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Figure S1. Comparison of mitotic and meiotic kinetochore proteomes. Related to Figure 2.
(A) Flow cytometry profiles of representative of prophase I-arrested wild-type and Ctf19c-deficient cells 
used for purification of CEN and CEN* chromatin. Note that although DNA replication is not complete in 
mcm21Δ cells due to consistently delayed meiotic progression, the majority of cells must have entered 
meiosis because their kinetochores undergo a dramatic change and the outer kinetochore is lost (Figure 
4A). (B) Immunofluorescence analysis of metaphase I arrested cells used for purification of CEN and CEN* 
chromatin. (C) Kinetochore composition varies across cell cycle stages. Clustering analysis of kinetochore 
samples (k-means). A cut-off of Log2(fold change) > 1 and p < 0.05 was used. (D) Proteins shown in 
KTcluster4 containing prophase I-enriched proteins in (C) are listed. (E) Kinetochore-associated proteome 
of cycling cells is similar to that of mitotic metaphase-arrested cells. Volcano plot showing LFQMS-identified 
proteins co-purifying with Dsn1-6His-3FLAG in cycling cells vs. mitotic metaphase-arrested (benomyl) cells. 
Log2(fold change) between conditions are shown with their corresponding p values (see methods). Dashed 
line indicates |Log2(fold change)| = 2. See also Table S2.
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Figure S2. Overview of protein enrichment in CEN and kinetochore purifications from cycling, 
prophase I and metaphase I cells. Related to Figure 2.
(A and B) Comparison of CEN* chromatin isolated from cycling cells and two meiotic stages. Volcano plots 
showing LFQMS-identified proteins co-purifying with CEN* plasmids immunopurified from cells arrested in 
prophase (ndt80∆, A) and metaphase I (pCLB2-CDC20, B) as compared to cycling cells. Log2(fold change) 
between conditions are presented with their corresponding p values (see methods). Dashed line indicates 
|Log2(fold change)| = 2. Legend to right is for all panels in this figure. (C and D) CEN chromatin (C) and 
kinetochore (D) composition varies depending on cell cycle stage. (C) Volcano plots showing 
LFQMS-identified proteins co-purifying with CEN and CEN* plasmids immunopurified from cells that are 
cycling, arrested in prophase (ndt80∆) and metaphase I (pCLB2-CDC20). (D) Volcano plot showing 
LFQMS-identified proteins co-purifying with Dsn1-6His-3FLAG immunopurified from cells that are cycling, 
arrested in prophase (inducible-NDT80) and metaphase I (pCLB2-CDC20).
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Figure S3. Ctf19cCCAN becomes essential in meiosis. Related to Figure 3.
(A) Deletion of non-essential Ctf19cCCAN components mildly impairs mitotic viability. Viability of cycling cells 
of the indicated genotypes is shown after plating as proportion of wild type. n = 3 – 4 biological replicates, 
minimum of 200 cells plated for each genotype. (B-D) Meiotic viability of Ctf19cCCAN-deficient cells is 
reduced compared to wild-type cells. (B) Viability of spores in four-spore tetrads. The number of viable 
progeny was scored (n = 36 tetrads). (C) Random spore viability. n = 2 biological replicates. (D) Sporulation 
efficiency. n = 2 biological replicates. (E-G) Deletion of IML3 and MCM21 causes gross chromosome 
missegregation in meiotic, but not mitotic, cells. (E) Mitotically cycling wild-type, iml3∆ and mcm21∆ cells 
expressing Htb1-mCherry were imaged. t = 0 min time-point is defined as the last time-point before DNA 
masses start to separate. (F) Wild-type, iml3∆ and mcm21∆ cells expressing Htb1-mCherry were released 
from prophase I arrest and imaged through meiosis. t = 0 min time-point is defined as the last time-point 
before DNA masses start to separate. (G) Quantification of F. 58-92 cells were scored.
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Figure S4. Kinetochores fail to assemble in meiosis in iml3∆ and mcm21∆ cells. Related to Figure 4.
(A and B) The Ctf19cCCAN plays a central role in kinetochore composition during meiosis. (A) Volcano plots 
showing LFQMS-identified proteins co-purifying with CEN chromatin in wild-type vs. mcm21∆ cells from 
mitotically cycling cells, meiotic prophase I and meiotic metaphase I cells. Log2(fold change) between 
conditions are presented with their corresponding p values (see methods). Dashed line indicates |Log2(fold 
change)| = 2. Plots show data for cycling cells, cells arrested in prophase I (ndt80∆) allele and cells 
arrested in metaphase I (pCLB2-CDC20). (B). Volcano plots showing the LFQMS-identified proteins 
co-purifying with CEN chromatin in wild-type vs. iml3∆ cells at different cell cycle stages. Log2(fold change) 
between conditions are presented with their corresponding p values (see methods). Dashed line indicates 
|Log2(fold change)| = 2. Plots show data for cycling cells, cells arrested in prophase I (ndt80∆) and cells 
arrested in metaphase I (pCLB2-CDC20). 
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Figure S5. Defective kinetochores persist in Ctf19cCCAN deletion mutants after return to growth. 
Related to Figure 5.
(A-E) Mtw1cMIS12c binding and kinetochore function is not restored in iml3Δ and mcm21Δ cells in the mitotic 
division following return to growth. (A) Schematic of return-to-growth experiments. (B) Mtw1-tdTomato fails 
to localise to kinetochores in the absence of MCM21 following return to growth. Nutrients were added to 
wild-type and mcm21∆ cells arrested in prophase I. Imaging commenced 95 minutes after addition of 
nutrients. (C-E) Loss of kinetochore-localised Mtw1-tdTomato correlates with further kinetochore spreading. 
(C) Fraction of cells with detectable (green) and undetectable (blue) Mtw1-tdTomato signal 95 min after 
return to growth is shown. n > 64 cells. (D and E) Following the cells scored in (C), the appearance of 
Mtw1-tdTomato signal at metaphase in those cells in which foci were detectable (n > 28 cells, D) or 
undetectable (n > 29 cells, E) upon return to growth is shown. Numbers of cells in C vs. D and E are not 
identical, as it was not possible to score all the cells later in mitosis. (F) Cells lacking IML3 or MCM21 
exhibit loss of viability following return to growth. Wild-type, iml3∆ and mcm21∆ cells were induced to 
sporulate and plated at t0h (before meiosis) and t5h (prophase I arrest). Viability drop from t0h to t5h was 
calculated. n > 158 cells. RTG – return to growth. 
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Figure S6. Ctf19cCCAN deletion mutants show a metaphase I delay. Related to Figure 6.
(A) Cells lacking IML3 and MCM21 show delayed cell cycle progression. Asynchronously growing wild-type, 
iml3∆ and mcm21∆ cells expressing Mtw1-tdTomato and Ndc80-GFP were imaged. Time between 
emergence of bilobed kinetochore structure and anaphase (when two Mtw1-tdTomato foci reach opposite 
ends of mother and daughter cells) was measured. ***p < 10-4, ****p < 10-8, *****p < 10-15; Mann-Whitney 
test. n > 30 cells. Whiskers represent 1.5 IQR, the middle line is median, the box encompasses two middle 
quartiles of the data. (B-D) Cells lacking IML3 and MCM21 are delayed in formation of meiosis II spindles, 
cleavage of cohesin (Rec8REC8) and degradation of securin (Pds1SECURIN). (B) Schematic of the experiment 
shown in C and D. The expected spindle phenotypes, the presence or absence of Pds1SECURIN, and the 
presence or absence of cleaved Rec8REC8 are indicated for the different cell cycle stages. (C and D) 
Wild-type, iml3∆ and mcm21∆ cells were synchronously released from prophase I and samples were 
collected at indicated times. (C) Spindle morphology and the presence of Pds1SECURIN were scored by 
immunofluorescence. (D) Anti-Myc (Pds1-18Myc), anti-HA (Rec8-3HA) and anti-Pgk1 (loading control) 
immunoblots. Arrows (Ana I and Ana II) represent the onset of anaphase I and anaphase II, based on Rec8 
cleavage, respectively. 
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Figure S7. Inner kinetochore proteins fail to localise to meiotic kinetochores in the absence of 
non-essential Ctf19cCCAN components. Related to Figure 7.
(A) Cnn1CENP-T is lost from kinetochores in the absence of IML3 and MCM21. Metaphase I-arrested 
wild-type, iml3∆ and mcm21∆ cells carrying pCLB2-CDC20 and CNN1-6HA together with untagged control 
were subjected to anti-HA ChIP-qPCR. Error bars represent standard error (n = 3 biological replicates). p < 
0.05, paired t-test. (B) cnn1∆ cells segregate chromosomes faithfully in meiosis. Wild-type and mcm21∆ 
cells with both copies of chromosome V marked with GFP were sporulated. The percentage of 
tetra-nucleate cells with the indicated patterns of GFP dot segregation was determined. n = 100 tetrads. (C) 
Loss of kinetochore integrity in mcm21∆ cells is not rescued by deletion of MAM1. Strains of the indicated 
genotypes were imaged immediately after release from prophase I arrest and Mtw1-tdTomato appearance 
was scored (n > 48 cells). (D) Cycling wild-type and mcm21∆ cells expressing Ame1-mNeonGreen were 
imaged immediately after moving to SPO medium and after 2 hours. Data for t0 (shown in black) is identical 
to that in Figure 7E as the experiment was performed at the same time. Whiskers represent 1.5 IQR, the 
middle line is median, the box encompasses two middle quartiles of the data. (E-H) Loss of non-Ctf19cCCAN 
inner kinetochore proteins Mif2CENP-C (E), the centromeric nucleosome Cse4CENP-A (F) and Ndc10 (G and H ) 
in meiotic prophase cells lacking MCM21. (E-G) Wild-type and mcm21∆ cells were imaged immediately 
after release from prophase I arrest and Mif2-mNeonGreen (E, n > 56 cells), Cse4-mNeonGreen (F, n > 58 
cells) or Ndc10-mNeonGreen (G, n > 60 cells) was scored. (H) Prophase I-arrested wild-type and mcm21∆ 
cells carrying NDC10-6HA together with untagged control were subjected to anti-HA ChIP-qPCR. Error 
bars represent standard error (n = 4 biological replicates). p < 0.05, paired t-test. 



 

Plasmid Name Description Source 

AM747 LacI-3FLAG:URA3 

pSB737 from 
Biggins lab, LacI-
3FLAG:URA3  
integrates at URA3 
locus following StuI 
digestion [S1] 

AM1103 <CEN3-TALO8>:TRP 

pSB964 from 
Biggins lab, CEN3 
minichromosome (S1] 

AM1106 <CEN3*-TALO8>:TRP 

pSB972 from 
Biggins lab, CCG -> 
GCT mutation 
introduced in CDEIII, 
CEN3* 
minichromosome [S1] 

AM1278 pWS082 sgRNA entry vector [S2] 

AM1279 pWS158 

STRONG Cas9 - 
gRNA gap repair 
expression vector for 
budding yeast 
CRISPR, URA3 [S2] 

AM1295 pWS082_CSE4gRNA. 

sgRNA entry vector 
with sgRNA guide 
for CSE4 this study 

AM1362 
pLC605-NDC80-3v5-del2-
88    

p888 from Unal lab. 
3v5 C-terminal 
tagged Ndc80 
without the first 2-28 
residues [S3] 

AM1604 
pFA6a-mNeonGreen-
KlLEU2 

mNeonGreen 
tagging plasmid with 
Kluyveromyces lactis 
LEU marker this study 

AM1467 pWS082_NDC80_gRNA 

sgRNA entry vector 
with sgRNA guide 
for NDC80 this study 

 
Table S5. Plasmids used in this study. Related to STAR methods. 
  



 

primer sequence description 
AMo782 AGATGAAACTCAGGCTACCA qPCR Forward Primer, chromosome IV arm 
AMo783 TGCAACATCGTTAGTTCTTG qPCR Reverse Primer, chromosome IV arm 
AMo794 CCGAGGCTTTCATAGCTTA qPCR Forward Primer, chromosome IV centromere 
AMo795 ACCGGAAGGAAGAATAAGAA qPCR Reverse Primer, chromosome IV centromere 

AMo6663 CAACGATGTGCTTCAGTATTAC 
Forward primer to amplify sgRNA from PWS082 
derivatives 

AMo6664 GCTGTAGATATCCTGCACTC 
Reverse primer to amplify sgRNA from PWS082 
derivatives 

AMo6723 
CTGCGTTTATACGTCTCAGTTTTAGA
GC 

Forward primer to amplify Ca9 vector backbone for 
CRISPR transformations  

AMo6724 GTTTCACTTTCCGTCTCAAGTC 
Reverse primer to amplify Ca9 vector backbone for 
CRISPR transformations  

AMo6819 
GAATGCTGGTCGCTATACTGCTATCT
TCCGTTGGCGCAAAC Forward primer ~1kb upstream of Ndc80 ORF start 

AMo6846 GACTTTCGATTTCTAGATTACCTGCT 
Forward primer to generate sgRNA to internally tag 
Cse4 

AMo6847 AAACAGCAGGTAATCTAGAAATCG 
Reverse primer to generate sgRNA to internally tag 
Cse4 

AMo6853 CGTTCGTTCTCCTGCTTAGAGAGC reverse internal primer to amplify NDC80 ORF  

AMo7441 AAACTGTGATGTAGCACATGTTGAAA 
Reverse primer to generate sgRNA to truncate 
Ndc80 

AMo7442 GACTTTTCAACATGTGCTACATCACA 
Forward primer to generate sgRNA to truncate 
Ndc80 

AMo8660 

CGACAAAGAACCTGTTTCCAAGAAGA
GGGGAAAGAAGACGTTATGAAAGCT
CAAAAAGTGACCTAGATATCGAAACA
GACTACGAAGACCAAGCAGGTAATC
TAAGAACGCGGCCGCCAG 

Forward primer to amplify mNeonGreen with 100 bp 
homology to CSE4 

AMo8738 

GAATGAGTTCGCACTGGTGCAGGTA
CTTCAGTTTCCATTTCAGCTTCTTCTT
CATTTTCTGTCTCGATTTCTCGCTTAT
TTAGAAGTGGCGCGCCTTCCTTGTAT
AATTCGTCCATACCC 

Reverse primer to amplify mNeonGreen with 100 
bp homology to CSE4 

 
Table S6. PCR primers used in this study. Related to STAR methods.



 

  
Kinetochore Type meiotic or mitotic Binding Fraction Preload Force (pN) ± 

SEM 

Wild type meiotic 0.52 ± 0.04  
(n = 4) 

4.38 ± 0.14  
(m = 102) 

 mitotic 0.53 ± 0.06 
(n = 3) 

3.10 ± 0.19  
(m = 42)  

mcm21∆ meiotic 0.07 ± 0.00 
(n = 2) no force measurement 

 mitotic 0.50 ± 0.00 
(n = 2) 

3.30 ± 0.16 
(m = 57) 

iml3∆ meiotic 0.04 ± 0.01 
(n = 2) no force measurement 

 mitotic 0.54 ± 0.05 
(n = 2) 

3.65 ± 0.31 
(m = 23) 

 
Table S7. Summary of rupture force experiments. Related to Figure 6. 
Binding fractions indicate the fraction of beads that bound when held near the tip of a 
growing microtubule, expressed as mean ± σ from n experiments. The number of 
individual beads tested during each experiment ranged from 2 to 35. 
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