we evaluated:

$$\mathcal{S}(s_2^j) = \sum_{j=1}^N \frac{\left| \sqrt{-\lambda_j^C} - \sqrt{-\lambda_j^M} \right|}{\sqrt{-\lambda_j^M}}$$

- Here $\lambda_j^{C,M}$ is the jth negative eigenvalue obtained from the SCSA on the computed and measured traces respectively; N is the minimum between the number of negative
- 150 eigenvalues in the SCSA on the computed and clinically measured traces respectively.

151 This provides a measure of the similarity in the shape of the two traces.

152

153 **Global sensitivity analysis:**

154 A Saltelli global sensitivity analysis (GSA) (Reference 26) of the APD values to the ionic 155 pathway densities was performed using the data base of generated simulations, to identify 156 variables with the greatest influence on APD. The implementation was verified against the 157 Ishigami analytic solutions (Reference 27). GSA was not performed on SCSA due to the 158 computational cost. We found that APD values were predominantly defined by IKr, with the 159 least contribution from SERCA (Figure 5A of main manuscript). 160 We now considered a reduced analysis. We considered Ito due to its prominent role in 161 phase 1, where measured MAP morphology differed between patients who died versus those 162 who survived (Figure 4B from main manuscript). IKr was maintained due to its important in 163 determining APD (Figure 5A from main manuscript). We cannot differentiate between NCX and

164	ICaL as they have similar importance (Figure 5A from main manuscript) and both cause a
165	depolarizing current prolonging the action potential. As both NCX and ICaL are equally plausible
166	explanations for the data we considered 2 sets of ionic pathways. Dataset 1: Ito, IKr and ICaL or
167	Dataset 2: Ito, IKr and NCX. We repeated the analysis, described above, to identify the plausible
168	parameter sets for these two new sets of ionic pathways. Parameter ranges for Dataset 1 and 2
169	are defined below.

170

171	DATASET 1: ICaL (753,57)	1 samples)			
		lto (Gto)	lKr (GKr)	ICaL (pCa)	
	Min	0.004	0.0092	0.2e ⁻⁴	
	Max	0.04	0.092	2e ⁻⁴	
	Number of values	91	91	91	
172					
173					
174	DATASET 2: NCX (753,571 samples)				
		lto (Gto)	lkr (GKr)	NCX (Gncx)	
	Min	0.004	0.0092	0.16 e ⁻³	
	Max	0.04	0.092	1.6 e ⁻³	
	Number of values	91	91	91	
4 = =					

- 175
- 176

177 Analysis of APD alternans

For each dataset (altered PCa or altered NCX) and for VT/VF or non-VT/VF phenotypes, we performed single cell simulations by pacing each 0D model at a fixed pacing cycle length for 320 stimuli, followed by 2 additional stimuli in which we evaluated APD60. This procedure was conducted for pacing cycle length starting at 250 ms and shortened (accelerated) progressively to 200 in increments of 5ms. 183 Alternans was assigned whenever APD60 in those 2 beats differed by > 50 ms. For each 184 cell model, we quantified alternans as the percentage of pacing trials that exhibited alternans at 185 slow rates (paced cycle lengths \geq 220 ms) or at fast rates (< 220 ms). The presence of APD 186 alternans at slower rates indicates that it arises from a lesser perturbation, which may indicate 187 a greater vulnerability to arrhythmia (Reference 44). 188 We found that cell models with higher I_{CaL} more often presented APD alternans at slow 189 rates (cycle lengths 220-235 ms) than models with lower ICaL, with similar prevalence at faster 190 rates (cycle lengths 200-215 ms). Conversely, the prevalence of APD alternans was similar 191 between cell models with enhanced versus non-enhanced NCX for slower or faster rates.

193 Online Tables:

195 Online Table I

Layer	Parameters
Conv1D	filters = 32, kernel_size = 16, strides = 1
BatchNormalization	None
Activation	activation = 'relu'
Dropout	0.3
MaxPooling1D	pool_size=2, strides = 1
Conv1D	filters = 64, kernel_size = 16, strides = 1
BatchNormalization	None
Activation	activation = 'relu'
Dropout	0.3
MaxPooling1D	pool_size=2, strides = 1
Bidirectional	units = 128, dropout = 0.2, recurrent_dropout = 0.3
(layers.LSTM)	
Dense	units = 1, activation = 'sigmoid'

Online Table I Convolutional Neural Network architecture with parameters and descriptions of

199 each layer.

202 Online Table II – Test characteristics at the beat-level, for all MAPs across all 10 k-cross

- 203 validation sets results from CNN model and SVM model.

	Mortality				
	Accuracy	Sensitivity	Specificity	NPV	PPV
SVM	75.4%	60.0%	81.6%	83.4%	57.0%
CNN	70.6%	11.7%	94.6%	72.5%	46.8%

	VT/VF					
	Accuracy	Sensitivity	Specificity	NPV	PPV	
SVM	83.2%	72.6%	89.0%	85.6%	78.2%	
CNN	56.7%	40.3%	65.6%	66.9%	39.0%	

206 Online Table III - Baseline Characteristics of Population Split by all-cause	mortality at 3-years
--	----------------------

	All Subjects	Death	No Death]
	(n=42)	(n=14)	(n=28)	р
Age, y	64.7 <u>+</u> 13.0	71.5 <u>+</u> 8.5	61.3 <u>+</u> 13.6	0.014
Gender, M/F	41/1	14/0	27/1	1
LVEF, %	27.0 <u>+</u> 7.6	27.5 <u>+</u> 7.4	26.70 <u>+</u> 7.8	0.766
QRS Duration, ms	126 <u>+</u> 33	121 <u>+</u> 19.9	129 <u>+</u> 38	0.495
LBBB, % (n)	28.6 (12)	23.1 (3)	31.0 (9)	0.716
RBBB, % (n)	14.3 (6)	14.3 (2)	14.3 (4)	1
IVCD, % (n)	21.4 (9)	30.8 (4)	17.2 (5)	0.437
Any IVCD, % (n)	64.3 (27)	62.1 (18)	69.2 (9)	1
Myocardial Infarct, % (n)	88.1 (37)	100 (14)	82.1 (23)	0.151
Days from MI to EPS (IQR)	3036 (1319-7015)	2248 (1270-3036)	6550 (1260-7555)	0.154
Days from revasc. to EPS (IQR)	2495 (1260-4714)	2248 (1449-3873)	2529 (903-6372)	0.658
CAD Vessels, % (n)				
LAD	59.5 (25)	69.2 (9)	55.2 (16)	0.73
LCx	54.8 (23)	61.5 (8)	51.7 (15)	1
RCA	61.9 (26)	61.5 (8)	62.1 (18)	1
Hypertension, % (n)	19.0 (8)	7.1 (1)	0.25 (7)	0.233
Diabetes Mellitus, % (n)	14.3 (6)	7.1 (1)	17.9 (5)	0.645
Laboratory values				
BNP, pg/ml (median, IQR)	341 (157–999)	900 (326.25-1325)	277 (109-502)	0.014
Sodium, mmol/L	139 <u>+</u> 3.6	138 <u>+</u> 4.2	139 <u>+</u> 3.3	0.915
Potassium, mmol/L	4.3 <u>+</u> 0.4	4.2 <u>+</u> 0.4	4.4 <u>+</u> 0.4	0.109
Magnesium, mmol/L	2.0 <u>+</u> 0.4	2.2 <u>+</u> 0.2	2.0 <u>+</u> 0.4	0.134
Prior Medications, % (n)				
Beta-Blocker	78.6 (31)	72.9 (6)	89.3 (25)	0.002
ACE inhibitors/ARB	92.9 (39)	85.7 (12)	96.4 (27)	0.254
Spironolactone	19.0 (8)	14.3 (2)	21.4 (6)	697
ССВ	14.3 (6)	21.4 (3)	10.7 (3)	0.383
Digoxin	38.1 (16)	31.4 (3)	46.4 (13)	0.18
Amiodarone	9.5 (4)	14.3 (2)	7.1 (2)	0.59
Statins	71.4 (30)	78.6 (11)	67.9 (19)	0.719
Implantable Device at EPS*	85.7 (36)	92.3 (12)	82.8 (24)	1

*within 14 days

207 **Key:** All patients had electrophysiology study based on the presence of ischemic cardiomyopathy, left

208 ventricular ejection fraction <40% and non-sustained VT/VF (ref 18 in main manuscript). Values are n,

209 mean <u>+</u> standard deviation, or median (interquartile range). Categorical variables are compared using

210 Fisher's exact test; continuous variables using the t-test (except BNP: Mann-Whitney U test performed

because data is not normally distributed). ACE, angiotensin converting enzyme; ARB, angiotensin

receptor blockers; BNP, B-type natriuretic peptide concentration; CCB, calcium channel blockers; CAD,

213 coronary artery disease; EPS, electrophysiology study; IVCD, intraventricular conduction delay; LAD, left

anterior descending artery; LBBB, left bundle branch block; LCx, left circumflex artery; MI, myocardial

215 infarction; RBBB, right bundle branch block; RCA, right coronary artery, Revasc., coronary

216 revascularization; Statins, HMG-CoA reductase inhibitors.

217 Online Table IV - Baseline Characteristics of Population Split by Inducibility of VT or VF in EPS

	All Subjects	Induced VT/VF	VT/VF Not Induced	
	(n=42)	(n=14)	(n=28)	р
Age, y	64.7 <u>+</u> 13.0	67.2 <u>+</u> 13.1	63.4 <u>+</u> 12.9	0.379
Gender, M/F	41/1	14/0	27/1	1
LVEF, %	27.0 ± 7.6	27.4 ± 10.0	26.8 ± 6.2	0.831
QRS Duration, ms	126 ± 33	123 ± 29	127 ± 36	0.761
LBBB <i>,</i> % (n)	28.6 (12)	28.6 (4)	28.6 (8)	1
RBBB, % (n)	14.3 (6)	14.3 (2)	14.3 (4)	1
IVCD, % (n)	21.4 (9)	28.6 (4)	17.9 (5)	0.437
Any IVCD, % (n)	64.3 (27)	71.4 (10)	60.7 (17)	0.484
Myocardial Infarct, % (n)	88.1 (37)	92.9 (13)	85.7 (24)	0.65
Days from MI to EPS (IQR)	3036 (1319-7015)	2666 (1535-6395)	2450 (1591-3598)	0.612
Days from revasc. to EPS (IQR)	2495 (1260-4714)	2450 (1591-3597)	3160 (775-5071)	0.763
CAD Vessels, % (n)				
LAD	59.5 (25)	64.3 (9)	57.1 (16)	0.73
LCx	54.8 (23)	57.1 (8)	53.6 (15)	1
RCA	61.9 (26)	71.4 (10)	57.1 (16)	0.316
Hypertension, % (n)	19.0 (8)	0 (0)	28.6 (8)	0.037
Diabetes Mellitus, % (n)	14.3 (6)	0 (0)	21.4 (6)	0.083
Laboratory values				
BNP, pg/ml (median, IQR)	341 (157–999)	490.5 (288-1433)	270 (221-721)	0.104
Sodium, mmol/L	139 <u>+</u> 3.6	138 ± 4.1	139 ± 3.3	0.915
Potassium, mmol/L	4.3 <u>+</u> 0.4	4.4 ± 0.5	4.4 ± 0.4	0.949
Magnesium, mmol/L	2.0 <u>+</u> 0.4	2.1 ± 0.2	2.0 ± 0.4	0.34
Prior Medications, % (n)				
Beta-Blocker	78.6 (31)	64.3 (9)	78.6 (22)	0.459
ACE inhibitors/ARB	92.9 (39)	85.7 (12)	96.4 (27)	0.254
Spironolactone	19.0 (8)	35.7 (5)	10.7 (3)	1
ССВ	14.3 (6)	21.4 (3)	10.7 (3)	0.383
Digoxin	38.1 (16)	92.9 (13)	10.7 (3)	0.18
Amiodarone	9.5 (4)	14.3 (2)	7.1 (2)	0.59
Statins	71.4 (30)	71.4 (20)	71.4 (10)	1
Implantable Device at EPS*	85.7 (36)	85.7 (12)	85.7 (24)	1

*within 14 days

218

Key: Values are n, mean ± standard deviation, or median (interquartile range). Categorical variables are
 compared using Fisher's exact test; continuous variables using the t-test (except BNP: Mann-Whitney U
 test performed because data is not normally distributed). All patients had electrophysiology study based
 on the presence of ischemic cardiomyopathy, left ventricular ejection fraction ≤ 40% and non-sustained
 VT/VF. ACE, angiotensin converting enzyme; ARB, angiotensin receptor blockers; BNP, B-type natriuretic

224 peptide concentration; CCB, calcium channel blockers; CAD, coronary artery disease; EPS,

electrophysiology study; IVCD, intraventricular conduction delay; LAD, left anterior descending artery;

LBBB, left bundle branch block; LCx, left circumflex artery; MI, myocardial infarction; RBBB, right bundle

branch block; RCA, right coronary artery, Revasc., coronary revascularization; Statins, HMG-CoA
 reductase inhibitors.

230 Online Table V.

Top 40 Extracted Features for endpoint of VT/VF used in the SVM model

Feature	Ampli- tude	VT/VF	Description	Category
1	1.738	time_reversal_asymmetry_statisticlag_ 3	Direction reversal, i.e. vectorial change, at 3ms	Time
2	1.440	spkt_welch_densitycoeff_5	Cross power spectral density at 5 frequencies	Frequency
3	-1.068	agg_linear_trendf_agg_"min"chunk_ len_50attr_"rvalue"	Correlation of linear trend across minima of all 50ms chunks	Time
4	1.038	change_quantilesf_agg_"mean"isabs _Falseqh_0.8ql_0.4	Absolute consecutive change between 0.4 and 0.8 of amplitude	Time
5	1.007	variance_larger_than_standard_deviation	Is variance larger than SD? (Boolean 1/0)	Time
6	-0.956	last_location_of_minimum	Last time point of minimum value	Time
7	0.891	agg_linear_trendf_agg_"var"chunk_l en_10attr_"rvalue"	Correlation of linear trend across variance of all 10ms chunks	Time
8	0.848	number_peaksn_3	Number of peaks greater than 3 ms	Time
9	0.803	fft_coefficientcoeff_48attr_"abs"	Absolute value of Fourier coefficient at 130Hz	Frequency (High)
10	-0.740	change_quantilesf_agg_"mean"isabs _Trueqh_0.8ql_0.6	Absolute consecutive change between 0.6 and 0.8 of amplitude	Time
11	-0.719	agg_linear_trendf_agg_"var"chunk_l en_50attr_"rvalue"	Correlation of linear trend across variance of all chunks of data of duration 50 ms	Time
12	-0.649	fft_coefficientcoeff_61attr_"abs"	Absolute value of the Fourier coefficient at 165Hz	Frequency (High)
13	-0.639	index_mass_quantileq_0.8	Time point of 0.8 of cumulative mass	Time
14	0.618	fft_coefficientcoeff_41attr_"abs"	Absolute value of the Fourier coefficient at 111Hz	Frequency (High)
15	-0.546	agg_linear_trendf_agg_"var"chunk_l en_5attr_"slope"	Slope of linear trend across variance of all chunks of data of duration 50 ms	Time
16	-0.524	percentage_of_reoccurring_values_to_all _values	Percentage of recurring values	Time
17	0.517	large_standard_deviationr_0.15000000 000000002	Boolean is SD > 0.15 range	Time
18	0.510	fft_coefficientcoeff_20attr_"angle"	Angle value of the Fourier coefficient at 54Hz	Frequency (Mid)
19	-0.482	change_quantilesf_agg_"var"isabs_F alseqh_0.8ql_0.4	Variance between 0.4 and 0.8 of magnitude	Time
20	0.425	fft_coefficientcoeff_98attr_"imag"	Imaginary part of the Fourier coefficient at 264Hz	Frequency (High)

Feature	Ampli- tude	VT/VF	Description	Category
21	-0.422	has_duplicate_min	Boolean is minimum repeated	Time
22	-0.360	energy_ratio_by_chunksnum_segments_10s egment_focus_8	Energy in chunk 8 of 10 vs. entire series	Time
23	0.356	fft_coefficientcoeff_19attr_"imag"	Imaginary part of the Fourier coefficient at 51Hz	Frequency (Mid)
24	-0.355	fft_coefficientcoeff_8attr_"real"	Real part of the Fourier coefficient at 265Hz	Frequency (High)
25	0.347	approximate_entropym_2r_0.1	Approximate entropy across 2ms fitered at 0.1	Frequency
26	-0.346	fft_coefficientcoeff_27attr_"angle"	Angle value of the Fourier coefficient at 73Hz	Frequency (Mid)
27	0.343	partial_autocorrelationlag_2	Partial autocorrelation at 2ms	Time
28	-0.317	fft_coefficientcoeff_37attr_"real"	Real part of the Fourier coefficient at 100Hz	Frequency (Mid)
29	0.316	friedrich_coefficientsm_3r_30coeff_1	Friedrich coefficient 1 of 3-degree polynomial across 30 quantiles	Time
30	0.309	cwt_coefficientswidths_(2, 5, 10, 20)coeff_14w_5	Continuous wavelet transform for 5ms among 2, 5, 10, and 20ms	Time
31	0.300	fft_coefficientcoeff_12attr_"real"	Real part of the Fourier coefficient at 32Hz	Frequency (Low)
32	0.300	fft_coefficient_coeff_43_attr_"angle"	Angle value of the Fourier coefficient at 116Hz	Frequency (High)
33	-0.285	fft_coefficientcoeff_38attr_"real"	Real part of the Fourier coefficient at 103Hz	Frequency (High)
34	-0.276	large_standard_deviationr_0.3500000000000 003	Boolean is SD > 0.35 range	Time
35	-0.250	cwt_coefficientswidths_(2, 5, 10, 20)coeff_3w_2	Continuous wavelet transform for 2ms among 2, 5, 10, and 20ms	Time
36	0.242	fft_coefficient_coeff_25attr_"angle"	Angle value of the Fourier coefficient at 68Hz	Frequency (Mid)
37	-0.239	fft_coefficientcoeff_28attr_"angle"	Angle value of the Fourier coefficient at 76Hz	Frequency (Mid)
38	-0.236	change_quantilesf_agg_"mean"isabs_True qh_0.2ql_0.0	Absolute consecutive change between 0.0 and 0.2 of amplitude	Time
39	0.227	fft_coefficientcoeff_94attr_"real"	Real part of the Fourier coefficient at 254Hz	Frequency (High)
40	-0.218	fft_coefficientcoeff_29attr_"angle"	Angle value of the Fourier coefficient at 78Hz coefficient	Frequency (Mid)

Key: Frequency descriptions are subdivided into low bandwidth (<50 Hz), corresponding to

238 MAP waveform shape and resting potential, high bandwidth (>100 Hz), corresponding to 239 transients such as Phase 0 and 1, and mid- bandwidth (51-100 Hz).

242 Online Table VI

Top 40 Extracted Features for endpoint of all-cause mortality used in the SVM model

Feature	Ampli- tude	Death	Description	Category
1	-2.876	approximate_entropym_2r_0.1	Approximate entropy across 2ms filtered at 0.1	Frequency (Low)
2	-1.798	ratio_beyond_r_sigmar_2	Ratio of values > 2SD	Time
3	-1.750	agg_autocorrelationf_agg_"median"maxlag _40	Autocorrelation of medians at lags up to 40ms	Time
4	1.152	time_reversal_asymmetry_statisticlag_3	Direction reversal at 3ms	Time
5	-0.963	spkt_welch_densitycoeff_2	Cross power spectral density at 2 frequencies	Frequency
6	-0.700	agg_linear_trendf_agg_"var"chunk_len_50 attr_"rvalue"	Correlation of linear trend across variance of all 50ms chunks	Time
7	-0.669	change_quantilesf_agg_"var"isabs_False qh_0.4ql_0.0	Absolute consecutive variance change between 0.0 and 0.4 of amplitude	Time
8	0.656	fft_coefficientcoeff_98attr_"abs"	Absolute value of the Fourier coefficient at 265Hz	Frequency (High)
9	0.655	large_standard_deviationr_0.2	Boolean is SD > 0.20 range	Time
10	-0.640	ratio_beyond_r_sigmar_1.5	Ratio of values > 1.5SD	Time
11	-0.606	number_peaksn_3	Number of peaks greater than 3 ms left or right	Time
12	0.573	fft_coefficientcoeff_23attr_"real"	Real part of the 23Fourier coefficient at 62Hz	Frequency (Mid)
13	0.555	ar_coefficientk_10coeff_0	Autoregression coefficient max lag = 10	Time
14	-0.537	fft_coefficientcoeff_37attr_"real"	Real part of the Fourier coefficient at 100Hz	Frequency (High)
15	-0.488	agg_linear_trendf_agg_"var"chunk_len_5_ _attr_"rvalue"	Correlation of linear trend across variance of all 5ms chunks	Time
16	0.446	agg_linear_trendf_agg_"max"chunk_len_5 0attr_"rvalue"	Correlation of linear trend across maximums of all 5ms chunks	Time
17	-0.307	fft_coefficientcoeff_28attr_"angle"	Angle value of the Fourier coefficient at 76Hz	Frequency (Mid)
18	-0.287	energy_ratio_by_chunksnum_segments_10 segment_focus_7	Energy in chunk 7 of 10 vs. entire series	Frequency (Mid)
19	-0.286	agg_linear_trendf_agg_"min"chunk_len_50 attr_"slope"	Slope of linear trend across minimum of all 50ms chunks	Time
20	0.283	fft_coefficientcoeff_8attr_"real"	Real part of the Fourier coefficient at 22Hz	Frequency (Low)

Feature	Ampli- tude	Death	Description	Category
21	0.277	fft_coefficientcoeff_46attr_"angle"	Angle value of the Fourier coefficient at 14Hz	Frequency (Low)
22	0.249	fft_coefficientcoeff_2attr_"imag"	Imaginary party of the Fourier coefficient at 5.4Hz	Frequency (Low)
23	-0.236	binned_entropymax_bins_10	Entropy max in up to 10 bins	Frequency (High)
24	0.232	fft_coefficientcoeff_5attr_"angle"	Angle value of the Fourier coefficient at 13.5Hz	Frequency (Low)
25	0.225	cwt_coefficientswidths_(2, 5, 10, 20)coeff_13w_5	Continuous wavelet transform for 5ms among 2, 5, 10, and 20ms	Time
26	-0.215	cwt_coefficientswidths_(2, 5, 10, 20)coeff_10w_2	Continuous wavelet transform for 2ms among 2, 5, 10, and 20ms	Time
27	0.205	change_quantilesf_agg_"mean"isabs_True_ _qh_1.0ql_0.8	Absolute consecutive mean change between 0.8 and 1.0 of amplitude	Time
28	-0.205	fft_coefficientcoeff_78attr_"abs"	Absolute value of the Fourier coefficient at 211Hz	Frequency (High)
29	0.202	fft_coefficientcoeff_64attr_"angle"	Angle value of the Fourier coefficient at 173Hz	Frequency (High)
30	-0.200	fft_coefficientcoeff_82attr_"angle"	Angle value of the Fourier coefficient at 222Hz	Frequency (High)
31	0.197	longest_strike_above_mean	Length of longest string above mean	Time
32	-0.193	large_standard_deviationr_0.150000000000 0002	Boolean is SD > 0.15 range	Time
33	0.191	last_location_of_maximum	Last time point of maximum	Time
34	-0.191	sum_of_reoccurring_data_points	Sum of all recurring data points	Time
35	0.189	fft_coefficientcoeff_42attr_"angle"	Angle value of the Fourier coefficient at 114Hz	Frequency (High)
36	0.174	fft_coefficientcoeff_79attr_"real"	Real part of the Fourier coefficient at 214Hz	Frequency (High)
37	0.173	energy_ratio_by_chunksnum_segments_10 segment_focus_9	Energy in chunk 9 of 10 vs. entire series	Time
38	-0.166	fft_coefficientcoeff_29attr_"angle"	Angle value of the Fourier coefficient at 78Hz	Frequency (Mid)
39	0.165	value_countvalue_0	Number of 0 values	Time
40	0.162	has_duplicate_min	Boolean is minimum duplicated	Time

248 **Key:** Frequency descriptions are subdivided into low bandwidth (<50 Hz), corresponding to

249 MAP waveform shape and resting potential, high bandwidth (>100 Hz), corresponding to

transients such as Phase 0 and 1, and mid- bandwidth (51-100 Hz).

252 Online Table VII – Confusion matrices for all single-beat MAPs across all 10 test sets

VT/VF					Mortality		
		95% Conf. Intervals				95% Conf	f. Intervals
	Percent	Lower	Upper		Percent	Lower	Upper
Sensitivity	72.65	71.49	73.78	Sensitivity	59.95	58.54	61.35
Specificity	88.98	88.38	89.56	Specificity	81.64	80.92	82.34
PPV	78.24	77.12	79.32	PPV	57.03	55.64	58.41
NPV	85.65	84.98	86.29	NPV	83.38	82.68	84.05
Accuracy	83.22	82.64	83.78	Accuracy	75.37	74.71	76.03

Online Table VIII - Similar Respiratory Rate for MAPs predicting/not predicting each endpoint

	<u>VT/VF</u>	<u>No VT/VF</u>	<u>Mort</u>	<u>No Mort</u>
Respiratory Rate	14.71	15.45	15.59	14.94
Standard deviation	2.87	3.00	2.99	2.95
t-test p	0.45		0.49	

262 Online Table IX - Similar recording quality, measured as the peak of autocorrelation for

263 successive beats, for MAPs predicting/not predicting each endpoint

	VT/VF	No VT/VF	Mortality	No Mortality
MAP consistency by autocorrelation	0.89	0.86	0.86	0.88
Standard deviation	0.09	0.08	0.09	0.09
t-test p	0.41		0.57	

267 Supplemental Figures:

268

269 Online Figure I

- 270
- 271

Online Figure I. Preprocessing Applied to MAPs. A. Clipping phase 0 overshoot, in an RV MAP
from a 67-year-old male with LVEF 25%. Outlier removal eliminated this phase 0 overshoot
while maintaining MAP shape. B. Clipping undershoot from a Ventricular MAP in a 59-year-old
male with LVEF 10%. The negative undershoot just before phase 0, possibly related to pacing
artifact, was attenuated by this uniform approach to outlier removal. Results from the analysis
did not change qualitatively if this step was omitted.

283	Online Figure II. K=10 Cross Validations Used in Study. Each panel shows a single MAP from
284	each patient (N=42) to represent the set of all recordings from that patient. Data were
285	randomly allocated into either training (unboxed) or test (red boxes) cohorts, with all beats
286	from each patient allocated together (stratified Monte Carlo cross-validation). This process was
287	repeated for 10 cross-validation splits. In each split, approximately 70% of beats were used for
288	training and 30% were reserved for testing. Training and testing data were distinct for each K-
289	cross validation split.

301 Online Figure IV

303 Online Figure IV. CNN model architecture – CNN model, on input size of 370 samples for a

304 single-beat MAP, with two convolutional layers and a bidirectional long-short term memory

- 305 (LSTM) layer that classified events (VT/VF or mortality) vs. non-events (arrhythmia-free or
- 306 survival)

307

308 Glossary of Terms

309 310 **Computational phenotyping** - Computational phenotypes are disease phenotypes, identified in 311 this case from machine learning of clinically measured ventricular action potentials coupled 312 with computational cell models, which indicate a high or low risk of clinical events (here, 313 ventricular arrhythmias or death on long-term follow-up). 314 315 *tsfresh* - *tsfresh* is a library of mathematical time-series parameters that efficiently represents 316 time and frequency-based features for supervised learning. To produce features using tsfresh, 317 the voltage time series data from MAP recordings are passed into the functions of the library 318 and scalar values are returned for each of 794 features. These are ranked based on p-values for 319 each output label in turn, and those with least significant features are removed by the 320 Benjamini-Yekutieli procedure. Resulting features are further filtered as inputs for supervised learning.¹ 321 322 323 Features – Features are mathematical descriptions of an input signal or image described by a 324 value, function, or pattern that can be used as inputs to supervised learning models. 325 326 **Parameter sets** – Parameter sets are the group of channel conductance values that are used for 327 a given state of the O'Hara Rudy model simulation. Each parameter set contains 5 values 328 corresponding to the 5 channels evaluated in this work.

329

- 330 L1 regularization, regularization factor, 'liblinear' solver L1 regularization, regularization
- factor, and the 'liblinear' solver are parameters of the linear regression model used to choose
- the top 40 features that correlated with the endpoints.
- 333
- 334 Scikit-learn library A python library containing various classification, regression, and
- 335 clustering algorithms for data science applications.

Ne	advie Document for Source code and Demo
1.	Background
Th	s document provides readme documentation for the source code used to generate the
res	ults for the manuscript entitled "Machine Learning of in vivo Tissue Electrophysiology in
Ра	tients with Heart Failure ".
Th	ere is also a demo code to show the results of the trained model for a sample dataset.
2.	Files attached
	• Code: The main code is presented in a Jupyter notebook format (.ipynb). The code
	provides information for all the steps and the functions that are used in the result.
	Comments are provided for each function.
	• The main code is saved in "Code for manuscript submission.ipynb" as jupyter
	notebook in the Code folder. The rest of the functions are helper functions saved
	as a .py file. The full source code will only run with full dataset (we only provide
	demo dataset).
	• Data: Only a subset of the data is provided for demo purposes and can be found in the
	Demo folder.
	Demo Folder contents:
	 20191219 is an excel sheet showing the actual labels for both VTVF and
	Mortality endpoints and whether they were in training/validation splits in the
	trained model
	 Calc_metrics_v2: helper function to calculate accuracy, sensitivity, specificity,
	NPV, PPV.
	 Demo_Code.ipynb: Jupyter notebook to run demo. Running this demo will show
	results from the sample dataset provided.
	 Mortality_CV1_finalized_mode.sav: trained model using cross validation 1 for
	mortality endpoint.
	 VTVF_CV1_finalized_model.sav: trained model using cross validation 1 for VTVF
	endpoint.
	 Mortality_labels_demo & Mortality_tsfresh_features_demo: input and true
	output for model (Mortality). First 5-digit contain patient ID, and last 4 digits
	contain beat ID.
	 VTVF_labels_demo & VTVF_tsfresh_features_demo: input and true output for
	model (VTVF).
	 demo_data_20191219.npz: numpy (.npz) file that has the voltage-timeseries
	MAPs. Each point is 1msec apart and the values are voltages in mV.
3.	Hardware and Software
Th	s program runs on a desktop computer system with following specifications:
	 Inter Core i9-9900K CPU @3.6Ghz, 3600 Mhz, * cores, 16 Logical Processors

• Microsoft Windows 10 Pro

- 381
- 32 GB RAM
- 382

383 All computations were performed on Python 3.6 using Anaconda Navigator 1.9.7. The following 384 packages were used:

- 385 numpy 1.17.3
- 386 pandas 0.23.4
- 387• pandas-datareader 0.8.0
- 388 scikit-learn 0.21.3
- 389
 scipy 1.3.1
- 390 tsfresh 0.12.0
 - xlrd 1.2.0
 - xlsxwriter 1.2.6
 - jupyter 1.0.0
 - pickle 1.0 or higher
 - matplotlib 3.3.0
- 395 396

391

392

393

394

397 4. Time to execute

All runtimes are based on the hardware specifications provided in section 3. Most commands
run in less than 1 minute and a few take up to 3 minutes. The only part that takes a considerable
time (~15 minutes) is "extract_features_without_label" which extracts all the tsfresh features.
This command is performed in the "Code_for_manuscript_submission.ipynb" Jupyter file under
section "Feature extraction using tsfresh" (this requires the full dataset to run. Only code is
provided).

403 p 404

405 **5.** Instructions to run

- 406 1. If downloaded as a zipped folder, you will need to unzip the folder.
- 407 2. You will need to install the packages listed in section 3.
- 408
 408
 409
 3. Running every cell in the Demo Jupyter file notebook in order will run the program and produce the results in the Jupyter notebook.
- 4. The Demo also allows to plot different MAP beats for the demo files (can be configured).
 The runtime for the demo file takes a few minutes or less (tested on machine with
- 412 specifications in section 3, but it should run fast on any modern machine as well).
- 413

414 6. Software License

415 Creative Commons Attribution-NonCommercial-NoDerivatives