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Supplementary Information  

 

 

 

Figure S1. Fabrication of disposable PEdELISA microfluidic chip. The chip contains two 
polymethyl methacrylate (PMMA) layers (top venting and bottom substrate layers), a thin 
polydimethylsiloxane (PDMS) layer (200 µm), which contains biosensor patterns, each consisting 
of fL-sized microwell arrays for digital assay, and a polyethylene terephthalate (PET) thin film 
(120 µm) with microfluidic channels fabricated by laser cutting. 

  



 

 

Figure S2. PEdELISA chip preparation and assembly processes . (A) Attach a PDMS bead feeding 
channel layer to cover PDMS microwell arrays constructed on the bottom PMMA substrate. (B) 
Load a buffer solution suspending antibody-conjugated beads into the bead feeding channels. (C) 
Allow beads to be settled in microwells for 5 min and then gently peel off the bead feeding channel 
layer. (D) Place the PET sample detection channel layer onto the remaining PMMA substrate and 
subsequently place the PMMA sample vent/loading layer on top of the PET layer.  Assemble the 
chip using bolt screws (M2). Finally, prime each sample detection channel with blocking buffer 
(SuperBlockTM PBS buffer, 0.05% Tween20) to passivate the channel surface.   

  



 

 

Figure S3. PEdELISA assay platform comprising two modules: (A) programmed fluidic handling 
module with Arduino controlled linear rail and multi-channel pipettes. (B) customized low-cost 2-
axis fluorescence scanning module with a consumer-grade CMOS camera. 

 

Design of programmed fluidic handling and low-cost optical scanning modules. 

 A programmed fluid handling module was designed to allow semi-automated parallel fluid 

handling (up to 16 samples) and to improve the fidelity and sensitivity of the assay by active on-

chip mixing. The module incorporates a linear rail system (one NEMA 17 stepper motor, TB6600 

motor shield, Arduino Uno, pipette holders) to operate up to four multi-channel pipettes for assay 

reagents loading, mixing and washing (Fig. S3A). A multi-pin connector was designed to provide 

good sealing for the countersink holes on the cartridge. This helps avoid leaking and bubble 

generation during sample/reagent solution loading. A liquid crystal display (LCD) screen was 

attached to inform the user of step-by-step instructions with time countdown for each assay step.  

 An optical scanning module was designed to be cost-effective and compact for high-

throughput, high-quality digital image readout. The module comprises a 2D image scanner and an 

optical unit. The scanner employs a two-axis linear rail system with two 0.9° NEMA 17 stepper 

motors, which are powered by DM542T motor shields and controlled by an Arduino MEGA 2560 

board, a lead screw/rail system, and an imaging stage made of aluminum (Fig. S3B). The optical 

unit (Fig. S3B inset) was assembled beneath the scanning unit with a 10X Nikon objective lens 



mounted on a high-precision non-rotating zoom housing, a 30mm filter cube including a dichroic 

mirror (565 nm long-path), and an excitation (545/25 nm) and emission filter (605/70 nm). The 

excitation side of the filter cube was connected to an aspherical lens (F=16 mm) that collimates an 

LED fluorescence light source (560nm) used for fluorescent excitation of beads. The bottom of 

the cage cube was connected to a sliding emission filter mount for switching between the 

brightfield and fluorescent imaging modes. The filter mount was connected to a 200mm tube lens 

(Nikon) and the light path was reflected towards the side using a 50 mm right-angle prism mirror 

mounted in a 60mm cage cube. A CMOS sensor (SONY a6100 CMOS camera) was mounted on 

the side of the 60mm cage cube and remotely controlled by a laptop to perform image scanning as 

well as data processing. Lastly, a collimated halogen lamp for bright field imaging was mounted 

above the chip to provide bright field illumination. To achieve a large field and depth of view in 

imaging as well as increase the compactness of the module, we customized the optical distance 

between the tube lens and the CMOS plane so that it lowered the magnification ratio of the whole 

optical system to 9X. To avoid high cost and complexity for the module, we did not use Köhler 

illumination for brightfield imaging. Instead, all images were post-processed with a simple flatfield 

correction algorithm using MATLAB. As a result, the cost of the entire optical unit is less than 

$4000. 

  



 

 

Figure S4. Representative snapshot images of enzyme active “On” microwells on a biosensor 
pattern (66,724 wells/biosensor) for various analyte concentrations of (A) IL-1β (B) TNF-α (C) 
IL-10 (D) IL-6. For clear visualization, images of 3600×3600 pixels were cropped from original 
raw images of 6000×4000 pixels with 80% brightness enhancement and 40% contrast 
enhancement. All of the scale bars are 200 μm.   

  



 

Figure S5. (A) User-interface of the Universal Gcode Sender for automated PEdELISA assay 
image scanning (B) Characterization of bi-directional motion control accuracy by repeatedly 
scanning and imaging the designated microarray on the chip. Bi-directional repeatability with a 
positional error of less than 5 µm was achieved.  

 

Control and characterization of 2D optical scanning module 

 To control the optical scanning module, we use the Universal Gcode Sender (UGS) that 

transmits a MATLAB-generated Gcode to the Arduino for imaging scanning (Fig. S5A). UGS 

provides a platform with manual and automated precision control of the stage and visualization of 

the scanning paths, making the whole module practical for this application. By designating each 

motor of the system through the Arduino, specific commands can be sent to each motor to move 

the stage to the desired location. A single command for moving a motor in Gcode includes the 

origin and units of movement, the shape of travel, the axis and distance of movement, and the 

motor speed. For the image scanning, an algorithm has been developed to account for any 

rotational offset in the cartridge placement to ensure that the microscope optics can capture an 

image of each microwell in the center of the view. We used a MATLAB script that generates a 

Gcode file containing line-by-line commands between two locations on the cartridge with a 5-sec 

delay for image focusing and capture. Our preliminary test showed that simultaneous x and y travel 

increases the errors of the motors. As such, we executed x and y-axis movements individually to 

improve the accuracy of the scanning. We characterized the x-y motion control accuracy by 

repeating the scanning and imaging of the on-chip microarray structures. We then used post-image 

overlay to calculate the x, y offsets which are plotted in Fig. S5B. We were able to achieve 

repeatable bi-directional scanning with a positional error of less than 5 µm and a minimum 

incremental movement of 0.31 µm.  This provided sufficient accuracy for the PEdELISA assay.  



 

Figure S6. Pre-equilibrium assay reaction optimization. PEdELISA standard curves for IL-1β, 
TNF-α, IL-10, and IL-6, with the incubation time of analyte/detection antibody reaction varying 
from 5 min, 10 min, 15 min. The HRP enzyme labeling time was fixed at 1 min. Four-parameter 
logistic regression was used to fit the standard curve to data points taken for cytokine spiked-in 
100% fetal bovine serum.  

 

 

  



 

Figure S7. Standard curve of IL-6 ELISA for patient sample correlation. The ELISA kit was 
purchased from R&D Systems (Human IL-6 DuoSet ELISA DY206). The limit of detection was 
determined to be 12.03 pg/mL using the blank signal + 3σ (dotted line).    

 

  



MATLAB Training code for the convolutional neural network: 

 The training process of the in house developed dual-pathway CNN algorithm involves data 

set labeling and 2-step neural network training, which start from a 32×32 pixel locally-cropped 

images and are later applied to the 256×256 pixel large-sized images. The MATLAB training code 

is attached as follows, which includes file preparation (raw images and labels), neural network 

layer setup (downsampling and upsampling process), solver setup, class balance (for better 

accuracy), and post-processing (for quick testing). The detailed training method can be found in 

our previous publication1. 

 

File Preparation 
clear; 
close all force; 
clc; 
 

imageDir = fullfile('E:\bio research\rawimage');   %Provide the correct folder 
path 
labelDir = fullfile('E:\bio research\positive_label'); 
imds = imageDatastore(imageDir);  %Contains all raw images 
 

classNames = ["Qred","background"]; 
labelIDs   = [1 0]; 
pxds = pixelLabelDatastore(labelDir,classNames,labelIDs); %Contains all labeled 
images 

 

Layer setup 
inputSize = [256 256 1];  %Input image size 
numFilters = 10; 
filterSize = 3; 
numClasses = 2; 
poolSize = 2; 
layers = [ 
    imageInputLayer(inputSize)    %Image Input layer 
    convolution2dLayer(filterSize,numFilters,'Padding',1)  %Downsampling network 
    reluLayer() 
    maxPooling2dLayer(poolSize,'Stride',2) 
    convolution2dLayer(filterSize,numFilters,'Padding',1) 
    reluLayer()                                      %Downsampling end 
    transposedConv2dLayer(4,numFilters,'Stride',2,'Cropping',1);  %Upsampling  
    reluLayer()  



    convolution2dLayer(1,numClasses);    %Pixel label layer 
    softmaxLayer() 
    pixelClassificationLayer() 
    ] 
 

Solver Setup with class balance 
opts = trainingOptions('sgdm', ... 
    'InitialLearnRate',1e‐3, ... 
    'MaxEpochs',30, ... 
    'MiniBatchSize',10, ... 
    'Shuffle',"every‐epoch", ... 
    'Plots','training‐progress'); 
 

trainingData = pixelLabelImageDatastore(imds,pxds); 
tbl = countEachLabel(trainingData) 
totalNumberOfPixels = sum(tbl.PixelCount); 
frequency = tbl.PixelCount / totalNumberOfPixels; 
inverseFrequency = 1./frequency; 
layers(end) = 
pixelClassificationLayer('Classes',tbl.Name,'ClassWeights',inverseFrequency); %Mo
dify the last layer! 
net = trainNetwork(trainingData,layers,opts); 
 

 

Post Processing 
testImage = imread('E:\biodata\QRed00001.JPG'); 
Img_Qred = imcrop(testImage,[1101 301 3799 3399]); 
Img_Qred_red = squeeze(Img_Qred(:,:,1));  
figure,imshow(Img_Qred_red) 
Mask_raw = semanticseg(testImage,net,'ExecutionEnvironment',"cpu"); 
Mask_Qred=Mask_raw=="Qred"; 
Mask_Qred = imfill(Mask_Qred, 'holes'); 
processedImage = labeloverlay(testImage,Mask_Qred); 
figure,imshow(processedImage) 

 

 

 

 

 


